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Abstract 
This thesis develops and investigates meta-heuristic and evolutionary approaches 

to the stock cutting problem. In particular, we concentrate on hill climbing, tabu 

search, simulated annealing, genetic algorithms, ant algorithms and two types of 

memetic algorithm. 

In carrying out this work, a number of diverse issues have had to be explored. It is 

often the case that the evaluation function is a bottleneck within a search 

algorithm. This thesis shows that by using a cache to store previously evaluated 

solutions, the evaluation function does not have to be called when the solution is 

already in the cache. This significantly improves the speed of the algorithm. 

However, under certain circumstances, it is beneficial to re-evaluate a solution 

even though it is stored in the cache. This thesis shows under which conditions this 

applies and shows that the re-evaluation only has to be done with low probability 

without affecting solution quality. 

Ant algorithms are investigated for the first time with regard to stock cutting. This 

algorithm is relatively new but has been applied successfully to difficult search 

problems including the travelling salesman problem, vehicle routing and the 

quadratic assignment problem. In addition, we have implemented and evaluated 

hybrid ant algorithms with a local search operator. 

This thesis also develops a no fit  polygon algorithm, which is used to pack non-

convex shapes. 

Throughout this thesis both tabu search and a genetic based memetic algorithm 

consistently produce the best quality results. This is despite trying to find suitable 

parameters for the other search algorithms so that they carry out more effective 

searches. 

The conclusion is that, although tabu search and a genetic based memetic 

algorithm produce the best quality results, it does not follow that they are the best 

search strategies for all problems. If there was one area of research that arose from 

this work it is a need for investigating methods of applying the correct search 

strategy to any given problem instance. 
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“If we knew what it was we were doing, it would not be called research, would 

it?” Albert Einstein 
 
 

1. Introduction 
 
Cutting material from stock sheets is a key process in a number of important 

manufacturing industries such as the sheet metal industry, the paper industry, the 

garment industry and the glass industry. 

Cutting out the material in the most effective way usually has a financial incentive. 

If a company is able to minimise the amount of waste it produces then there is a 

quantifiable saving in the cost of raw material. This saving can either be passed on 

to the customer which, in turn, makes the company more competitive in the market 

place or the saving can be realised in increased profits for the company. In 

addition, the company may be able to reduce its stock holding which can make 

additional savings through improved cash flow. The company may also be able to 

reduce its warehousing capacity, resulting in further savings. 

Although the normal motivation for effective stock cutting is financial, companies 

may have other objectives in implementing efficient stock cutting procedures. For 

example, there may be a requirement to meet certain orders within a given time. 

Chapter 1 
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Under these circumstances the order in which shapes are cut may be more 

important than the packing so as to meet the deadline. 

Consideration may also be given to the quality of the material being used. This is 

particularly apparent in the leather industry where a given piece of leather is not 

only an irregular shape but also consists of a number of different areas which vary 

in quality. Different parts of the final garments may require leather of different 

qualities. For example, the back of a leather jacket will require the leather of the 

best quality, whereas leather used in the lining of the jacket can use material of an 

inferior quality. 

 

1.1 Aims and Objectives of this Thesis 
Over recent years researchers have been using various techniques in order to solve 

cutting and packing problems. However, it is difficult to find works which 

compares many different search techniques when applied to the same problems. 

This thesis addresses this issue by using a variety of search techniques to solve 

instances of cutting and packing problems and comparing the results. This work 

also introduces new algorithms to this problem domain. In particular, an ant 

algorithm is applied, for the first time, to cutting and packing problems, as are 

memetic algorithms. In addition, the problem of finding suitable parameters to the 

search algorithms is highlighted. 

The author could have chosen problems from a variety of domains (for example, 

scheduling, timetabling etc.) but cutting and packing was chosen as it was of 

interest to the author, a funding opportunity had presented itself (in the form of 
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EPSRC sponsorship) and there was always the possibility of developing 

commercial links to develop the work even further. 

In choosing this problem domain this work was able to contribute to the cutting 

and packing field in a number of ways, not least of all, by developing a revised 

algorithm to calculate the no fit polygon for two given polygons. It also applies ant 

and algorithms to this problem for the first time. 

 

The author hopes it is recognised that this thesis contributes to both the cutting and 

packing field as well as the meta-heuristic and evolutionary computation field but 

the author feels that the main contribution is in the comparison and development 

of the search algorithms that have been employed. 

 

1.2 What is the problem called? 
One of the challenges in undertaking this work is being able to identify suitable 

references. Dyckhoff (Dyckhoff, 1990b) gives examples from computer science, 

operational research, engineering, manufacturing, and other disciplines, where the 

cutting and packing problem needs to be solved. This has led to the same problems 

being referred to in many ways (for example, bin packing, the trim loss problem 

and one-dimensional packing). It was not until Dyckhoff (Dyckhoff, 1990b) 

suggested a typology for the problem (see section 1.6) that it became apparent just 

how diverse this subject had become. Unfortunately, although Dyckhoff is 

frequently cited, many of the same multi-discipline problems remain to this day. 

Below are just some of the terms that can be used to describe cutting and packing 

problems. 
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Assortment Problem: 
This problem is concerned with deciding which stock pieces to hold (and then 
use) so that the objects being cut are done efficiently. 

Bin Packing Problem: 
An assignment of items to bins, minimising the height of the bins. Also see, 
knapsack problem. 

Cutting Stock Problem: 
This is normally used as a generic term for the entire class of cutting and 
packing problems. Strictly, the term should be used to refer to a problem 
where the parts to be cut and the stock sheets are both rectangular. 

Layout Problem: 
An arrangement of the stencils (shapes) on the surface is called a layout 
(compare with marker problem). Normally applies to the clothing industry. 

Loading Problem: 
Normally refers to three dimensional problems as these are often concerned 
with loading pallets or lorries. 

Knapsack Problem: 
Determine a combination of a set of objects, that each have a value associated 
with them, such that a function is minimised. This problem can be viewed as a 
bin packing problem with some additional constraint on the value assigned to 
each piece. 

Marker Problem: 
A legal placement of the stencils on the surface (compare with layout). 
Normally applies to the clothing industry. 

N-Partition Problem: 
Consider all possible combinations of a set of numbers which sum to a given 
N. 

Nesting Problem: 
Packing of irregular shapes. Often used in the ship building industry. 

Orthogonal Packing: 
The rectangles to be packed have to have their sides parallel to the bottom or 
vertical edges of the bin. 

Stencil Problem: 
A set of irregularly shaped two-dimensional objects which have to be placed 
on the surface.  

Template Layout: 
A stock cutting problem where there are no restrictions on the number of 
shapes to be cut. For example, it might be necessary to cut a number of shapes 
from a coil of sheet metal where the number of shapes to be cut is limited but 
it is important to cut as many as possible. 
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Trim Loss Problem: 

The waste material after all the shapes have been cut is often referred to as the 
trim loss. This type of problem aims to minimise the trim loss. 

 
1.3 Problem Dimensions 
A stock cutting problem can be categorised in one of n-dimensions. The most 

usual values for n are 1, 2 and 3 and these type of problems are discussed below, 

followed by problems with higher values of n. 

The one-dimensional (1D) problem can be seen as cutting pieces from a given 

length of material. It is often referred to as strip packing. In this problem we are 

only concerned with the length of the pieces that results from the cutting process. 

The width of the resultant pieces is either immaterial or (more usually) fixed. 

Typical applications for the 1D problem involves cutting lengths of steel from 

steel bars. Many 2D problems can be converted to 1D problems by ignoring the 

width of the pieces to be cut, thereby converting the problem to one in which only 

the height of the shapes are of concern. 

In the two-dimensional (2D) cutting problem we are concerned with cutting two 

dimensional shapes from two dimensional stock sheets. The shapes can either be 

rectangular in shape or can be irregular shapes. 

Typical applications include glass cutting, sheet metal cutting and cardboard 

cutting. 

In the three-dimensional (3D) problem we are normally concerned with packing 

three dimensional shapes into a given area. 

Typical applications for the 3D problem include pallet loading and loading 

delivery vehicles. 
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It might not seem possible that we can have an n-dimensional problem where n > 

3, however, the n-dimensional stock cutting problem can be applied to applications 

which might not seem immediately obvious. For example, arranging programs in 

computer memory can be regarded as a 1D problem, where the width of the stock 

sheet is the width of the memory (maybe 8 bits) and the height of the stock sheet 

can be seen as the program length. Once we notice that many applications can be 

viewed as a stock cutting application we can add further dimensions; for example 

a temporal dimension. As an example, a 3D packing problem, such as loading a 

goods delivery vehicle, may have a temporal dimension added due to the order in 

which the goods will be unloaded. This results in attempting to pack the goods so 

that they are easily accessible at each delivery point. 

 
1.4 Types of Cutting 
Guillotine cuts only allow a cut from one side of the stock sheet to the other. Some 

problems only allow guillotine cuts and the shapes have to be laid out in such a 

way as to accommodate this constraint. Figure 1.1 shows an example of two 

layouts. One can be cut with guillotine cuts whilst the other cannot. 
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Figure 1.1 – Guillotine Cuts versus Non-Guillotine Cuts 
 

Only guillotine cuts, for example, are allowed when cutting glass, due to the nature 

of the material. The type of cutting tool can also dictate the type of cutting that is 

allowed. If the company is cutting cardboard, a sharp blade (such as a Stanley 

blade) could be used. If the items to be cut are packed tightly (i.e. next to each 

other), they may be no scope to rotate the blade whilst within the cardboard. 

Therefore, only guillotine cuts are allowed, with the blade being rotated outside 

the confines of the material being cut. One company visited by the author (Molan 

UK) cuts polycarbonate shapes from stock sheets. The shapes are ultimately used 

in the manufacture of conservatories. To carry out the cutting operation Molan use 

either a cross cut saw or a router. The cross cut saw can only perform guillotine 

cuts. This is for the same reasons as described above with regard to cutting 

cardboard, with the added constraint that the polycarbonate is too rigid to allow the 

blade to rotate. Cutting using a router allows any pattern to be cut (depending upon 

the material). This is due to the fact that the router is, in effect, a drill bit which 

can move in any direction. The disadvantage is that the router is wider than the 

cross cut blade so that the shapes have to be increased in size to accommodate for 

Can be cut with guillotine cuts Cannot be cut with guillotine cuts 
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the waste produced by the router. Molan actually insist that their polycarbonate 

shapes are laid out so that they can all be cut with guillotine cuts. This allows them 

to use either the cross cut saw or the router for any job. 

Another company visited during the course of this work (Esprit Automation Ltd.) 

produce cutting machines for various industries. Their machines offer the option of 

not having to be constrained by guillotine cutting but they need to deal with an 

additional complication. As the cutting tool turns a corner it can lead to burring 

which results in the corners of the shapes not being cleanly cut. To alleviate this 

problem Esprit use a cutting pattern which leaves the shape at a corner and 

performs a type of butterfly cut. This allows it to produce sharp corners. This 

cutting operation is shown in figure 1.2, with the broken line showing the path of 

the cutting tool. 

 

 

 

 

 

 

 

 

Figure 1.2 – A Butterfly Cut 
 

1.5 Placement versus Cutting 
The ultimate industrial aim is normally to cut out a number of shapes from a given 

stock sheet. However, for the purposes of research, the problem is often reduced to 

simply laying out the shapes and disregarding the cutting operation. To find the 
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best layout is often acceptable but in some situations simply finding a good layout 

may not be good enough to solve a particular problem. For example, an additional 

constraint might be to minimise the cutting time. This could involve solving an 

instance of a travelling salesman problem to find the shortest possible tour for the 

cutting tool. 

 

1.6 Classification 
In order to make information exchange across different disciplines Dyckhoff 

(Dyckhoff, 1990b) proposed a typology of packing problems. Packing problems 

are formed from an intersection of geometry and combinatorics. Problems can be 

divided between those involving some spatial dimension(s) and those involving 

non-spatial dimension(s). The former group consists of packing and loading 

problems in up to three dimensional Euclidean space. The latter group of problems 

consist of those not involving a spatial dimension such as a temporal dimension or 

an even more abstract dimension such as computer memory. 

Those problems which operate in Euclidean space can be divided into cutting and 

packing problems. Cutting problems are those which involve a large object(s) 

(stock sheet, roll of material etc.) which must be divided into smaller objects, 

usually represented as a set of orders. Packing problems involve filling a bin(s) 

with a number of given shapes. From the above description it can be appreciated 

that cutting problems are usually two dimensional and packing problems are 

normally three dimensional. 
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These observations are shown in figure 1.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3 - Classification of Cutting and Packing Problems (Hopper 
2000b and based on (Dyckhoff, 1990b)) 

 

Dyckhoff’s classification can be viewed as classifying any problem using four 

characterics. This typology is shown in table 1.1. Using this proposed typology the 

problems tackled in this work can be classified as 2/V/O/, that is, two dimensional 

(2), a selection of large objects that must be packed with a number of smaller 

items, all of which must be packed (V), there is only one large object (O). Further 

examples of various problem types can be found in (Dyckhoff, 1992). 

Geometric and Combinatorial Problems 

Concrete Abstract 

Cutting 

• Paper 
• Metal 
• Glass 
• Textile 

• Capital Budgeting 
• Coin Change 
• Memory Allocation 
• Multi Processor 

Scheduling 
• Knapsack Problems 

Packing 

• Vehicles 
• Pallets 
• Containers 
• Bins 
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Characteristic Symbol Description 
Dimension 1 

2 
3 

One Dimension 
Two Dimension 
Three Dimensional 

Kind Of Assignment B 
V 

All Objects and a Selection of Items 
A Selection of Objects and All Items 

Assortment of Large Objects O 
I 
D 

One Object 
Identical Figures 
Different Figures 

Assortment of Small Objects F 
M 
R 
C 

Few Items (of different figures) 
Many Items of Many Different Figures 
Many Items of Relatively Few Figures 
Congruent Figures 

Table 1.1 - Typology of Packing and Cutting Problems (Hopper 2000b 
and based on (Dyckhoff, 1990b)) 

 

1.7 NP-Completeness 
P problems are a class of problems that can be solved in polynomial time. They are 

often referred to as easy problems as P problems include problems with running 

times such O(log n) and O(n), but this class can also include such problems of 

order O(n1000). Therefore, easy, does not necessarily transform to short 

computation times. 

Non-deterministic Polynomial problems (NP problems) are a class of decision 

problems that has some algorithm that can guess a solution and then verify 

whether or not the guess is correct in polynomial time. 

One way to view these problems is to imagine an exponentially large number of 

processors so that you can try all the guesses at once. Alternatively, you could be 

very lucky and always guess right the first time. In this case NP problems become 

P problems. One open question in computer science is whether NP problems = P 

problems, assuming you do not have the luxury of an infinite number of processors 

or can guess right every time, which is a realistic assumption. 
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Most scientists are convinced that P≠NP, that NP problems are inherently hard and 

only have exponential time algorithms. But this yet to be proven. 

If a problem is such that every problem in NP is polynomially transformable to it, 

the problem is said to be NP-Hard. If in addition the problem itself belongs to NP 

it is said to be NP-Complete. An example of a problem which is NP but not NP-

Complete is finding the XOR of two binary digits. The problem is NP, as it can be 

verified quickly that the answer is correct. However, knowing how to XOR two 

binary digits does not help solve another NP-Complete problem such as finding 

the hamiltonian cycle in a graph. Therefore, this problem is NP but not NP-

Complete. 

As an example of an NP-Hard problem consider a decision problem to decide if 

there exists n star shaped polygons whose union is equal to a simple polygon, P1. 

This problem is NP-Complete. The optimization problem, finding the minimum n 

of star-shaped polygons whose union is equal to P1, is NP-hard.  

 

The NP-Complete class is of interest as many important problems are known to be 

NP-Complete. An example is the satisfiability problem. Given a logical 

expression, is there an assignment of truth values to the variables of the expression 

that make it true? 

Bin Packing has been shown to be NP-Hard in the strongest sense as there is little 

hope of finding a polynomial time optimisation algorithm for it (Garey, 1979). 

Coffman (Coffman, 1988) shows how the one-dimensional bin packing problem 

can be reduced to a problem of deciding whether a list of numbers can be 
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partitioned into two sets with equal sums. This problem has been shown to be NP-

Complete by (Karp, 1972). 

Garey and Johnson (Garey, 1979) is recognised as the standard text on NP-

Completeness. 

 

1.8 Motivation for this work 
The nesting problem (and variants) have been studied since the 1940’s so it is 

reasonable to ask why is there still an interest in studying this problem? The 

answer lies in the fact that there are new techniques that can be applied in 

searching for good quality solutions to the problem. 

The motivation behind this work is two-fold. Firstly, although the problem has 

been the subject of rigorous research there are many new areas for research. This 

can be seen, for example, in the commercial arena. Over the duration of this 

research the author has spoken to a number of companies who all need better ways 

to nest shapes so as to minimise their waste. The problems are compounded by 

additional constraints set by the companies. This only makes the problem even 

more challenging. To demonstrate that this area is still very much a research topic, 

one company the author is working with (Esprit Automation Ltd.) has committed 

about £50,000 over a three year period. This supports two EPSRC funded projects 

(a Teaching Company Scheme award and a CASE for New Academics award), 

which run from October 2000 for three years. 

A second motivation for this research is to apply modern search techniques to this 

problem. This has been done in previous work but this is the first time a variety of 
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techniques have been applied and compared against one another. In particular, this 

is the first time ant algorithms have been applied to the nesting problem. 

 

1.9 Outline of the Thesis 
This work concentrates on the 2D packing problem. In particular, meta-heuristics 

and evolutionary algorithms are used to search for good quality solutions to these 

problems. In addition, the concept of the no fit polygon (NFP) is used to pack two 

shapes together in the most efficient way. 

In chapter 2 a review of related work is presented. A detailed review of cutting and 

packing is presented, along with a review of various meta-heuristic and 

evolutionary algorithms. 

Chapter 3 presents a simplified problem that was used in order to show that the 

search techniques applied in the rest of the work are able to effectively explore the 

search space. This work was published by Burke and Kendall (Burke, 1998). 

In chapter 4 methods are presented that allow the search algorithms to be speeded 

up. Particular emphasis is placed on the evaluation function which is the most 

computationally expensive part of the algorithm. This work was published by 

Burke and Kendall (Burke, 1999d). 

Convex problems are studied in chapter 5 which uses a convex version of the NFP.  

Five search techniques are used; Hill Climbing, Simulated Annealing, Tabu 

Search, Genetic Algorithms and Memetic Algorithms. This work was published by 

Burke and Kendall (Burke, 1999a), (Burke, 1999b). 

In chapter 6 particular emphasis is placed on the ant algorithm search technique as 

this has never before been applied to cutting and packing problems. The algorithm 
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is described along with the way it has been applied to cutting and packing 

problems. The results are compared to those from chapter 5. This work was 

published by Burke and Kendall (Burke, 1999c). 

In Chapter 7, the NFP is considered in some detail, paying particular regard to the 

non-convex algorithm. One particular contribution of this thesis is in presenting a 

revised algorithm that allows calculation of the no fit polygon for non-convex 

shapes. In addition, some recent work is discussed as, during the latter part of this 

work, other researchers Bennell, Dowsland and Dowsland (Bennell, 2001), 

independently, published a non-convex NFP algorithm. 

Chapter 8 utilises the revised NFP algorithm so that non-convex problems can be 

tackled. The results are compared against those from chapter 5. In addition, further 

problems are tackled to demonstrate the effectiveness of the techniques used. 

Summary and Conclusions, with suggestions for further work, complete the work. 
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“Any change in structure and function which can be effected by small stages, 
is within the power of natural selection.” Origin of Species 

 
 

2. Related Work 
 

This chapter presents the related work with regards to this thesis. Cutting and 

Packing is treated mainly chronologically. Following the discussion on cutting and 

packing, the other two areas of particular importance to this thesis are addressed; 

computational geometry and search methods. 

 

2.1 Cutting and Packing 
2.1.1 Introduction 

The stock cutting problem has been a research area since the 1940’s, although the 

main research started in the early 1960’s. Over the past half-century many 

techniques have been developed in order to produce good cutting patterns for a 

variety of problems and industries. 

Due to the problem being NP-complete, exact techniques, such as linear 

programming cannot be used for large instances of the problem. In recent years 

heuristic based techniques have been applied to the problem and this is likely to 

continue to be an active research area for many years. This is not only due to the 

Chapter 2 
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fact that heuristic based approaches have been shown to produce good quality 

solutions to the problem but also due to the fact that new heuristic approaches are 

being investigated all the time. As an example, this work considers ant algorithms 

for the first time in the context of cutting and packing. 

In the future, as well as continuing to develop heuristic based approaches a new 

idea, named hyper-heuristics, is starting to attract academic interest. This approach 

develops heuristics that choose other heuristics in order to find a good solution for 

a particular problem instance. In fact, the author has just started working in this 

area and the results will, hopefully, be implemented within a commercial 

application. This work is being done with the support of two EPSRC grants (a 

CASE for new Academics award and a Teaching Company Scheme award) and 

with additional funding from a local company (Esprit Automation Ltd.). 

 

It is interesting to note how interest in the subject has developed over the years. In 

(Sweeney, 1992) a summary of the papers published for the stock cutting problem 

between 1940 and 1990 is given. Sweeney lists over 350 papers, various 

dissertations and theses as well as work in progress and conference proceedings. In 

total over 400 references are given. A summary, by year, of the number of papers 

published is shown in figure 2.1. 
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Figure 2.1 - No. of published papers between 1940 and 1989 
(Sweeney, 1992) 

 

It can be seen how interest has developed since the 1960’s. It would not be 

practical to mention every paper that has been published in this literature review. 

Therefore, the approach taken is to highlight those papers which are thought to be 

the most important within the field and also those most applicable to the research 

area that this thesis addresses. 

 

Over the years there have been several survey documents produced looking at 

work carried out to date. The main survey papers are listed in table 2.1. 

Number of Stock Cutting Papers Published up 
to 1990

12 33
88

206

0

100

200

300
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Author(s) Year Author(s) Year 
Brown 1971 Martello and Toth 1987 
Salkin and de Kluyver 1975 Rode and Rosenberg 1987 
Golden 1976 Dyckhoff, Finke and Kruse 1988 
Hinxman 1980 Dyckhoff and Wäscher 1990a 
Garey and Johnson 1981 Coffman and Shor 1990 
Israni and Sanders 1982 Dowsland 1991 
Sarin 1983 Haessler and Sweeney 1991 
Rayward Smith and Shing 1983 Dowsland and Dowsland 1992 
Coffman, Garey and Johnson 1984a Dyckhoff and Finke 1992 
Berkey and Wang 1985 Sweeney and Paternoster 1992 
Dowsland 1985 Dowsland and Dowsland 1995 
Dyckhoff, Kruse, Abel and Gal 1985 Hopper and Turton 1997 
Israni and Sanders 1985 Hopper and Turton 2000a 
Dudzinski and Walukiewicz 1987   

Table 2.1 - Survey Papers for Cutting and Packing Problems 
 

The review by Hopper and Turton (Hopper, 2000a) is particularly useful, being the 

most recent. The author has also found K. Dowsland and W Dowsland 

((Dowsland, 1985), (Dowsland, 1991), (Dowsland, 1992) and (Dowsland, 1995)) 

to be particularly useful during the course of this research, due the number of 

survey papers they have published and due to the their depth of experience in this 

field. 

 

2.1.2 The Stock Cutting Problem 

In 1940 Brooks et.al. (Brooks, 1940) published a paper discussing how to dissect a 

rectangle into squares. Nothing more was published on stock cutting problems for 

over ten years, until Dantzig (Dantzig, 1951) and Kantorovich and Zalgaller 

(Kantorovich, 1951) highlighted the relationship between the stock cutting 

problem and linear programming (LP) theory. 
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(Paull, 1956), (Eisemann, 1957), and (Vajda, 1958) used linear programming 

techniques to solve a restricted version of the rectangular layout problem when 

cutting rolls of paper. 

Most of the work done before 1960 was concerned with the paper manufacturing 

industry. In 1961 Gilmore and Gomory (Gilmore, 1961) presented a linear 

programming method that, for the first time, solved the one-dimensional cutting 

problem to optimality. In (Gilmore, 1963) this work is developed further and was 

applied to the problem of cutting paper. They give an example of the complexity 

of the problem by stating that faced with a standard roll of paper of 200in and a 

demand for forty different lengths ranging from 20in to 80in the number of 

possible cutting patterns can exceed 100 million. This means they are faced with 

an LP problem with up to 100 million columns. In their paper they outlined a 

column generation procedure that avoided this difficulty. The procedure involves 

solving a knapsack problem at every pivot step. 

Many future papers would refer back to this work and develop it further. 

In (Gilmore, 1965) Gilmore and Gomory presented a method for solving the two-

dimensional stock cutting problem. They had to place some restrictions otherwise 

the number of columns in the LP model was too great. However, they argued, that 

many industries have such restrictions and that their work could still be used to 

solve practical problems. One restriction they placed on the problem was that the 

cutting had to be done in stages. In effect, this meant only allowing guillotine cuts. 
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In (Gilmore, 1966) they studied more closely the knapsack problem when it is 

applied to one and two-dimensional stock cutting. In this work they used a 

dynamic programming technique. 

In (Wolfson, 1965) the trim loss problem was approached from a different angle. 

Instead of trying to minimise the waste using available stock lengths, Wolfson 

considered the best lengths to hold in stock so that trim loss was minimised. If, for 

example, you have two stock lengths of 22” and 17” and you need to cut two 

lengths of 12” then the trim loss is 15” ([22-12] + [17-12]). But if the stock lengths 

were 20” and 16” then the waste is only 9”. 

The problem is that as the number of stock lengths and required lengths increases, 

so does the scale of the problem. Wolfson states that if you are trying to cut ten 

lengths from one hundred stock lengths then there are 1.7x1012 combinations. 

In order to reduce the problem to manageable proportions Wolfson points out that 

certain trim losses remain fixed no matter what stock lengths are being used. If, for 

example, you have stock lengths of 17” and 22” then any length greater than 17” 

must be cut from the 22” stock item. In this case the waste remains constant. This 

principle is used to reduce the size of the problem space. 

This work was enhanced by (Cohen, 1966) who showed that the problem could be 

modeled using dynamic programming. 

(Barnett, 1967) showed that a simplified version of the stock cutting problem 

could be solved using simpler algorithms that those previously presented. Their 

algorithm allows non-guillotine cuts which are often necessary in order to obtain 

an optimal solution. The ability to allow non-guillotine cuts was at the expense of 
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placing restrictions on the size of rectangles with regards to their relationship to 

one another. 

The placement of the rectangles is based on the method of removing two opposite 

corners of a chess board and then filling the remainder of the board with dominoes 

(Golomb, 1966). 

In 1968 (Hahn, 1968) presented an algorithm that optimally produced a layout for 

stock sheets that contained defects. In fact, the defects were marked as rectangles 

on the stock sheet and the other rectangles were fitted in around these. All the 

stock sheets were considered to be of the same size. 

The algorithm was based on the dynamic programming technique of (Gilmore, 

1966) but, as the cutting process was done in three stages, it only needed to solve 

one-dimensional problems. 

The technique assigned a value to each rectangle. It is important that a large 

rectangle be assigned a higher value than two rectangles with the same combined 

area. This is because it is harder to place a large rectangle especially when the 

stock sheet contains defects. The values for the rectangles are calculated using a 

quadratic function, which allows the user to supply two coefficients which can be 

changed to introduce some priority rules. Other user-defined functions are also 

allowed to assign values to the stock sheets but the functions must be non-linear. 

(Haims, 1970) considered the problem of packing irregular shapes into rectangles 

and then packing the rectangles using a dynamic programming approach. This was 

to be the first of many solutions that took this two-stage approach. 
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Haims presents the method he uses to pack the rectangles. The clustering method, 

which clusters a number of shapes into the smallest enclosing rectangle, is 

presented in (Haims, 1966). 

Eilon and Christofides (Eilon, 1971) looked at the knapsack problem as a zero-one 

programming problem and also developed a heuristic to solve the same problem. 

They applied both programs to the same fifty problems. In all but two, the 

heuristic method found the optimal solution, using significantly less computational 

time than the zero-one method. The heuristic method worked by sorting the items 

to be packed in ascending order of value and also sorting the available space in 

each knapsack in ascending order of size. Then the algorithm searched through 

both lists and assigned items to the best available space. There was also a “re-

shuffle” procedure which improved feasible solutions but it was found that this 

was not always needed. 

(Haessler, 1971) pointed out that the trim loss was not the only factor that should 

be considered when trying to devise a suitable cutting pattern. It may be the case 

that an optimal cutting pattern requires that the operators have to frequently set up 

the machine in order to accommodate a new pattern. It might be preferable to have 

a less optimal cutting pattern (i.e. with higher trim loss) but which results in the 

operators not having to attend to the cutting machine as often. 

Haessler formulated the problems as a mathematical programming model and used 

a heuristic procedure from a PhD dissertation (Haessler, 1968) to solve the 

problem. 
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In (Haessler, 1975) a stock cutting problem, where the trim loss is not the only 

consideration, is formulated such that it had a certain aspiration level. If the 

aspiration level was not reached in one iteration it was lowered and another 

iteration was done. This continued until a solution was found within the aspiration 

level. 

(Herz, 1972) used a recursive search technique for multistage guillotine cutting 

problems. It was an improvement over exhaustive iterative-type approaches but 

was not efficient for medium sized problems. 

Dyson et. al. (Dyson, 1974) also considered the problem where the trim loss is not 

the only factor to consider. They stated that, in practice, there were many factors 

that had to be taken into account when devising a cutting pattern. One example 

they give is that if an order is not completed in a continuous number of stock 

sheets then the partially competed order has to be taken from the production line 

and stored until the other parts of the order have been cut. 

In order to overcome this they use Gilmore’s linear programming model to create 

a cutting pattern and then they used a travelling salesman algorithm to order the 

cutting patterns so that there are no discontinuities in the orders. They also tried a 

heuristic approach but reported that it was only marginally better than the manual 

methods and could not be implemented for practical reasons (e.g. the computer 

being too far away from the shop floor). 

In (Freeman, 1975) an algorithm is given that encloses a shape into a minimal 

rectangle which could then be packed using one of the known algorithms. 
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(Adamowicz, 1976a) presented a method for laying out rectangles using a dynamic 

programming method. The method mimics the way a human operator would lay 

out rectangles. That is, by laying the rectangles, that have at least one common 

dimension into strips. The solutions were not often optimal but they were 

generally good and the computation times were reasonable. 

Adamowicz and Albano (Adamowicz, 1976b) considered how to cluster shapes 

into rectangles as it is easier to lay out rectangles on a stock sheet rather than a 

given set of polygons. 

This work has been much cited mainly due to the use of the No Fit Polygon (NFP), 

which had originally been presented in (Art, 1966). The NFP allows you to find all 

the possible positions that one polygon can take with respect to another so that the 

polygons touch but do not overlap. Using this approach it allows you to find the 

minimal enclosing rectangle for two polygons. 

The NFP forms a major theme throughout this thesis. There are two methods to 

calculate an NFP for non-convex polygons. One method uses the orbiting principle 

described in section 4.2 and which is investigated in more depth in chapter 7 of 

this work for non-convex pieces. 

An alternative method is to use minkowski sums. Minkowki sums are widely used 

in robot motion planning [(Canny, 1987), (Ghosh, 1993), (Lozano-Pérez, 1979), 

(O’Rourke, 1998), (Ramkumar, 1996), and (Schwartz, 1990)] and in image 

analysis (Serra, 1982). 
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In chapter 3 of (Zhenyu, 1994) “The Theory of Minkowski Sum and Difference” is 

presented, with particular reference to compaction algorithms. In this work the 

author states 

“Although the Minkowski sum and difference has been extensively used in robot motion 

planning via the configuration space approach, we have seen very few efforts in applying it 

to packing problems.” 

The work proceeds to show how to calculate the minkowski sum and difference 

for intersection and containment problems, in particular proving a crucial property 

with respect to starshaped polygons which results in a simplified algorithm for 

computing the minkowski sum for these type of polygons. 

In (Bennell, 2001) the authors state 

“However, unless all the pieces are convex, it is widely perceived as being difficult to 

implement [the no fit polygon], and its use has therefore been somewhat limited.” 

indicating that calculating the no fit polygon for non-convex pieces is still an 

active area of research. Bennell’s paper presents a revised and simplified method 

for deriving the no fit polygon using minkowski sums and derives a set of simple 

rules that are easier to implement. 

In this thesis the orbiting method of calculating the NFP is used (with 

modifications – see chapter 7) although we would like to have had access to 

(Bennell, 2001) earlier in this PhD programme. 

 

Adamoiwicz and Albano (Adamowicz, 1976b) describe how to cluster two 

polygons together but the principle can be extended to cluster any number of  
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polygons together. The authors also present a number of problems such as finding 

a workable data structure for polygon manipulation. This is potentially 

computationally expensive and has high storage costs. Another problem they pose 

is trying to find suitable pairs of polygons to cluster from the given set of 

polygons. One suggestion as to how best to do this is to choose two shapes that are 

roughly the same size and rotate one through 180°. 

The work in (Adamowicz, 1976b) was used in (Albano, 1977) where the 

techniques were used in an interactive system that allowed the operator to 

manipulate the layout proposed by the algorithm. As well as briefly describing the 

method again and presenting the data representation the paper also describes the 

functionality that is available to the operator. 

The work from (Haessler, 1971) was developed by Coverdale and Wharton 

(Coverdale, 1976). Like Haessler’s work their enhanced heuristic algorithm 

considers other factors other than simply trim loss (e.g. set up time for the machine 

operators). 

Chambers and Dyson (Chambers, 1976) looked at the stock cutting problem from 

a different angle. In some ways it was similar to (Wolfson, 1965) in that they 

considered the best stock sizes to hold rather than trying to simply reduce the trim 

loss using the available stock sizes. Whereas Wolfson considered the one-

dimensional problem, Chambers and Dyson applied the problem to a two-

dimensional situation (glass cutting). 

The paper uses two techniques (integer programming and a heuristic method). 

Both methods made real savings when applied to real-life problems. 
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Christofides and Whitlock (Christofides, 1977) suggested a tree search approach 

for the two-dimensional problem that had a restriction of only allowing guillotine 

cuts. 

The search tree that is produced is reduced in size by ensuring that there are no 

duplicate nodes (for example, by the same cutting pattern being produced by a 

different sequence of cuts). 

Good computational results were recorded for medium sized problems (for 

example, twenty rectangles taking an average of 130 seconds and generating a tree 

with 38,807 nodes). 

In 1978, Albano and Orsini (Albano, 1978) also presented a tree based solution 

which was applied to generic knapsack problems and M-Partition problems. 

The solution they present has a simple structure, linear storage requirements and, 

on average, lower computation times than other algorithms. 

 

The work done by Gilmore and Gomory in 1961 and 1963 (Gilmore, 1961 and 

1963) was improved by (Haessler, 1980) when he produced a modified algorithm 

that gave the same trim loss values but produced solutions with better 

characteristics. For example, the algorithm used fewer stock sheets. The improved 

algorithm was at the expense of computational speed but the increased execution 

time was negligible. 

Albano and Osrini (Albano, 1980b) state that the two-dimensional stock cutting 

problem, even with a guillotine cutting restriction, when stated as a mathematical 

model, can only be solved to optimality for medium sized problems. This is due to 
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the time and space complexity. In their paper they present a tree search heuristic 

algorithm. It is an improved and extended version of (Adamowicz, 1976a). The 

heuristic is still based on laying out rectangles into strips using a bottom left 

placement policy but, in addition, the problems can be broken down into sub-

problems. How this sub-problem generation is solved is defined by one of six 

strategies. Experimental results are shown, together with the data that produced 

those results. 

In (Baker, 1980a) a heuristic was presented which packed rectangles at the bottom 

left of the stock sheet. Using this heuristic it can be shown the employment of an 

unordered list of rectangles can result in bad packing patterns. However, simply 

sorting the list of rectangles by decreasing order of widths guarantees that the total 

bin height is at most three times the optimal height. 

This work was improved by Coffman et. al. (Coffman, 1980) when they presented 

two new algorithms (Next Fit Decreasing Height (NFDH) and First Fit Decreasing 

Height (FFDH)). Both algorithms take the rectangles to be nested, sort them into 

height order and place them in rows. For example, the FFDH algorithm tries to 

improve the nesting efficiency by placing rectangles at the end of rows that still 

have space available. 

In (Albano, 1980b), for one of the first times (if not the first), the term Artificial 

Intelligence (AI) was used in connection with the stock cutting problem. Albano 

and Osrini formulated the search for an optimal solution as a heuristic search and 

used terms which are common in the domain of AI today. For example, they talk 
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about the search being in a certain state and applying operators to move from one 

state to another. 

The approach they use is an A* algorithm (although they do not use the term). 

They expand the lowest cost search node which is given by the evaluation function 

g(n)+h(n), where g(n) is the cost of the search so far and h(n) is a heuristic 

measure that estimates the amount of waste in the optimal solution should the 

current piece be included in the placement. If it were possible to find suitable 

values for h(n) then an optimal solution could be found. However, this is not 

possible so only “good” solutions can be found. In addition, other restrictions are 

placed on the search so that the computational times are acceptable. For example, 

the size of the search tree is limited and the number of successor states is also 

limited. 

Dyckhoff, in 1981, (Dyckhoff, 1981) stated that the LP model developed by 

Gilmore and Gomory in the early 60’s (Gilmore, 1961, 1963, 1965) did not work 

in some situations. Dyckhoff presented another LP model that had advantages 

when there were many items to be cut or there were a large number of stock items. 

This model is also able to deal with cases where the trim loss is not valueless and 

can be used later in the cutting process. 

Another heuristic solution was presented in (Bengtsson, 1982). This addresses the 

problem of both two-dimensional bin packing (where you can consider the bin as 

an open ended rectangle) and where the rectangles are fixed in size (i.e. several 

stock sheets of given sizes). The rectangles are allowed to rotate through 90°. The 

heuristic sorts the rectangles and then arranges them in piles. As the algorithm 
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progresses it checks to see if the current arrangement has any chance of beating the 

best arrangement known so far (by assuming that there is zero waste for the 

remaining rectangles). If the previous best arrangement is better than the current 

one then the current search terminates. 

The algorithm is not looking for an optimal solution but it aims to find a near 

optimal solution in a reasonable amount of time. Experiments on randomly created 

rectangles produced trim loss of between 2% and 5%. The authors cannot compare 

their results with earlier work as nobody has tackled exactly the same problem. 

A new LP solution to the knapsack problem was presented in (Akinc, 1983). This 

solution gave optimal values for many of the variables very quickly. A branch-

and-bound technique was then applied to the reduced problem. The method 

worked efficiently for up to 5000 variables. 

(Chazelle, 1983) developed this work. The best known implementations required 

O(N3) steps. The implementation of the algorithm in this paper required linear 

space, O(N), and quadratic time, O(N2). The paper also discusses the data structure 

required to implement the algorithm and how that data structure should be 

updated. 

Otten (Otten, 1982) produced a data structure called the Slicing Tree Structure. 

This allowed a series of cuts to be represented as a tree, with each node 

representing one cut to the stock sheet. Although the idea was first proposed with 

floorplan design in mind the structure has been used in various stock cutting 

problems. 
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Wang (Wang, 1983) used a heuristic approach that, unlike (Christofides, 1977), 

did not attempt to find all the possible cuts that could be made and thus find the 

optimal cutting pattern. Wang’s approach was to iteratively add rectangles 

together to form patterns that were suitable for guillotine cutting. Wang gives the 

data used for the testing and reports that the results were good. 

Dori and Ben-Bassat (Dori, 1984) looked at the problem of placing irregular 

shapes (polygons) onto a plane (stock sheet). The paper considered the template-

layout problem. The approach adopted was two phased. The first stage was to find 

a convex polygon that fitted around the shape. Next, a suitable polygon was found 

that could be used to enclose the shape and that was also suitable to tile the plane. 

Test data and results are given and various limitations of the algorithm are listed. 

Roberts (Roberts, 1984) used a heuristic technique to tackle the problem of cutting 

worktops for a local company. The problem could not be formulated as an LP 

model due to the “L” shaped pieces. Four other reasons are also given as to why 

the LP model developed by Glimore could not be used. 

The heuristic Roberts used is a two stage approach. The first stage effectively 

breaks down the problem into a series of one-dimensional problems by cutting all 

the straight pieces and pairing “L” shaped pieces so that they are similar to one 

straight piece. 

Shapes which do not fit into this one-dimensional scheme are catered for on an ad-

hoc basis by the heuristic. 
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Roberts system was actually developed for a customer and in the first twelve 

months it was judged to have produced less waste than the previous manual 

system. In addition there was no noticeable build up of offcuts. 

In 1985 Beasley (Beasley, 1985a) presented an exact algorithm that solved the 

two-dimensional stock cutting problem that was not restricted to guillotine cuts. 

This was the first time an exact algorithm for this problem had been presented. 

The method uses a zero-one integer model and allows moderately sized problems 

to be solved in realistic times. 

Beasley published another paper in 1985 (Beasley, 1985b) in which he pointed out 

an error in (Glimore, 1966) and provided a correct dynamic programming model. 

This model is applied to large problems and the results are presented. 

Also in 1985 a short paper (Smith, 1985) applied genetic algorithms (GA) to the 

bin packing problem. The problem was represented as a list of rectangles and two 

algorithms, SLIDE PACK and SKYLINE PACK, were used to process the list to 

fit the rectangles into the bin. SLIDE PACK places a rectangle in a corner of the 

bin and lets it fall to the farthest away corner, as if under gravity but which drags it 

in a diagonal direction. The effect is a zigzag motion as the rectangle falls into 

place. SKYLINE PACK is slower as its tries all possible positions and all 

orientations. However, it leads to better packings. 

A modified crossover operator had to be used as standard crossover would have 

produced invalid solutions, in the same way that a standard one-point crossover 

used for solving an instance of the travelling salesman problem would lead to 
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invalid tours. Evaluation was carried out on the basis of how well the rectangles 

had been packed (i.e. trim loss) 

The GA produced similar results to a technique based on dynamic programming 

and using heuristics but produced the results 300 times faster. If higher packing 

density is required the program can simply be left to run for a longer period. 

Dagli (Dagli, 1987) used a heuristic approach to solve the two-dimensional cutting 

problem. A number of constraints are presented that can arise in this type of 

problem (e.g. sheet defects) but only three are used within the paper. These are; 

the rectangles must not overlap, the rectangles must lie within the boundary of the 

stock sheet and there must be a specified tolerance between the shapes to allow for 

cutting. 

The heuristic is based on the idea of assigning a priority to each shape. This 

priority is used to select which shape to place next. Eleven priority rules are built 

into the system together with a user definable priority. 

Two of the priorities include the maximum and minimum area. Even using these 

simple priorities the trim loss was reduced from 20% to 7.7% using a real life 

example. 

Qu and Sanders, in 1987, (Qu, 1987) tackled the problem of nesting irregular 

shapes. The approach either enclosed the shape in a rectangular module or broke 

the shape down into a number of rectangles. Qu states that little work has been 

done in the area of irregular shape nesting but recognises the work of (Haims, 

1970), (Adamowicz, 1976b) and (Roberts, 1984). Qu discarded the idea of 

developing a data structure to store a complete shape representation. This decision 



 

Graham Kendall   43 

was made for two reasons. Firstly it uses valuable computer memory. Secondly the 

computational requirements to manipulate such a representation would be too 

great. Instead, if shape representation was required to greater accuracy, this could 

be achieved by using smaller rectangles to mimic the contours of the shape. 

The heuristic that Qu used was based on placing rectangles as near to the bottom 

left hand corner as possible. 

(Berkey, 1987) looks at the two-dimensional bin-packing problem by adapting the 

bottom-left bin packing heuristics. The authors present implementation details and 

their results indicate that their heuristics are suitable for practical use. 

(Sarker, 1988) formulated a dynamic programming model that solved the one-

dimensional slitting problem. The model takes into account defective areas so that 

the cuts can be made so as to maximise the value of the resultant pieces. 

Towards the end of the 80’s a simulated annealing approach was applied to the bin 

packing problem (Kampe, 1988). This is an optimisation technique first introduced 

by Kirkpatrick et al. (Kirkpatrick, 1983). 

In 1991 (Dietrich, 1991) presented a rule based approach to the trim loss problem. 

It was based on the principle of the rectangular stock sheet consisting of a number 

of holes (initially one hole covered the entire stock sheet). The next best stock 

piece was chosen in order to fill one of the holes. This has the effect of reducing 

the size of one of the holes, maybe creating another hole and possibly allowing 

another hole to expand. 

It was shown that it was more preferable to select a stock piece that had a “two-

degree” fit (that is, it fits a hole exactly in both its dimensions). Following that it 



 

Graham Kendall   44 

was preferable to choose a “one-degree” fit rectangle (fits a hole exactly in one of 

its dimensions). Lastly, a “zero-degree” fit was chosen. That is, a stock piece that 

fits into a hole but one of its dimensions is not the same as any of the dimensions 

of the hole. 

When there was a choice of two stock pieces various heuristics were tried. For 

example, longest piece, largest area etc. Area heuristics were found to out-perform 

length based heuristics. 

The algorithm was tested using previously published data and results shows that it 

performs well. 

(Yeong, 1991) reports the experiences of a Singaporean company. After outlining 

research to date the authors describe their particular problem. As none of the 

published research is able to solve their problem directly they develop their own 

three stage heuristic, with each stage being optional depending on the outcome of 

the previous stage. The result of the heuristic is a list of stock items to order. That 

is, the heuristic solves the assortment problem as opposed to the trim-loss problem. 

(Prasad, 1991) uses a heuristic approach to nest sheet metal blanks. The heuristic 

sorts the blanks in descending order of area. It takes each shape in turn and tries to 

fit it in various positions in relation to those shapes already placed. 

Jain et. al. (Jain, 1992) used simulated annealing to produce an optimal solution 

for nesting blanks. Their approach places no restriction on the shape of the pieces 

to be nested but only allows two or three shapes. This is done on the basis that 

producing blanks from, say, a coil of sheet metal only requires two or three shapes 

to be nested and then the pattern is repeated. 
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Due to the fact that there is no restriction on the shapes that can be nested there are 

various geometry problems that need to be addressed. These are more fully 

discussed in the geometry section of this literature review but the problem is 

essentially how to detect if two shapes overlap. 

When compared to a multi-start algorithm (e.g. hill climbing and returning the best 

solution from a number of runs) it was found that the simulated annealing 

approach found a solution with about half the trim loss of a multi-start approach. 

(Arbel, 1993) used a column generation procedure to pack irregular shapes. But, 

due to the potential number of columns a pruning strategy was used to limit the 

number of columns that were actually generated. 

The time complexity of the algorithm was further reduced by estimating the 

packing area that a particular column would produce rather than actually doing the 

packing. 

In 1993 (Dowsland, 1993) developed a “jostle” algorithm. Pieces are initially laid 

out using a leftmost placement policy, using a random ordering of the pieces. 

Unlike (Albano, 1980a) the placement of the pieces is not limited by the profile of 

those already placed. Pieces are allowed to jump over one another and fill holes. 

The pieces are then “jostled” to try and produce a more compact packing. 

In 1993 (Oliveira, 1993) used simulated annealing for the nesting problem. 

Although this optimisation technique had been used for bin packing (Kampe, 

1988) and nesting a small number of repeating blanks (Jain, 1992), this was the 

first time it has been used for a general nesting problem. The simulated annealing 

algorithm which laid out the pieces randomly (allowing overlaps). The 
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neighbourhood was defined as the movement of one piece to an adjacent position. 

The objective function minimised the total length of the plate and penalised 

overlap. 

Another meta-heuristic approach, tabu search, was used by (Blazewicz, 1993). 

They employed a similar neighbourhood structure to (Oliveira, 1993) except that 

the piece being moved was not allowed to overlap other pieces. 

(Cagan, 1994) used shape annealing which is a development of the simulated 

annealing idea. Shapes are defined by grammars which dictate permissible 

orientations of the pieces. The shape annealing algorithm is used to determine 

whether a randomly selected shape rule should be applied to the current 

configuration. The example presented in the paper is to pack as many half 

hexagons as possible into a predefined area. The results are acceptable but not 

provably optimal. 

This extended simulated annealing method is then applied to the knapsack 

problem and the author reports good, though not optimal solutions. 

(Vasko, 1994) considers the assortment problem where a two-stage cutting 

approach is used that only allows guillotine cuts with the first series of cuts being 

made across the width of the material and the second series of cuts being made 

parallel to the width. 

The algorithms used are based on a modified version of the authors program from 

1991 (Vasko, 1991) and a facility location algorithm developed by Erlenkotter 

(Erlenkotter, 1978) 
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Heckmann and Lengauer (Heckmann, 1995) uses simulated annealing, with a 

dynamic cooling schedule, for the nesting problem (specifically the textile industry 

which has a range of specific constraints). 

As well as describing the cooling schedule and the type of moves allowed the 

paper also discusses two different ways that shapes can be represented. Both 

models were tested and the polygonal model was preferred to the raster model 

because of the improved accuracy given by this representation. 

The approach works by initially laying out the shapes so that they fit loosely on to 

a stock material. Simulated annealing is then used to move the shapes around. 

During this process overlaps are allowed but the final configuration must not have 

any overlapping shapes. 

(Vassilos, 1995) also used simulated annealing to pack arbitrarily shaped 

polygons. Much of their work was based on (Jain, 1992). Unlike Jain the number 

of shapes to be packed is not limited to just two or three. The approach used by 

Jain to detect overlapping shapes (based on detecting intersecting lines) is not 

suitable for Vassilos’s algorithm as it does not allow for one polygon being 

completely enclosed by another. Therefore another method is used based on 

(Sedgewick, 1992). 

Vassilos et. al. also show that a simple decrement cooling schedule is not suitable 

for the larger polygon packing problem. Instead they suggest a polynomial cooling 

schedule and show that it is effective by using it to pack circles in a square which 

they compare against previous results using other methods to perform this type of 

packing. 
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Heistermann and Lengauer (Heistermann, 1995) looked at the nesting problem 

within the leather industry. Like the textile industry they are typically working 

with non-rectangular shapes. In fact, the paper deals with polygonal shapes with 

pre-processing of any shapes that are not already in this form. 

The leather industry has particular constraints which need to be considered. For 

example, different areas of the hide are of different quality and have to be used for 

different parts of the finished garment. Also, some parts of the hide may be 

unusable due to, for example, the hide having marks from a barb wire fence. 

To tackle these difficulties the hide is split into different quality zones. 

The method used by Heistermann and Lengauer is a heuristic greedy algorithm. 

They report waste of between 20% and 40%. This compares with average waste of 

30% for human nesting. The algorithm takes between two and three minutes to 

run. 

The selection of a greedy heuristic was chosen as this was the only method able to 

produce a nest in the given timescales (an iterative approach, due to the NP-

completeness of the problem, would take too long). The heuristic works by 

choosing the best place on the hide to place the next piece and then choosing the 

most suitable piece to place at that location. No iteration or backtracking is carried 

out. 

(Fayard, 1995) used a linear programming model and a heuristic to produce 

solutions to the stock cutting problem. The paper reports that optimal solutions are 

found 91% of the time. 
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The algorithm produces optimal strips of rectangles by solving one-dimensional 

knapsack problems. Another one-dimensional problem is solved to place the 

optimal strips onto the stock sheet. 

(Li, 1995) considers the problem of compacting layouts that have already been 

placed. As well as compacting, the authors also use separation so that shapes can 

be moved apart in order to fit in another shape. This is the first time that this 

method has been tried in order to improve layouts. Although human operators can 

produce highly efficient layouts they find it difficult to compact and separate the 

layouts in order to make the layout more efficient. This is due to the fact that the 

human operator can only move one piece at a time whereas a computer algorithm 

is able to move all the pieces at the same time (relatively speaking). A 

representative from a textile firm stated that a 0.1% reduction in wastage could 

save the company $2 million a year. Two algorithms are presented. The first, using 

a velocity-based optimisation model, shows that it is not suitable for this purpose. 

The second algorithm uses a linear programming model. 

(Kröger, 1995) presents a genetic algorithm (GA) approach to the nesting problem. 

The representation the author uses is based on a slicing tree structure. This 

structure can be converted to a string of characters which can be manipulated by 

the GA and can also be parsed to create the cutting pattern. 

The idea of meta-rectangles is used. This groups rectangles together so that the 

complexity of the problem is reduced. 
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Various operators (both crossover and mutation) are described and the author 

states that the work is empirically better than methods such as random search or 

simulated annealing. 

In May 1995 Karen Daniels (Daniels, 1995) published her PhD thesis, undertaken 

at Harvard University, entitled Containment Algorithms for Nonconvex Polygons 

with Applications to Layout. This was the second student (the other being (Zhenyu, 

1994), discussed above) supervised by Victor Milenkovic to publish their PhD 

thesis in this area in a twelve month period. Daniels focussed on two-dimensional 

containment problems where both the shapes and the container can be irregular 

(nonconvex) shaped polygons. Daniels also used compaction techniques to 

accelerate the search as well as using a pre-packing strategy for multi-stage pattern 

layout for the apparel industry. 

 

(Bounsaythip, 1996) also used a genetic algorithm as a method of solving the 

nesting problem. The shapes that were nested were irregular and were represented 

by a “comb” (this representation can be likened to pressing a comb with moveable 

teeth into the sides of the shape). Like (Kröger, 1995), a tree based structure is 

used, which the GA manipulates. 

The crossover and mutation operators are described along with experimental 

results. The results are compared against a simulated annealing implementation 

and the authors report favourable results. 

Also in 1996 (Falkenauer, 1996) presented another genetic algorithm 

implementation. Much of the paper considers the encoding scheme for the problem 
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and gives examples of why obvious coding schemes are inefficient both in terms 

of the crossover operator and in the way that two different genes can represent the 

same packing solution. A representation is proposed which the author claims is 

more efficient that the classic ‘Holland-style’ GA. This representation ensures that 

the GA keeps groups of good genes together. 

Daza’s paper of 1995 (Daza, 1995) also used a genetic algorithm to solve the two-

dimensional guillotine cutting problem. 

Their approach was to use a string representation of a binary tree which was then 

manipulated by the GA. The latter part of the paper extends the notation so that the 

rectangles can be rotated. Their results demonstrate that the approach is superior to 

(Oliveira, 1990), which itself was an improvement on (Wang, 1983). 

(Hower, 1996) compares three evolutionary/meta-heuristic algorithms (Genetic 

Algorithm, Simulated Annealing and Evolution Strategy) when nesting small 

numbers ( 4 and 6) of triangles and rectangles. In addition, the three algorithms are 

also compared against a CSP (constraint satisfaction problem) model of the 

problem which finds all the optimal solutions. The user is able to interact with the 

system so that the (semi-) automatic layout can be changed by choosing an object 

and placing it in another position. The author reports that all three evolutionary 

strategies were able to find good solutions in very fast times (too fast to be 

measured). 

Shpitalni and Manevich (Shpitalni, 1996) presents a new Integer Linear 

Programming (ILP) model for the two-dimensional stock cutting problem. The 

importance of their model was the ability to formulate the problem as an ILP 
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problem. This had not been done before. The focus of this paper is to build a 

model; not to accelerate the solution which it admits would take large amounts of 

computer time. 

(Mileham, 1996) presented a new algorithm (the total fit algorithm) for packing 

rectangles onto stock sheets. The algorithm is designed for low volume, high 

variety manufacturing environments. The total fit algorithm contains three sub-

algorithms (strip fit, area fit and strip squeeze). They are applied in the order given 

with strip squeeze only applicable if non-guillotine cuts are allowed. 

The results from their work are compared against (Baker, 1980a) and (Coffman, 

1980) and it is reported that it significantly out-performs these two methods. 

(Dagli, 1997) proposed two approaches to the stock cutting problem, both based 

on artificial neural networks (ANN). 

The first approach uses just an ANN, which is trained using back-propagation. The 

second method combines an ANN with a genetic algorithm (GA). 

The results show that the average waste for the ANN approach was 7.88%. The 

combined ANN/GA approach produced packings between 94% and 97%. 

In (Oliveira, 1998) a new algorithm was presented (TOPOS). Pieces are placed on 

the plate one by one and the location of the next piece is ascertained by calculating 

the No Fit Polygon using the partial pieces already placed and the piece about to 

be placed. Once the best placement has been found the piece is added to the partial 

solution and the next piece is placed. The results of this work are compared 

(directly or indirectly) with the results of (Dowsland, 1993), (Oliveira, 1993) and 

(Blazewicz, 1993). The algorithm is run against five data sets, which are available 
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in the literature and also given in the paper, and computational results are 

presented. 

Bennell and Dowsland (Bennell, 1999) use tabu search to produce solutions for 

irregular packing problems. In addition, problem specific knowledge is injected 

into the problem domain and this is shown to produce better and better solutions as 

more changes are made. The results show that their approach is competitive with 

other approaches reported in the literature. 

 

2.2 Computational Geometry 
A complete literature review of computational geometry is not presented here as 

most of it is not relevant to the stock cutting problem. For example, much of the 

computational geometry literature, considers computer graphics which is outside 

the scope of this work. 

One of the fundamental data structures in computational geometry is the 

representation of a point. All of the textbooks implement a point in some way; 

maybe as a C++ struct (Sedgewick, 1992), as a typedef of an integer (O’Rourke, 

1998) or as a C++ class (Laszlo, 1996). A point is generally represented as an 

integer because of the increased speed and accuracy over a floating point 

representation. It is usual to use a Cartesian co-ordinate representation for a point. 

One of the primitive operations needed for a point is to rotate it. Hearn (Hearn, 

1994) gives the equation that allows a point to be rotated about any rotation 

position given just its x,y co-ordinates. 

To rotate around the origin the formulae are 
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newx = x * cos(θ) - y * sin(θ); 

newy = x * sin(θ) + y * cos(θ); 

 

where θ is a the degree of rotation in radians. 

To rotate around a given point, xp and yp, the following can be used. 

newx = xp + (x - xp) * cos(θ) - (y - yp) * sin(θ); 

newy = yp + (x - xp) * sin(θ) + (y - yp) * cos(θ); 

These equations are well known and are given, for example, in (Adamowicz, 

1976b). 

If a point can be rotated then rotating a polygon is reduced to rotating a series of 

points. The most common requirement is to rotate a polygon around one of its 

vertices, pv. Each point, with the exception of pv, has to be rotated around pv. 

 

The literature is in general agreement that the best way to represent an arbitrary 

polygon is by using a list of points to represent each vertex (Laszlo, 1996, 

O’Rourke, 1998, Sedgewick, 1992) with the last vertex in the list assumed to be 

connected to the first. This can either be done by using a circular linked list. Or, 

alternatively, by an array or linear list and using the mod operator to implement the 

circular property. 

It is also generally accepted that the points should be in counter clockwise order. 

Once the representation of a polygon has been defined there are fundamental 

operations that we need to be able to perform on the polygon. Many of these 

operations call upon primitive functions. 
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One important primitive is to calculate the area of a triangle given its Cartesian co-

ordinates. O’Rourke (O’Rourke, 1998) presents one such algorithm and describes 

how this can be used as a basis to calculate the area of a polygon. In essence an 

arbitrary vertex on the polygon is taken and triangles are formed by joining this 

vertex to all others. The polygon area is now reduced to summing the area of the 

triangles. This works for convex as well as non-convex polygons as, in non-

convex cases, triangles are formed outside of the polygon but due to the 

orientation they will have negative area and will be deducted from the overall sum. 

Another useful primitive is to decide the relationship between two points, p1 and 

p2, and another point, p3. It is useful, for example, to decide if p3 is co-linear with 

p1, p2 or if p3 is to the left (or right) of p1,p2. 

In (O’Rourke, 1998) this property is returned via a Left predicate (i.e. is p3 on the 

left of the line represented by p1, p2?). The Left predicate calculates the area of a 

triangle formed by the three points. If the area is positive it indicates that p3 is to 

the left of p1 and p2. If the area is zero, the points are collinear. If the area is 

negative it shows that  p3 is to the right of p1 and p2. 

(Sedgewick, 1992) uses the same basic principle but instead of a Left predicate, 

the operation is implemented as a CCW (Counter Clockwise) function. This 

returns an integer depending on whether the points travel clockwise or counter 

clockwise. It is Sedgewick’s algorithm that is most often quoted in the literature on 

Cutting and Packing. This is due to the fact that many of the algorithms only need 

to know how points are oriented with regard to one another and an area calculation 

is not required, which is the basis of O’Rourke’s algorithm. 
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An alternative is to use D-Functions (Mahadevan, 1984). This is the primitive 

adopted in this work due to the fact that the modified no fit polygon algorithm 

presented in this work uses D-Functions. D-Functions are described in chapter 7.  

A fundamental property in computational geometry is to decide if two lines (where 

a line is represented by two vertices) intersect. Sedgewick (Sedgewick, 1992) uses 

the CCW primitive to implement this algorithm. O’Rourke (O’Rourke, 1998) uses 

the Left predicate as the basis for his intersection algorithm. 

Both of these algorithms simply return a boolean stating if the lines intersect. 

Sometimes it is necessary to know the point of intersection. O’Rourke (O’Rourke, 

1998) describes an algorithm to do this and states that in this situation it is 

necessary to leave the comfortable world of integer co-ordinates and return 

floating point values that represent the x and y co-ordinates of the point of 

intersection. 

D-Functions (Mahadevan, 1984) can also be used and their use is shown in chapter 

7. Line intersection is obviously fundamental to many other algorithms (such as 

deciding if two polygons overlap). 

Another useful primitive is to calculate the angle a given line (represented by two 

points) makes with the horizontal. This primitive is useful in many situations. For 

example, you can take an arbitrary number of points, sort them according to the 

angle they form with the horizontal and then create a polygon by assembling the 

points into a polygon data structure using a counter clockwise ordering based on 

their angle. 

Sedgewick (Sedgewick, 1992) uses a theta function to carry out this operation 
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which, when given two points, returns a real number that is not the angle formed 

with the horizontal but it does have the same properties. The reason that the actual 

angle is not calculated is because this would require a call to the tangent function, 

which is computationally expensive. 

Having defined the primitive operations for a polygon it is now possible to define 

higher level operations. 

A fundamental operation for a polygon is being able to find its convex hull. This 

can be visualised as stretching an elastic band around a shape. The contour made 

by the band is the convex hull of the shape. Figure 2.2 shows this, although the 

convex hull, represented by the dashed line has been slightly enlarged so that it is 

visible. 

 

 

 

 

 

 

 

Figure 2.2 – Convex Hull of P1, shown as polygon with dashed 
vertices 

 

There are several algorithms that can be used to calculate the convex hull of an 

arbitrary polygon. 

Package (or Gift) Wrapping is described in (O’Rourke, 1998), (Sedgewick, 1992) 

P1 
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and (Preparata, 1985). The original idea for this method was proposed by (Chand, 

1970). The algorithm works by choosing a point that is obviously on the convex 

hull (for example, the vertex with the smallest y co-ordinate) and then sweeping a 

horizontal ray in the positive direction and moving it round until another point is 

hit. This point is guaranteed to be on the hull. Of course, in practice the algorithm 

needs to consider each point to see which one will be hit next by the sweep line. In 

(Sedgewick, 1992), the theta function is used to determine which point should be 

next on the hull. 

The main disadvantage with this algorithm is that it runs in O(n2) in the worst case, 

which is when every point is on the hull. 

Other convex hull algorithms are also available. For example, Quick Hull 

(Preparata, 1985) is an alternative to Package Wrapping but it is the Graham Scan 

(Graham, 1972) that is most often used with regards to the Cutting and Packing 

group of problems. The main advantage of this algorithm is that it runs in O(n log 

n) in the worst case. Most of the computational geometry textbooks show an 

implementation of the Graham Scan. 

Another basic operation needed in cutting and packing is to decide if two polygons 

intersect. There are two ways in which we can represent the intersection. The first 

is just to return a boolean value indicating if the polygons intersect. A more 

complex, but potentially more useful, operation is to return a polygon that 

represents the intersecting area. In addition we need to consider both convex and 

non-convex polygons. The operation is a lot more complex for non-convex 

polygons. 
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With regard to convex polygons, the obvious method to decide if two polygons 

intersect is to check each line of one polygon against every line of the other 

polygon. If any lines intersect then the polygons intersect. However, one 

degenerate case has to be taken into account, i.e. if one polygon totally includes 

another. Assuming that no lines intersect, inclusion can be tested for by taking 

every point on one polygon and checking to see if it lies to the left (using the Left 

Predicate or the CCW primitive) of every line of the other polygon. In doing this, 

the normal assumption must hold that the vertices are stored in a counter-

clockwise direction so that the edges are directed edges. Figure 2.3 shows this 

 

 

 

 

 

 

Figure 2.3 – All vertices on P2 are to the ‘left’ of all edges of P1 
indicating total inclusion 

 

Sedgewick (Sedgewick, 1992), although not presenting an algorithm to detect if 

two polygons intersect, does provide all the necessary algorithms to implement the 

method described above. It also states that such a naive approach to check if any 

lines intersect runs in time proportional to n2, where n is the number of edges. 

Therefore, an algorithm is presented that can detect if any two lines intersect that 

runs in time proportional to n log n (but still n2 in the worst case). This method, 

P1 

P2 
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based on maintaining a scan line as it passes across a plane containing the points, 

was originally proposed by (Shamos, 1976). 

In 1978 Shamos (Shamos, 1978) developed the first algorithm that ran in linear 

time; O(n + m), where n and m are the number of edges. 

In (O’Rourke, 1998) an algorithm is presented that also achieves O(n + m) time. 

This is based on an algorithm developed by O’Rourke and his students (O’Rourke, 

1982). The algorithm involves two lines “chasing” one another around the edges 

of the polygons and plotting points as the head of the lines are advanced. At 

termination the algorithm returns a polygon representing the overlap area. This 

method is also described in (Preparata, 1985). 

As in many areas of computational geometry, implementation of algorithms (such 

as testing for intersection) is delicate. For example, is one polygon touching 

another returned as intersection? What happens should the polygons only intersect 

at the vertices (so there are no edge intersections)? These questions, in relation to 

this work, are considered in chapter 7. 

With regard to the stock cutting problem, another useful algorithm is one that 

generates the No Fit Polygon (NFP). This algorithm determines all arrangements 

that two arbitrary polygons may assume such that the shapes do not overlap. The 

concept of the NFP was originally proposed by (Art, 1966) but was used by 

(Adamowicz, 1972 and 1976b). 

This work relies heavily on the NFP, for both convex and non-convex polygons. 

Chapter 7 is devoted to this topic although the NFP is also discussed in other 

chapters where necessary. 
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An alternative to implementing computational geometry algorithms is to use the 

libraries of routines that are available. Two of the better known are LEDA 

(http://www.mpi-sb.mpg.de/LEDA/leda.html) and CGAL (Computational 

Geometry Algorithms) (http://www.cs.uu.nl/CGAL/). It was decided early in this 

research project that these libraries would not be used. This decision was made for 

a number of reasons. 

• Some algorithms are not provided by these libraries; most noticeably a no fit 

polygon algorithm could not be found. 

• Although the primitives supplied by the library algorithms could be used to 

implement a no fit polygon it was thought beneficial, certainly in the early 

stages, to implement these algorithms so that a better understanding could be 

gained. 

• It is recognised that these algorithms are high in space/time complexity. The 

quote below is from the LEDA FAQ. 

27. What is the run time/space overhead compared to programs written in 

C?  

Dr. Ulrich Lauther from the Siemens AG made a couple of experiments and 

compared LEDA graph algorithms with his own hand-coded and well-tuned 

C-programs. The running time of LEDA programs are typically slower by a 

factor between 2 and 5. The space requirement of the LEDA graph data 

structures is larger by a factor of about 2. 
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2.3 Search Methods 
This section presents a review of the search algorithms that were considered 

during the course of this work. 

 

2.3.1 Heuristic Search Methods 

A heuristic algorithm uses domain knowledge in order to search for a solution. The 

greedy algorithm (so called as it takes the biggest bite towards the solution at any 

given time) is one example. Applying a greedy algorithm to the travelling 

salesman problem (TSP) results in taking the shortest route to the next city at any 

given point. A greedy algorithm cannot guarantee to find an optimal solution but it 

can give a reasonable solution, although it can suffer towards the end of the search 

as it may be forced to take more expensive options that were ignored earlier. 

The A* algorithm (Hart, 1968, 1972), uses domain knowledge to decide which 

step to take next. The cost of the solution so far (an exact measure) is added to an 

estimated cost (using a suitable heuristic) to give an estimated cost of the final 

solution. A* can be proved to produce an optimal solution if the heuristic never 

under estimates the cost to the goal. In this case the heuristic is said to be 

admissible. 

The problem with these approaches is two-fold. Firstly, they can lead to poor 

quality solutions. This can be seen with the greedy approach having to take bad 

steps towards the end of the algorithm, which degrades the overall quality. 

Secondly, although a heuristic approach such as the A* algorithm, can be proven 

to give an optimal solution (provided that the heuristic is admissible), the number 

of nodes that have to searched rises exponentially for most problems. 



 

Graham Kendall   63 

 

2.3.2 Neighbourhood (or Local Search) Methods 

To address some of the problems with heuristic algorithms, strategies have been 

developed which allow the search space to be explored using the concept of a 

neighbourhood. These methods maintain a single solution and move to a 

neighbouring state in an attempt to find a better quality solution. A set of states is 

considered at each move and one is chosen depending on the algorithm being used. 

The way in which the set of neighbourhood states is defined is problem specific. 

Unlike heuristic approaches, the search does not necessarily need any domain 

knowledge, only the ability to evaluate a solution so that it can be compared 

against other solutions. 

These search methods are also referred to as local search as they confine their 

moves to a point in the search space that is next to (a neighbour) of the current 

state. 

Various types of neighbourhood search are described below. 

 
Hill Climbing 
Hill climbing starts with a random point in the search space and considers some of 

its neighbourhood states. If a state is found that is better than the current state, it 

becomes the current state. This process continues until a state has been reached 

which contains no better states in the neighbourhood. 

A modification to this algorithm is steepest ascent hill climbing. This considers all 

the states in the neighbourhood before choosing which one will replace the current 

state. If two neighbourhood states return the same evaluation then one can be 
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chosen at random. For large neighbourhoods, a neighbourhood size can be 

specified. In fact, standard hill climbing is simply steepest ascent hill climbing 

with neighbourhood size = 1. 

A further refinement is random restart hill climbing. The algorithm is run a 

number of times, each time starting at a random position. The best solution from 

all the hill climbing algorithms is returned. 

The problem with hill climbing is that it can get stuck in local optima, where the 

current solution cannot be improved upon but there is a better solution elsewhere 

in the search space. Rich (Rich, 1993) contains a description of hill climbing, as do 

the majority of AI textbooks. The algorithm shown below is typical and is taken 

from (Russell, 1995). 

 

Function HILL-CLIMBING(Problem) returns a solution state 
Inputs: Problem,  problem 
Local variables: Current, a node 
 Next, a node 

Current = MAKE-NODE(INITIAL-STATE[Problem]) 
Loop do 

Next = a highest-valued successor of Current 
If VALUE[Next] < VALUE[Current] then return Current 
Current = Next 

End 
 
Simulated Annealing (SA) 
The ideas that form the basis of simulated annealing were first published in 1953 

(Metropolis, 1953). The motivation for the algorithm comes from the physical 

annealing process in which a solid is heated until it melts and is then slowly cooled 

to a low energy state so that large, uniform crystals can develop. However, if the 

material is cooled too quickly then imperfections will occur. The Metropolis 
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algorithm (Metropolis, 1953) regards the material as a system of particles and 

simulates the change in energy of the system when it is cooled. The algorithm 

cools the system until it converges to a steady, frozen state. 

Thirty years later simulated annealing was introduced by (Kirkpatrick, 1983) as a 

strategy to search for feasible solutions in combinatorial optimisation problems. 

Simulated annealing is similar to hill climbing in that it always accepts better 

moves but it can also accept worse moves with some probability. This allows it to 

jump out of local minima. The probability, P, of accepting a worse move is given 

by (2.1) 

 

 P = exp(-∆E/kT) (2.1) 

 

Where ∆E is the positive change in the energy level (the difference between 

the current evaluation and the evaluation of the neighbourhood 

state) 

 k is Boltzmann’s constant 

 T is the current temperature of the system 

 

It is usual to drop k, giving the revised acceptance criteria (2.2) 

 

 P = exp(-∆E/T) (2.2) 

 

The temperature is started at a high value and is slowly decreased. At each 

temperature a number of neighbourhood states are considered. At high 
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temperatures the system is more likely to accept worse states than it is at lower 

temperatures. In addition, states which have a larger energy (evaluation) change 

have less chance of being accepted. 

The main issue that arises in developing a simulated annealing algorithm is 

defining a cooling schedule, {i, t, d, iter}, where  

• i, is the initial temperature 

• t, is the terminating temperature 

• d, is a formula used to decrement the temperature 

• iter, defines how many iterations to carry out at each temperature 

 

Although, under certain mild conditions simulated annealing can be proven to 

converge to the optimal solution it has been shown that this may require an 

exponential number of steps which makes it infeasible in practise. (Aarts, 1997) 

contains what is widely regarded as the best reference discussing the theoretical 

issues surrounding simulated annealing. 

It is usual to calculate the figures for the cooling schedule for a given problem 

using empirical evidence from experimental runs of the algorithm. To find an 

initial temperature Rayward-Smith et al (Rayward-Smith, 1996) suggests running 

the algorithm, initially using a very high temperature, which is reduced quickly. 

When the temperature reaches the point where between forty and sixty percent of 

worse solutions are being accepted, this is used as the starting temperature for the 

algorithm in future runs. A similar idea, suggested in (Dowsland, 1995a), is to 

rapidly heat the system until a certain proportion of worse solutions are accepted 
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and then slow cooling can start. This can be seen to be similar to how physical 

annealing works in that the material is heated until it is liquid and then cooling 

begins. 

Dowsland (Dowsland 1995a) offers many suggestions as to how the cooling 

schedule can be determined as well as discussing other improvements. For 

example, it is possible to speed up the algorithm by replacing the acceptance 

function with one that estimates the exponential, thus removing the need to 

perform the computationally expensive call to the exponential function. 

As well as the references in the stock cutting literature review there are many 

general references to Simulated Annealing. Most AI text books, for example, 

(Rich, 1993 and Russell, 1995), describe the algorithm. Other books referred to 

during the course of this work, include (Aarts, 1997) and (Press, 1996). The 

algorithm shown below is taken from (Russell, 1995). 

Function SIMULATED-ANNEALING(Problem, Schedule) returns a solution 
state 

Inputs : Problem, a problem 
  Schedule, a mapping from time to temperature 
Local Variables : Current, a node 

  Next, a node 
  T, a “temperature” controlling the probability of 
downward steps 

 
Current = MAKE-NODE(INITIAL-STATE[Problem]) 
For t = 1 to ∞ do 

T = Schedule[t] 
If T = 0 then return Current 
Next = a randomly selected successor of Current 
ΛE = VALUE[Next] – VALUE[Current] 
if ΛE > 0 then Current = Next 
else Current = Next only with probability exp(-ΛE/T) 

 

The schedule parameter represents the cooling schedule described above. 



 

Graham Kendall   68 

 

Tabu Search (TS) 
Although originally proposed in (Glover, 1977) it took a long time for tabu search 

to become a popular technique for solving combinatorial optimisation problems. 

For this reason the seminal papers for TS are normally considered to be (Glover, 

1989 and 1990). A book by Fred Glover and Manuel Laguna (Glover, 1998) is 

likely to be the main general point of reference for tabu search practitioners for the 

foreseeable future. 

TS can be likened to hill climbing with the additional property that it maintains a 

memory of where it has been in the search space. It does not allow the search to 

return to a state in its memory for a certain number of iterations. This forces the 

search to explore states that it has not searched before in the hope that it will lead 

to better quality solutions. 

In addition, unlike hill climbing, tabu search considers its neighbourhood states (or 

a subset of them) and moves to the best one (taking into account any tabu states), 

even if it is worse than the current state. This allows it to escape local minima. 

The memory of previous states is held in a tabu list. A state is tabu, and thus 

cannot be re-visited, if it exists in the tabu list. 

Glover and Laguna (Glover, 1998) addresses many implementation issues with 

regard to tabu search, such as problem representation and directing the search. 

The algorithm shown here is written using a similar style to that used in (Russell, 

1995) so that it is consistent with the hill climbing and simulated annealing 

algorithms, shown previously. 
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Function TABU_SEARCH(Problem) returns a solution state 
Inputs : Problem, a problem 
Local Variables : Current, a state 

  Next, a state 
  BestSolutionSeen, a state 

  H, a history of visited states 
 

Current = MAKE-NODE(INITIAL-STATE[Problem]) 
While not terminte 

Next = a highest-valued successor of Current 
If (not Move_Tabu(H,Next) or 

Aspiration(Next)) then 
 Current = Next 
 Update BestSolutionSeen 
 H = Recency(H + Current) 
End-If 

End-While 
Return BestSolutionSeen 

 

 

2.3.3 Evolutionary (or Population) Based Approaches 

Unlike the neighbourhood methods discussed above, population based approaches 

maintain a population of solutions. 

 

Ant Algorithms 
Ant algorithms are based on the real world phenomena that ants, despite being 

almost blind, are able to find their way to a food source and back to their nest, 

using the shortest route. Chapter 6 investigates this approach for packing 

problems. As this is the first time ant algorithms have been applied to these 

problems the basic algorithm is discussed in some detail below. In doing so, the 

travelling salesman problem (TSP) is used as a model application as the approach 

adopted in this thesis is based on the TSP model of Dorigo (Dorigo, 1996). This 

work, tested on the Oliver30 data sets, out performed general purpose heuristics 



 

Graham Kendall   70 

(tabu search and simulated annealing) and is also competitive with specialised TSP 

methods (2-opt and Lin-Kernigan (Lin, 1973)). However, in these cases the ant 

algorithm required much longer run times. 

In (Dorigo, 1996) the phenomena that ants are able to find their way to and from 

food is discussed by initially considering ants that only have to walk in a straight 

line. However, if an obstacle is placed in the way then the ants have to decide 

which route to take around the obstacle. Initially, there is a 0.5 probability as to 

which way they will turn when they come across the obstacle. If we assume that 

one route around the obstacle is shorter than the alternative route then the ants 

taking the shorter route will arrive at a point on the other side of the obstacle 

before the ants which take the longer route. 

If we now consider other ants coming in the opposite direction, when they come 

across the same obstacle they are also faced with the same fifty-fifty decision. 

However, as ants walk they deposit a pheromone trail. The ants that have already 

taken the shorter route will have laid a trail on this route so ants arriving at the 

obstacle from the other direction are more likely to follow that route as it has a 

deposit of pheromone. 

Over a period of time, the shortest route will have high levels of pheromone so that 

all ants are more likely to follow this route. Dorigo (Dorigo, 1996) states that this 

collective behaviour of ants forms an autocatalytic behaviour. That is, there is 

positive feedback which reinforces that behaviour so that the more ants that follow 

a particular route, the more desirable it becomes. 
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To convert this idea to a search mechanism for the Travelling Salesman Problem 

(TSP) there are a number of factors to consider. These are outlined below and are 

based on Dorigo’s seminal paper (Dorigo, 1996). 

At the start of the algorithm one ant is placed in each city. Variations have also 

been tested but Dorigo found that these gave inferior results. Therefore, the 

number of ants, n, in the system is equal to the number of cities (which can also be 

represented by n in this model) and that ant starts in a separate city. 

Time, t, is discrete. t(0) marks the start of the algorithm. At t+1 every ant will have 

moved to a new city and the parameters controlling the algorithm will have been 

updated. At t+n each ant will have completed a tour. 

Assuming that the TSP is being represented as a fully connected graph, each edge 

has an intensity of trail on it. This represents the pheromone trail laid by the ants. 

Let Ti,j(t) represent the intensity of trail edge (i,j) at time t. 

When an ant decides which town to move to next, it does so with a probability that 

is based on the distance to that city and the amount of trail intensity on the 

connecting edge. The distance to the next town, is known as the visibility, nij, and 

is defined as  

 

 nij = 1/dij (2.3) 

 

where, d, is the distance between cities i and j. 

At each time unit evaporation takes place. This (which also models the real world) 

is to stop the intensity trails building up unbounded. The amount of evaporation, p, 

is a value between 0 and 1. 
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In order to stop ants visiting the same city in the same tour a data structure, Tabu, 

is maintained. This stops ants visiting cities they have previously visited. Tabuk is 

defined as the list for the kth ant and it holds the cities that have already been 

visited. 

After each ant tour the trail intensity on each edge is updated using the following 

formula (2.4) 

 

 Tij (t + n) = p . Tij(t) + ΔTij (2.4) 

where 

 

 

 

This represents the trail substance laid on edge (i, j) by the kth ant between time t 

and t+n. 

Q is a constant and Lk is the tour length of the kth ant. 

Finally, we define the transition probability (2.6) that the kth ant will move from 

city i to city j. 

 

 

 

 

where α and β are control parameters that control the relative importance of trail 

versus visibility. 
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As well as the travelling salesman problem, ant algorithms have also been applied 

to a number of other areas. Bullnheimer et. al.  have applied the technique to 

Vehicle Routing Problems (VRP) (Bullnheimer, 1999). They showed that the 

positive results given by applying ant algorithms to the TSP could be repeated for 

another problem type. They could not improve on published results but claim it is 

a viable alternative when tackling VRP’s as, for practical purposes, deviations of 

up to 5% are acceptable due to uncertainty about travel costs, service times etc. 

make perfect planning impossible. 

More recently Maniezzo and Colorni (Maniezzo, 1999) have applied ant 

algorithms to the quadratic assignment problem (QAP). They run their algorithm 

against test cases from the literature as well as a real world problem. They report 

competitive results in all cases. 

Scheduling (Colorni, 1994 and Forsyth, 1997), Graph Colouring (Costa, 1997), 

Partitioning Problems (Kuntz, 1997) and Telecommunication Networks (Di Caro, 

1998) have also been addressed by ant algorithms. 

Additional introductions to ant algorithms can be found in (Dorigo, 1999, Dorigo 

1999a and Bonabeau, 1999). Probably, the best resource for ant algorithm 

literature is the web site maintained by Marco Dorigo 

(http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html). 

Recently, a new optimization algorithm based on the foraging behaviour of a 

population of primitive ants has been suggested (Monmarché, 2000). This 

approach is based on the way a particular species (Pachycondyla apicalis) search 

for prey by partitioning a given surface into many hunting sites. 
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The author is not aware of any published work that applies ant algorithms to the 

nesting problem except a presentation at Optimization 98, University of Coimbra, 

Portugal (10-22 July 1998), which used an ant algorithm to place shapes. 

Unfortunately the conference did not publish proceedings. 

 

Genetic Algorithms 
Genetic Algorithms (GA) were first proposed by (Fraser, 1957 and 1960) and 

(Bremermann, 1958). These algorithms simulated genetic systems. Despite the age 

of this early work it still has relevance today as it has recently been revisited by 

Fogel (Fogel 2000b and Fogel 2000c). John Holland, his students and colleagues 

at the University of Michigan in the 1960's and 1970's are also credited with 

carrying out much of the pioneering work in GA’s. Holland's book of 1975 

(Holland, 1992 - reprinted) is recognised as one of the seminal work’s for GA's. 

 

Genetic Algorithms are computer programs that are based on the principle of 

natural evolution. Holland's Adaptation in Natural and Artificial Systems (Holland, 

1992 - reprinted) presented the GA as an abstraction of biological evolution. 

A GA holds a population of solutions (often known as individuals or 

chromosomes). The separate parts of an individual are known as genes and the 

value that is stored in a gene is called an allele. The way in which each solution is 

represented is largely down to the designer of the GA. Historically, bit strings have 

been used but these are by no means the only representation that can be used, as 

shown later in this thesis. 
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Each individual is assigned a fitness value which indicates the quality of the 

solution the chromosome represents. 

During the execution of a GA algorithm the population is continually replaced by 

new populations. The new populations are created by applying operators 

(crossover and mutation) to members of the existing population. 

Crossover is seen as the most important operator. It takes two individuals (the 

parents) and transfers genetic material from parents to produce new individuals 

(children). An individual’s chance of being chosen as a parent is proportional to its 

fitness. This is done so that the principle of natural selection is mimicked; that is 

the fittest members of the population are allowed more opportunity to breed in the 

hope that they will pass their good genetic material to the next population. If this 

happens enough the population should gradually improve as fitter and fitter 

individuals are created. 

 

An outline algorithm is shown below 

 

1. Initialise a population of chromosomes 

2. Evaluate each chromosome (individual) in the population 

2.1. Create new chromosomes by mating chromosomes in the current 

population (using crossover and mutation) 

2.2. Delete members of the existing population to make way for the new 

members 

2.3. Evaluate the new members and insert them into the population 
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3. Repeat stage 2 until some termination condition is reached (normally based on 

time or number of populations produced) 

4. Return the best chromosome as the solution. 

In implementing a genetic algorithm there are a number of parameters to consider. 

Population Size : How many individuals should be present at each 

generation? 

Generations : How many generations should be produced before the 

algorithm terminates (other stopping criteria can also be used such as a 

measure of convergence)? 

Crossover Operator : How should the chromosomes be mated? N-point 

crossover is often used (see any GA reference, below, for example 

(Goldberg, 1989)). Alternatively, operators which give legal solutions to 

problems such as the travelling salesman problem, are available. A 

commonly used operator that falls into this category is the PMX (Partially 

Matched Crossover) (Goldberg, 1989). 

Crossover Probability : Chromosomes only mate with some 

probability. De Jong’s PhD thesis of 1975 (De Jong, 1975) studied a series 

of five problems and concluded that a high crossover rate should be used, 

for example 0.6, and a low mutation probability, for example 0.05. 

Evaluation method : The fitness associated with a chromosome can 

simply be the same as the value returned from the evaluation function 

(fitness is evaluation). However, this can lead to premature convergence so 
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a linear scaling (linear normalization) is often applied, based on the 

evaluation value for a given chromosome. 

Elitism : Using elitism ensures that the top n% of chromosomes, 

based on their fitness, are carried forward to the next generation. 

 

Introductions to GA’s can be found in (Beasley, 1993), (Coley, 1999), (Davis, 

1987, 1991), (Forrest, 1993), (Goldberg, 1989), (Man, 1999), (Michalewicz, 1996, 

2000), (Mitchell, 1996) and (Reeves, 1995). 

 

Evolutionary Strategies 
Evolutionary strategies (ES) are closely related to genetic algorithms. Originally 

they used only mutation, only used a population of one individual and were used 

to optimise real valued variables. More recently, ES’s have used a population size 

greater then one, they have used crossover and have also been applied to discrete 

variables (Bäck, 1991) and (Herdy, 1991). However, their main use is still in 

finding values for real variables by a process of mutation, rather than crossover. 

 

Work on evolutionary systems began with (Rechenberg, 1965, 1973) when they 

were used to optimize real valued parameters for airfoils. These ideas were later 

developed by Schwefel in his PhD thesis (Schwefel, 1975) and in a later paper 

(Schwefel, 1977). 

 

An individual in an ES is represented as a pair of real vectors, v = (x,σ). 
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The first vector, x, represents a point in the search space and consists of a number 

of real valued variables. The second vector, σ, represents a vector of standard 

deviations. 

 

Mutation is performed by replacing x by 

 

 xt+1 = xt + N(0, σ) (2.7) 

 

where N(0, σ) is a random Gaussian number with a mean of zero and a standard 

deviation of σ. This mimics the evolutionary process that small changes occur 

more often than larger ones. 

 

In the earliest ES’s (where only a single solution was maintained), the new 

individual replaced its parent if (and only if) it had a higher fitness. 

Even though this “single solution” scheme only maintains a single solution at any 

one time, it is sometimes referred to as a “two-numbered evolution strategy.” This 

is because, there is competition between two individuals (the parent and the 

offspring) to see which one survives to become the new parent. 

In addition, these early ES’s, maintained the same value for σ throughout the 

duration of the algorithm. 

σ stays constant throughout the run as it has been proven that the algorithm 

converges to the optimal solution (Bäck, 1991). Although the global optimum can 

be proven to be found with a probability of one, the theorem also states that it only 

holds for a sufficiently long search time. The theorem says nothing about how long 
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that search time might be. To try and speed up convergence rate Rechenberg has 

proposed the “1/5 success rule.” It can be stated as follows 

 

The ratio, ϕ, of successful mutations to all mutations should be 1/5. Increase 

the variance of the mutation operator if ϕ is greater than 1/5; otherwise, 

decrease it. 

 

The motivation behind this rule is that if many successful moves are being found 

then larger steps should be attempted in order to try and improve the efficiency of 

the search. If successful moves are not being found then the search should proceed 

in smaller steps. 

The 1/5 rule is applied as follows 

 

if ϕ(k) < 1/5 then σ = σcd 

if ϕ(k) > 1/5 then σ = σci 

if ϕ(k) = 1/5 then σ = σ 

 

The variable, k, which is a parameter to the algorithm, dictates how many 

generations should elapse before the rule is applied. cd and ci determine the rate of 

increase or decrease for σ. ci must be greater than one and cd must be less than one. 

Schwefel (Schewel, 1981) used cd = 0.82 and ci = 1.22 (=1/0.82). 
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The problem with the 1/5 rule is that it may lead to premature convergence for 

some problems. One answer to this is to increase the population size, which now 

turns evolutionary strategies into a population based search mechanism. By 

increasing the population size the following observations can be made. 

1. The population size is now (obviously) > 1. 

2. All members of the population have an equal probability of mating (compare 

this to chromosomes in a genetic algorithm which mate in proportion to their 

fitness). 

3. The possibility of crossover can be introduced. 

4. As there is more than one individual there is the opportunity to alter σ 

independently for each member.  

5. There are more options with regard to how the population can be controlled. 

These are discussed below. 

 

In evolutionary computation there are two variations with regard to how the new 

generation is formed. The first, termed (µ + λ), uses µ parents and creates λ 

offspring. Therefore, after mutation, there will be µ + λ members in the 

population. All these solutions compete for survival, with the µ best selected as 

parents for the next generation. 

 

An alternative scheme, termed (µ, λ), works by the µ parents producing λ 

offspring (where λ > µ ). Only the λ compete for survival. Thus, the parents are 
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completely replaced at each new generation. Or, to put it another way, a single 

solution only has a life span of a single generation. 

The original work on evolution strategies (Schwefel, 1965) used a (1 + 1) strategy. 

This took a single parent and produced a single offspring. Both these solutions 

competed to survive to the next generation.  

Good introductions to evolutionary strategies can be found in (Bäck, 1997), 

(Fogel, 1998), (Fogel, 2000a), (Michalewicz, 1996) and (Michalewicz, 2000). 

 

Memetic Algorithms 
The Selfish Gene by Richard Dawkins (Dawkins, 1976) introduces the idea of a 

meme. In 1989 Moscato (Moscato, 1989) coined the term memetic algorithms. 

 

“Examples of memes are tunes, ideas, catch-phrases, clothes, fashions, 

ways of making pots or of building arches. Just as genes propagate 

themselves in the gene pool by leaping from body to body via sperm eggs, 

so memes propagate themselves in the meme pool by leaping from brain to 

brain via a process which, in the broad sense, can be called imitation.” 

(Dawkins, 1976) 

 

A meme can be considered to be a unit of information, for example an idea which 

is passed from generation to generation. Unlike genetic material, which cannot be 

altered by its recipient, a meme can be amended to suit the receiver.  

The idea behind a memetic algorithm, with regard to optimisation problems, is to 

combine evolutionary algorithms with a local search mechanism in the hope that 
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an individual in the population can be improved. An outline algorithm, based on 

(Corne, 1999) is shown below. 

 

InitialisePopulation, Pop 

Foreach individual, i ∈ Pop do ← Local-Search-Engine(i) 

Foreach individual, i ∈ Pop do ← Evaluate(i) 

Repeat 

for j = 1 to #recombinations do 

SelectToRecombine a set Spar ⊆ Pop ( |Spar| ≥ 2 ) 

offspring ← Recombine(Spar) 

offspring ← Local-Search-Engine(offspring) 

add offspring to Pop 

endfor 

for j = 1 to #mutations do 

SelectToMutate an individual i ∈ Pop 

im ← Mutate(im) 

im ← Local-Search-Engine(im) 

Evaluate(im) 

add im to Pop 

endfor 

until termination-condition = true 

 

A good introduction to memetic algorithms can be found in (Corne, 1999) in 

which Pablo Moscato introduces the topic and other practitioners discuss the area 

in more depth. 



 

Graham Kendall   83 

 

2.3.4 Meta-heuristics 

The literature and academic community often use the phrase meta-heuristic. As far 

as the author is aware there is no definitive statement as to what this term actually 

means. 

If you look up the term meta in a dictionary (see, for example 

www.dictionary.com) the term is defined as “Beyond; transcending; more 

comprehensive”, suggesting that a meta-heuristic takes us beyond a heuristic 

algorithm. An alternative, computer science, definition from 

http://webopedia.internet.com/Computer_Science/meta.html gives the following 

“In computer science, a common prefix that means "about". So, for example, 

metadata is data that describes other data (data about data). A 

metalanguage is a language used to describe other languages. A metafile is 

a file that contains other files. The HTML META tag is used to describe the 

contents of a web page.” 

 

This would suggest that a meta-heuristic is somehow a heuristic about heuristics. 

 

Of the two definitions given above, for the purposes of this thesis the first 

definition is preferred. The algorithms that we use go beyond the usual heuristic 

approaches. 

Therefore, for this work the term meta-heuristic can be used to describe both 

neighbourhood approaches and population based approaches. 
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“I have called this principle, by which each slight variation, if useful, is preserved, 

by the term Natural Selection.” Origin of Species. 
 
 

3. A Simplified Problem 
 

3.1 Introduction 
In this, and subsequent, chapters we consider various types of cutting and packing 

problems and apply various search techniques to find good quality solutions. 

In particular, this chapter looks at a simplified version of the problem in order to 

give an initial comparison of three search algorithms. It is hoped that these initial 

results will be similar, with regard as to how they compare relatively to one 

another, when the same search algorithms are applied to more complex problems. 

In chapter five, convex cutting and packing problems are addressed and in chapter 

six two new algorithms (ant algorithms and memetic algorithms) are tested on the 

same problems. Chapter eight compares the same search algorithms as used in 

chapters five and six on non-convex problems. This incremental approach to the 

problems and search algorithms is taken so that the results can gradually be built 

up and more easily compared. 

Chapter 3 
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Due to the fact that many types of search algorithms are being applied to different 

problems, choice of representation was crucial in being able to use different search 

algorithms on the same problem data. The representation chosen was a list of 

shapes (rectangles in this chapter, convex polygons in chapters five and six and 

non-convex polygons in chapter eight) which were packed based on their position 

in the list. For example, the shape at the start of the list was packed first and the 

shape at the end of the list was packed last. Using a list allowed the various search 

algorithms to operate directly on that data structure. Using algorithms such as tabu 

search, simulated annealing and hill climbing the neighbourhood function could be 

implemented as a swap operator which simply swaps shapes, for example, at 

random. 

Using a genetic algorithm, the list represents a chromosome, which can use 

recognised crossover and mutation operators. 

Ant algorithms are also able to use the list representation. Each list represents the 

order in which the ants “visit” the shapes, with a separate data structure being used 

to maintain the pheromone levels between each shape. 

Therefore, we chose this data structure as it provides a convenient representation 

for all the search algorithms we employ during this research. However, it is 

recognised that this is not the only representation that could be used. For example, 

Otten (Otten, 1982) uses a tree representation (called a slicing tree structure). 

Whilst we could have used a similar representation it would be more difficult to 

define the various operators for all the searches and, in addition, Otten used this 

structure for rectangular pieces and it has never been applied to more complex 
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shapes and certainly not non-convex polygons. Daza et. al. (Daza, 1995) also used 

a tree representation (a binary search tree) but this suffers from the same 

limitations as described above for (Otten, 1982). 

Dietrich et. al. (Dietrich, 1991) represented the larger sheet, in the first instance, as 

a single hole that allowed other pieces to be placed within it. Using various 

heuristics (such as decreasing area first fit, increasing length first fit) shapes were 

selected and placed into the holes. This had the effect of creating more holes (in 

some cases holes were combined and enlarged) so that other pieces could be 

selected and fitted into the newly created holes. Similar to the tree representation, 

this approach was only applied to rectangular shapes. Feasibly, it could be applied 

to other shapes but the various operators, specifically for genetic algorithms and 

ant algorithms, would be difficult to define. 

An approach, adopted by Bennell and Dowsland (Bennell, 1999), is to represent 

the larger shape as a grid. A neighbourhood function can then be defined as 

moving the smaller shapes a certain number of grid positions, and in a given 

direction. The shape to be moved, the distance and direction it is moved and the 

resolution of the grid are discussed within the paper, with experimental results 

being presented. Bennel and Dowsland employ a variation on tabu search (simple 

tabu thresholding) to search for good quality solutions and a similar representation 

was considered for this work but it was not apparent how genetic algorithms and 

ant algorithms could be mapped onto this representation. 
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The representation chosen for this work is the same representation as used by 

Oliveira et. al. (Oliveira, 1998). In their work a series of polygons is packed 

utilising the no fit polygon at each stage. As a similar approach is used in PhD 

thesis (that is packing shapes one at a time and using the no fit polygon to decide 

on the next placement), it seems appropriate to adopt a similar representation as 

used in previous work. 

However, it is recognised that that is not the only representation possible. Despite 

those mentioned above, and the reasons for rejecting them, others are possible. 

One of the approaches we are considering, in conjunction with a commercial 

partner, is to use a bitmap representation and try to fit shapes into the holes on the 

larger shape (holes being represented by the bits in the bitmap being set to, say, 

one). At present, only heuristic based methods place the shapes but we hope to 

extend the method so that we can employ meta-heuristic and evolutionary 

algorithms. But we already recognise that it is a challenge to define the various 

operators. 

 

This chapter does not directly address the nesting problem. Instead, it takes a 

simplified version and investigates three techniques (Tabu Search, Simulated 

Annealing and Genetic Algorithms) to solve it. The aim of solving a simplified 

version of the problem is to ascertain whether or not these techniques offer a 

sensible approach for solving this type of problem. (Blazewick, 1993), (Jain, 

1992), (Kröger, 1995), (Parada, 1998) have had success with these techniques but 

the three methods have not been rigorously compared on the particular problem of 
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interest in this PhD project. If these approaches show promise on a simplified 

version of the problem this would indicate that it is worthwhile investigating the 

same techniques for more difficult problems. 

 

3.2 The Problem 
Presented with two rectangles (R1, R2) we can make the following observations. 

By placing R1 and R2 in contact with each other we can place a bounding box, 

Bbox, around them. The area of Bbox, Area(Bbox), depends on how the rectangles are 

placed in relation to one another. The minimum for Area(Bbox) = Area(R1) + 

Area(R2) (see figure 3.1). If the rectangles are placed such that the area of Bbox > 

Area(R1) + Area(R2) the placement is sub-optimal (see figure 3.2). Finally, if the 

rectangles are of different sizes in both the dimensions then Area(Bbox) ≠ Area(R1) 

+ Area(R2) (see figure 3.3). 

 

 

 

Fig. 3.1 - Placement of two rectangles which has a minimal bounding 
box 

 

 

 

Fig. 3.2 – Placement of two rectangles such that the area of the 
bounding box is not minimised 
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Fig. 3.3 – Placement of two rectangles, R1 and R2, which has a 

minimal bounding box, Bbox, but Area(Bbox) > Area(R1)+Area(R2) 
 

Figure 3.1 shows two rectangles of size 3x3. The sum of their areas is 18, as is the 

area of their bounding box. Figure 3.2 shows the same two rectangles but now 

placed in relation to each other so as to give the bounding box an area of 24. The 

two rectangles (9x9 and 1x10) in figure 3.3 are positioned in an optimal way so 

that the area of the bounding box is minimized, but the area of the bounding box is 

still greater than the area sum of the two rectangles. In fact, the area of this 

bounding box will always be greater than the area sum of the rectangles, no matter 

how they are placed in relation to one another. Our simplified version of the stock 

cutting problem is to take pairs of rectangles from a given set and combine them 

with the objective of minimising the sum of their bounding boxes. 

 

3.3 Representation of the Problem 
Let x and y be the width and height of a rectangle respectively, expressed as an 

integer. Let Bottom define a point along the bottom of the rectangle where Bottom 

can take value between 0 and x-1. Similarly, let Top define a point along the top of 

the rectangle. 
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Left and Right, are used to define a  point on the left and right of the rectangle. 

These values are constrained between 0 and y-1. 

Finally, one further variable is defined, Place, which dictates where one rectangle 

is placed in relation to another. This variable is discussed in section 3.3.1. These 

variables are summarised below. 

 

x : The width of the rectangle 

y : The height of the rectangle 

Bottom : 0 >= Bottom <= x-1. Defines a point on the bottom of the 

rectangle 

Left : 0 >= Left <= y-1. Defines a point on the left of the rectangle 

Right : 0 >= Right <= y-1. Defines a point on the right of the rectangle 

Top : 0 >= Top <= x-1. Defines a point on the top of the rectangle 

Place : A variable indicating if another rectangle should be placed on 

top, or to the right, of this one. 

3.3.1 Interpretation 

Given the rectangles R1..R6, we can pair them as follows; R1 & R2, R3 & R4 and R5 

& R6 (and in any other permutation). Given these pairings we can decide how any 

two rectangles can be placed in relation to one another. Assume R1 and R2 have 

the following values. 

 

R1 = {x=3, y=3, Bottom=0, Left=2, Right=2, Top=1, Place=On Right} 

R2 = {x=3, y=3, Bottom=1, Left=1, Right=0, Top=3, Place=On Top} 

 



 

Graham Kendall   91 

We can place these two rectangles in relation to one another using the following 

reasoning. R2 (being the second rectangle of the pair) will be placed in relation to 

R1. Using the Place variable of R1 we note that R2 should be placed to the right of 

R1. We use the Right variable of R1 to define where R2 should joined. We also 

need a point on R2 so that the join can be completed. This is given by the Left 

variable of R2. We use the Left variable as it is the complement of Right. If we had 

used the Top variable of R1 we would use the Bottom variable of R2. The joined 

rectangle is shown in figure 3.2. 

The filled circle, in figure 3.2, shows this interpretation. 

 

3.4 Comparison of Algorithms 
To compare the algorithms (simulated annealing, tabu search and genetic 

algorithm) three rectangle pairing problems were considered. The aim was to 

observe the quality of the solutions produced when the algorithms attempted to 

minimise the sum of the bounding boxes of the rectangle pairs in the given set. 

The first problem consisted of twelve rectangles (2 of 9x9, 2 of 8x8, 4 of 4x4 and 

4 of 3x3). The optimum solution for this problem is 390. All the algorithms were 

able to find this optimum. The second problem consisted of 50 rectangles where 

the optimum was known to be 20000. A third problem consisted of 100 random 

rectangles where the optimum is unknown. The results for the 50 and 100 

rectangle problem are shown below (table 3.1), with comments following. All 

results are averaged over ten runs. 
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 GA TS SA 
 Best Avg Best Avg Best Avg 
50 Rectangles 22053 22149 20024 20099 20047 20089 
100 Rectangles 79586 80356 75269 75949 73845 74003 

Table 3.1 - Pairing Rectangles using Meta-Heuristic (GA, TS, SA) 
Algorithms 

 

3.4.1 Crossover, Neighbour and Mutation 

In testing the algorithms we used three types of crossover operator for the GA. 

One was a generic order based crossover (Davis, 1987). The other two crossover 

operators were developed specifically for this problem. One (named rectangle 

crossover) ensured that promising rectangle pairs were carried forward to the next 

generation. A promising rectangle pair is defined as a pair of rectangles, in a 

chromosome, that satisfies MIN(Area(BBOX)(i, i+1) – (Area(Ri) + Area(Ri+1)). Using 

the rectangle operator, the most promising pair in a parent is copied to one of the 

children before the other positions in the child are filled. The other parent and 

child are treated similarly. An extended version of this operator, the enhanced 

rectangle operator, finds the most promising rectangle pair in each parent and 

copies these rectangles to both children. In the event that this would lead to 

duplication in the child normal rectangle crossover is used. 

The neighbour for both SA and TS was a random swap of two rectangles (making 

allowances for the tabu list in TS). Mutation, for all the algorithms, changed one of 

the variables in a randomly selected rectangle to a random, allowed, value. 

 



 

Graham Kendall   93 

3.4.2 Genetic Algorithm (GA) 

Initially we carried out GA runs by testing various parameter combinations. The 

parameters we varied were the population size (50 and 100), the three types of 

crossover operator, two types of evaluation (fitness is evaluation and linear 

normalization) and elitism (0.05 or 0.00). The permutation of these parameters led 

to 24 runs being necessary. Each run was carried out fifteen times using three 

different starting populations (360 tests in all). Some parameters to the GA 

algorithm remained constant. These were the crossover probability (0.6), the 

mutation probability (0.05) and the number of generations (100). 

 

The order based crossover did not yield good results. Using the problem specific 

operators yielded better quality solutions. Linear normalization produced better 

results than fitness is evaluation. As might be expected, a population size of 100 

produced better results than a population size of 50. Better results were produced 

when using elitism. The results shown above (table 3.1) used the best parameter 

combinations we found. However, even with these combinations, TS and SA 

outperform the GA. 

 

3.4.3 Tabu Search (TS) 

To produce the results shown above, TS was run with a list size of 50% of its 

population size and a neighbourhood size equal to its population size (that is, when 

looking for a better neighbour at each iteration it considered n neighbours). 5000 

iterations were performed. To confirm that the TS list was helping find good 

quality solutions we ran a test, for the 50 rectangle problem, with the list size set to 
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zero. This yielded a result of 20828. We also tried a list size of 48, which gave a 

result of 20506. A smaller list size (10) produced an average result of 20632 and 

increasing the neighbourhood size to 100 (with the list size still at 25) produced 

similar results to a neighbourhood size of 50. 

 

3.4.4 Simulated Annealing (SA) 

To produce the results a starting temperature of 10 was used, a decrement of 0.001 

and 100 iterations were carried out at each temperature. 

 

3.5 Conclusions 
All three meta-heuristic techniques were able to find the optimum solution to a 

small problem. When presented with larger problems, tabu search and simulated 

annealing produced good quality solutions whereas a genetic algorithm produced 

lower quality solutions despite many tests during the small problem to try and 

ascertain the best combination of parameters. In addition, the GA runs took longer 

due to the overheads involved in processing a population of chromosomes, rather 

than a single individual. In conclusion, for this problem the SA and TS algorithms 

produce similar solutions and both outperform the GA. 
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“As many more individuals of each species are born than can possibly survive; 

and as consequently, there is a frequently recurring struggle for existence, it 
follows that any being, if it vary however slightly in any manner profitable to itself 

under the complex and sometimes varying conditions of life, will have a better 
chance of surviving and thus be naturally selected.” Origin of the Species 

 
 

4. Evaluation of the Two Dimensional Bin 
Packing Problem using the No Fit Polygon 

 

4.1 Introduction 
When employing meta-heuristic and evolutionary algorithms it is often the case 

that the evaluation function is the most computationally expensive part of the 

algorithm. The evaluation function employed in this work (see section 4.2) 

calculates the no fit polygon (NFP) for two polygons and then calculates the 

smallest convex hull for the two polygons. This process is repeated for each 

polygon. As the manipulation of polygons is computationally expensive, the 

process creates a bottleneck at this stage. However, many of the evaluations are 

simply re-evaluating solutions that have already been evaluated. Before solving 

problems using meta-heuristic and evolutionary algorithms some work was carried 

out in an attempt to speed up the evaluation function. 

In order to do this a cache was utilised which stores previous evaluations (the 

cache was developed using the CMap class available with Microsoft Visual C++ 

Chapter 4 
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version 6.0). Increasing the size of the cache significantly increases the speed of 

the algorithm. In addition the concept of a polygon type was also introduced which 

allows much better use to be made of the cache. 

It can also be shown that in some circumstances, it may not be beneficial to use a 

cached evaluation. Therefore, a re-evaluation parameter is introduced which forces 

a complete re-evaluation of a solution, even though it might be held in the cache. 

In this chapter it is shown that this parameter can be set to a small value so that the 

advantages of the cache are not lost. 

The approaches adopted here are intuitive but are not often implemented. 

However, techniques such as these, will become increasingly important as met-

heuristics and evolutionary algorithms are more widely used. 

Other researchers have used various methods in order to reduce the computational 

load of their evaluation function on their algorithm. In (Rana, 1996) a warehouse 

scheduling problem is solved using a genetic algorithm. The evaluation function is 

a list based simulation of orders progressing through the warehouse. An internal 

(detailed) simulator is used to verify solutions. This takes about three minutes. An 

external (coarse) simulator runs in about one tenth of a second and is used to 

identify potential solutions. Ross et al (Ross, 1994) uses delta evaluation on the 

timetabling problem. Instead of evaluating every timetable they show that, as only 

small changes are being made between one timetable and the next, it is possible to 

evaluate just the changes and update the previous cost function using the result of 

that calculation. 
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In this chapter only convex polygons are considered but the same techniques are 

used later in this thesis  (chapter 8) when working with non-convex polygons. 

 

4.2 No Fit Polygon 
The No Fit Polygon (NFP) determines all the arrangements that two arbitrary 

polygons may take so that the shapes do not overlap but so that they cannot be 

moved closer together without intersecting. To show how the NFP is constructed 

consider two polygons; P1 and P2. The aim is to find an arrangement such that the 

two polygons touch but do not overlap. If this can be achieved then we know that 

we cannot move the polygons closer together in order to obtain a tighter packing. 

In order to find the various placements the procedure can be described as follows 

(see figure 4.1). One of the polygons (P1) remains stationary. P2 moves around P1 

and stays in contact with it but never intersects it. P1 and P2 retain their original 

orientation. That is, they never rotate. As P2 moves around P1 one of its vertices 

(the filled circle) traces a line. 

 

 
 
 
 
 
 

Figure 4.1 – The No Fit Polygon 
 

P1 

P2 
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Figure 4.1 shows the starting (and finishing) positions of P1 and P2. The NFP is 

shown as a dashed line. It is slightly enlarged so that it is visible. In fact, some of 

the edges would be identical to P1 and P2. Once the NFP has been calculated for a 

given pair of polygons the reference point (the filled circle) of P2 can be placed 

anywhere on an edge of the NFP in the knowledge that it will touch, but not 

intersect, P1. In order to implement a NFP algorithm it is not necessary to emulate 

one polygon orbiting another. Cunningham-Green (Cunningham-Green, 1992) 

presents the algorithm that is used as part of this work. 

The no fit polygon is considered in more depth in chapter 7. 

 
4.3. Evaluation 
 

4.3.1 The Basic Method 

In order to fill the bin we proceed as follows. The first polygon is chosen and this 

becomes the stationery polygon (P1 in figure 4.1). The next polygon (P2 in figure 

4.1) becomes the orbiting polygon. Using these two polygons the NFP is 

constructed. The reference point of P2 is now placed on various points on the NFP. 

For each position the convex hull for the two polygons is calculated. Once all 

placements have been considered the convex hull that has the minimum area is 

returned as the best packing of the two polygons. This larger polygon now 

becomes the stationery polygon and the next polygon is used as the orbiting 

polygon. This process is repeated until all polygons have been processed. As each 

large polygon is created, its width is checked. If this exceeds the width of the bin, 

then a new row within the bin is started. In this case, the polygon which forced the 
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width of the bin to be exceeded becomes the stationery polygon. That is, the large 

polygon built thus far forms one row and the next row is constructed using a single 

polygon as a starting point. 

 

  

 

 

Figure 4.2 – Possible Placements 
 
 

 

 

 

 Figure 4.3 – Same Polygons, Different Solutions 
 

There are two problems that need to be addressed in order to make the evaluation 

strategy feasible. The number of placements the reference point can take on the 

NFP is infinite. In order to reduce the problem to manageable proportions, we only 

place the reference point on the vertices of the NFP. The second problem is that 

there could be more than one optimal placement for two given polygons. Consider 

two rectangles of the same dimensions. There are four optimal placements, as 

shown in figure 4.2. No matter which placement is chosen the four evaluations 

return the same value as the convex hulls all have the same area. Therefore, it is 

immaterial which one we choose. However, it may make a difference when later 

P 

P 
P 
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polygons are added. Consider, for example, if the placement is chosen where one 

polygon is placed on top of P. Depending on the characteristics of the next 

polygon it could effect the quality of the solution that is being built. Figure 4.3, 

illustrates this. It shows that by choosing one placement over another different 

solutions can be obtained later on in the packing. 

The cost function that measures a complete (or partial) solution is taken from 

(Falkenauer, 1998). Rather than simply measuring the bin height (which is the 

intuitive evaluation function), the cost function measures how efficiently the bin 

has been packed. This gives a much better search space for the algorithm to 

explore. 

Section 5.2 of this work contains a fuller description of the evaluation function. 

 

4.3.2 Caching of Evaluations 

Manipulating polygons is computationally expensive and, due to the nature of 

evolutionary algorithms, the evaluation function has to be called many times. It is 

likely that the same evaluation will be performed many times. This makes this part 

of the algorithm a serious bottleneck. In order not to evaluate previously seen 

solutions again a cache has been implemented. Each polygon is assigned a unique 

identifier. In this way a solution (complete or partial) can be recognised by 

considering a concatenation of the identifiers (a key), which is used to access the 

cache. The cache either returns a null value, meaning that the solution is not 

present, or it returns the previous evaluation which means the evaluation function 

does not have to be called. In addition a polygon data structure is held in the cache 

so that this can be returned and paired with the next polygon. In fact, the cache can 
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hold more than one polygon for each hash key. Figure 4.2 shows four optimal 

placements. These placements would all be held in the cache but only one 

(randomly selected) is returned. 

 

4.3.3 Polygon Types 

Another potential bottleneck is evaluating polygon permutations that have already 

been evaluated. Consider polygons with identifiers ABCDE and assume the 

polygons DE are identical. After evaluating the permutation ABCDE, {AB, ABC, 

ABCD, ABCDE} will be stored in the cache. Later in the algorithm ABCE might 

need to be evaluated. This key will not be in the cache and the evaluation function 

is called. In fact, there is no need to do this as polygons D and E have the same 

dimensions and evaluating ABCD will yield the same result as ABCE. In order to 

cater for this, the notion of a polygon type was introduced. This gives each 

polygon a type identifier which acts as a pointer to the polygon description. This 

can significantly reduce the size of the search space and allows for much more 

effective use of the cache. 

 

4.3.4 Forcing Re-evaluations 

One problem in using a cache is that it might be holding an evaluation which is not 

the optimal for a particular permutation of polygons. An example of this is shown 

in figures 4.2 and 4.3. If the first two (smaller) polygons are evaluated, it will be 

found they can be positioned in four ways (see figure 4.2). The placement chosen 

is random, so assume one polygon is placed next to the other. When the third 

polygon is evaluated, the best configuration that can be found is that shown on the 
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right of figure 4.3. It is the result from this evaluation that will be stored in the 

cache and whenever these three polygons are evaluated, it will be this value that is 

returned from the cache. We will never have access to the better solution (left hand 

side of figure 4.3) where the first two polygons are placed on top of one another. 

The problem is that once a configuration is stored in the cache, the only way we 

can arrive at another placement is for the cache to exceed its limit and for the 

(possibly) inferior solution to be discarded. However, there is no guarantee that 

this will happen. In fact, the larger the cache size (in the hope of improved 

performance) the less chance there is of items being discarded from the cache. In 

an attempt to alleviate this problem a re-evaluation parameter is introduced. This is 

set to a value between 0 and 1 and determines the probability of the solution being 

re-evaluated, regardless of whether or not it is in the cache. A value of zero means 

that the value in the cache, if it exists, should always be used. A value of one 

means that the solution is always re-evaluated, effectively ignoring the cache. 

Higher values of the re-evaluation parameter will slow the algorithm down as it is 

not making as much use of the cache. However, re-evaluating solutions should 

mean that better quality solutions are found as more of the search space is 

explored. 
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4.4 Testing, Results and Comparisons 
 
4.4.1 Test Data 

 

Figure 4.4 – Test Data 3 
 

Testing was carried out on three sets of data. The first test consisted of fourteen 

pieces which were defined using three different polygon types. The second test 

used the same pieces but this time the polygons were defined as (fourteen) 

different types. The third test used the pieces shown in figure 4.4. This problem is 

taken from a company that cuts polycarbonate pieces for the manufacture of 

conservatories. This data is defined using different types. 

 

4.4.2 Testing the Cache 

The upper bound for the cache size was found by starting with a high value and 

recording the maximum number of elements held in the cache at the completion of 

the run. 
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Figure 4.5 – Cache benefits (Test Data 1 & 2) 
 

 

 

 

 

 

Figure 4.6 – Cache Benefits (Test Data 3) 
 

The cache size was then varied, in increments of 1000, between zero and the upper 

bound. It can be seen (figure 4.5 and 4.6) that the cache size has a significant 

effect on the running time of the algorithm. In addition, when using polygons of 

the same type (figure 4.5, which shows the first two sets of test data) the program 

not only runs faster but also requires a smaller cache (due to the reduced size of 

the search space). The third test problem (figure 4.6) shows similar, confirmatory 

results. It is interesting to note that with a cache size of zero, the algorithm is 

slightly slower than when the cache is set to only hold a small number of elements. 

We attribute this to the fact that there is an overhead in maintaining the cache, so 
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that when the cache size is set to a small value the overheads in maintaining the 

cache are greater, in terms of time, than the benefits gained by using a cache. 

However, this is not a major issue as it is always better to have the cache set to as 

large a value as possible and a small value would never be used, only in this case 

to show the effect of varying its size. 

 

4.3 Re-evaluation Parameter 

 

Figure 4.7 – Effect of Re-evaluation 
 

The effect of increasing the re-evaluation parameter is to increase the run time of 

the algorithm because cached data is not used as often. The worst case comes 

when the re-evaluation parameter is set to 1.0 as this is the same as setting the 

cache size to zero and means that every solution has to be evaluated. The three sets 

of test data were tested using values between 0.0 and 1.0 for the re-evaluation 

parameter, incrementing by 0.1 on each test. We might expect to see, with higher 

values for the re-evaluation parameter, better quality solutions appearing. In fact, 

this was not the case as can be seen from figure 4.7, which shows the results from 

the third set of data but is representative of all three tests. It is difficult to draw any 
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concrete conclusions from this graph but it can be seen that when the re-evaluation 

parameter is set to zero the result is a high cost function. From this observation it 

would appear sensible to not set the parameter to zero but to a low value. 

 
4.5 Conclusions 
The evaluation function is a bottleneck in some systems, which is the case in this 

research due to the computational geometry aspects of the algorithm. Three ways 

have been presented which increase the speed of the algorithm. Although these 

methods are intuitive, techniques such as these, to the authors knowledge, have 

never been reported in the literature, especially with regards to the nesting problem 

in conjunction with the no fit polygon. The first improvement stores previous 

evaluations in a cache so that the evaluation function can be bypassed if the same 

solution is seen again. By varying the cache size it has been shown that the speed 

of the algorithm is significantly faster. The concept of polygon types has also been 

introduced. Whilst most researchers will use this method of representing their data 

we have demonstrated that this approach does lead to an improvement in run time, 

especially when used in conjunction with the cache. Finally, a re-evaluation 

parameter was used so that we can force a solution to be re-evaluated even if it is 

stored in the cache. This is required as it is possible that the cache will hold an 

inferior solution for a given permutation of polygons. 

Without the techniques outlined above we do not believe that an evolutionary 

approach to the nesting problem, using our evaluation method, would be feasible. 

This work provides a sound foundation for the remainder of the research in this 

thesis. 
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“Descent with modification must be the answer not catastrophic destruction 

followed by fresh creation.” Descent of Man 
 
 
 

5. Comparing Meta-Heuristics and 
Evolutionary Algorithms when Applied to the 

Convex Nesting Problem 
 

5.1 Introduction 
In this chapter a number of meta-heuristic and evolutionary algorithms are used to 

search for good quality solutions to the nesting problem. These search methods 

rely on a new method for packing polygons. The method utilises the no fit polygon 

(see chapter 4, section 4.2). 

This chapter also shows how the parameters for the various search strategies were 

selected. 

The reported results are encouraging and provide a set of comparative test results 

for later work in this thesis. 

The main aim of this chapter is to show that the proposed approach produces good 

quality results for two problems. More problems could have been used but, due to 

the convex nature of the problems, there is limited scope to develop this work. 

Chapter 5 
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However, if it can be shown that the proposed method produces good quality 

solutions then the same techniques can be applied to non-convex problems with 

the hope of achieving even better results. 

To produce a solution to the two dimensional nesting problem it is necessary to 

place a number of shapes onto a larger shape. In doing so the shapes must not 

overlap one another and must stay within the confines of the larger shape. The 

usual objective is to minimise the waste of the larger shape. Only two dimensions, 

height and width, are considered and the larger piece is sometimes considered to 

be of infinite height so that only the width of the placements needs to be checked. 

This is a realistic assumption for the real world as the larger shapes are sometimes 

rolls of material which can be considered as being of infinite length for the 

purposes of the placement procedure. 

In this chapter a number of assumptions are made. The height of the bin (the larger 

piece) is considered infinite, although it remains the aim of the evaluation function 

to minimise this height. Only one bin is used (that is, there is no concept of filling 

a bin and having to start another). Only guillotine cuts are allowed (that is, a cut 

must be made from one edge to the other). 

 

5.2 Evaluation Method 
Falkenauer (Falkenauer, 1998), although not specifically addressing the nesting 

problem, considered grouping problems, using genetic algorithms (GA’s). One of 

the problems addressed is bin packing. The nesting problem can be considered to 

be a bin packing problem where the cost associated with each piece is equal to its 

area. 
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The cost function used by Falkenauer is 

Maximize  

 

 

 

 

Where N is the number of bins used 

 Fi is the sum of the sizes of objects in bin i 

 C is the bin capacity 

 And k is a constant, k >1 

This cost function measures the average ‘bin efficiency’ to the kth power. 

Falkenauer achieved good results with k=2. The research presented in this chapter 

has used both this cost function (suitably amended and described below) as well as 

a cost function that simply minimises the bin height. 

Our cost function is based on that used in (Falkenauer, 1998). It can be stated as 

follows 

Minimise 

 

Where UsedRowArea is the total area of the polygons placed in that row 

TotalRowArea is the total area of the bin occupied by that row 

k is a factor simply to scale the result (we used 100 but 1 could be used) 

n is the number of rows in the bin 

k
CFf iNiBPP ∑ == )/(...1

N 
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In essence, we are trying to minimise the area used by each row. This evaluation 

function is preferable to the more obvious method of simply measuring the bin 

height as, using the bin height, many solutions will map to the same evaluation 

value. This makes it much more difficult to effectively explore the search space. 

 

The method used to evaluate a solution, given a permutation of polygons, is the 

method described in the previous chapter (section 4.3). 

 

5.3 Test Data 
Two test problems were used in this part of the research. The packing shown in 

figure 5.1 is from (Christofides, 1977), see appendix B and C for the problem 

definition. The reason that this data was chosen is because it consists of convex 

polygons and the optimum is known. The only change made is to multiply the 

measurements in the original paper by a factor of two. This assists us when 

displaying results. 

Our algorithms will not be able to find the optimum. The first two rows (A, B, C 

and D, E, F) can be constructed without problems. However, to find the optimum 

for the third row, the polygons would need to be presented in the order of G, H, I, 

J, K, L and M. The optimal solution could be built until the last polygon (M) came 

to be placed. At this time, due to the convex nature of the large polygon that had 

been built, the final polygon will not be placed in the position shown. In fact, the 

final polygon would be placed on a new row. Under these circumstances the total 

bin height would be 188 (as opposed to the optimal height of 140). 
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Therefore, using the permutation ABCDEFGHIJKLM produces a bin height of 

188. We will never achieve a bin height of 140, due to the convex nature of the 

problem. However, bin heights below 180 indicate good quality, convex solutions 

which were maybe not immediately obvious. 

The second problem (figure 5.2) is taken from the real world. The objective is to 

cut polycarbonate shapes from larger stock sheets. In reality, the company 

receiving the orders has to cut many shapes from many stocks sheets whilst 

minimising the waste. The solution shown (figure 5.2) represents one stock sheet 

on a given day. However, it is a worthwhile exercise to see how our algorithm 

packs these shapes. Similar to the first problem, it is constrained by the convex 

properties of the algorithm. For example, the bottom four shapes cannot be packed 

in the way they are shown as once three of the shapes have been packed, the fourth 

shape cannot be placed in the position shown. The same is true for the four shapes 

above (excluding the rectangle). 
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 Figure 5.1 – Test Data 1 
 

 

 

 

 

 

 

 

 

 

 Figure 5.2 – Test Data 2 
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The height of the stock sheet is 23940 units. Its width is 6240 units. Due to the 

convex properties of the algorithm it is not possible to achieve this solution but our 

main concern is to see if using evolutionary and meta-heuristics algorithms 

coupled with the no fit polygon does produce good quality solutions. 

All the results are averaged over ten runs. The number of evaluations performed 

were equivalent in all cases (SA, TS and GA). This leads to runs of approximately 

the same time (about 300 seconds on a Cyrix 166 processor) so that the results are 

compared fairly. 

 

5.4 Parameter Selection for Search Methods 
Selecting the most suitable neighbourhood operators and parameters for a meta-

heuristic or evolutionary algorithm is a difficult task. There is little theoretical 

work published in this area and it is still more of an art than a science. 

 

5.4.1 Simulated Annealing 

To find suitable values for the simulated annealing cooling schedule the ideas 

outlined in section 2.3.2 of this thesis were used. 

Several neighbourhood functions have been implemented to allow us to explore 

the search space 

 

Collect : Randomly selects a polygon and then scans through the remaining 

polygons and moves all polygons of the same type so that they are next to each 
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other. The idea behind this function is that polygons of the same type will fit well 

together when packed. 

 

NextDoor  : Picks a polygon at random and swaps it with its next door 

neighbour. The motivation behind this function is to make small changes in the 

neighborhood in the hope that the search space will be systematically explored, 

leading to a good quality solution. 

 

Random : Selects two polygons at random and swaps them. 

 

For both problems a number of experiments were conducted, in the first instance 

to show that simulated annealing performs better than hill climbing. Therefore, the 

following experiments were run. 

• A hill climbing algorithm. 

• A simulated annealing algorithm using a linear cooling schedule of {i, 0, 

NewTemperature = OldTemperature – n, iter} 

• A simulated annealing algorithm using a geometric cooling schedule of {i, 0, 

NewTemperature = OldTemperature * 0.9, iter} 

• The neighbourhood functions described above were tested. 

• The cost function described in 5.2 was used, along with a cost function that 

simply attempts to minimise the bin height. Where the cost function from 5.2 

is used, the bin height is still shown in the results as it is an important measure 

of the quality of the solution. 
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Initially, the Random and NextDoor neighbourhood functions were tested against 

one another. The first set of test data and the modified Falkenauer cost function 

were used and the following results were obtained (table 5.1). 

 

Function Evaluation Bin Height 
Random 655.21 188.10 
NextDoor 772.76 193.00 

 

Table 5.1 – Random vs NextDoor Neighbourhood 
 

Based on this result the Random neighbourhood function was used in preference to 

the NextDoor function. 

A further test, comparing hill climbing against simulated annealing, was also run. 

A very slow linear cooling schedule, {990, 0, temp = temp –15, 250}, and a hill 

climbing algorithm were run for the same number of iterations (16750) (and thus 

the same amount of time). This initial test was run on the second set of test data 

using the modified cost function of Falkenauer. The results were as follows. 

 

Method Evaluation Bin Height 
Simulated Annealing 1385.06 30312.40 
Hill Climbing 1489.74 31605.60 

 

Table 5.2 – Hill Climbing vs Simulated Annealing 
 

This gave an initial indication that simulated annealing out performs hill climbing, 

although further results are presented below. 

Following these tests the separate problems were considered. Table 5.3 shows the 

results when the first set of test data was used. As well as comparing hill climbing 
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against simulated annealing, comparisons are also being made against a linear and 

geometric cooling schedule, the two evaluation functions and two of the 

neighbourhood functions. 

 

Search 
Algorithm 

Neighbour 
Function 

Cost Function Cooling Schedule Eval Bin 
Height 

Time 
(Secs) 

SA Random Modified 
Falkenauer 

{40,0,t=t–1,50} 643.95 188.40 297 

SA Random Bin Height {40,0,t=t–1,50}  191.60 298 
SA Random Modified 

Falkenauer 
{40,0,t=t* 0.9,50} 705.70 189.20 643 

HC Random Modified 
Falkenauer 

 752.64 196.40 300 

       
SA Collect Modified 

Falkenauer 
{40,0,t=t–1,50} 397.01 170.80 220 

SA Collect Bin Height {40,0,t=t–1,50}  169.07 221 
SA Collect Modified 

Falkenauer 
{40,0,t=t* 0.9,50} 390.05 168.13 431 

HC Collect Modified 
Falkenauer 

 457.93 173.07 223 

 

Table 5.3 – Hill Climbing vs Simulated Annealing over a variety of 
parameters 

 

From these results the following observations can be made 

• In a similar manner to the earlier tests, simulated annealing performs better 

than hill climbing. 

• Using a geometric cooling schedule does lead to slightly better solutions but 

this is at the expense of run times that are about twice as long. 

• The modified falkenauer cost function produces better solutions than using the 

bin height cost function although the difference is not as much as had been 

expected. 
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• The most significant result is that using the collect neighbourhood function 

produces better quality solutions than the random neighbourhood function, 

with reduced run times. 

In conclusion we can say that the best quality results use the collect 

neighbourhood function and use simulated annealing with a cost function based on 

Falkenaur’s. In addition, a linear cooling schedule can be used in order to produce 

faster results than a geometric cooling schedule. 

Figure 5.3 shows three of the best solutions found. The first figure shows a bin 

height of 158. The other two figures have a bin height of 162. 

 

 

 

 

 

 

 

Figure 5.3 – Best Solutions Found (SA) 
 

For the second set of test data it was not possible to use the collect neighbourhood 

function as all the polygons have different dimensions (some may look the same 

but they are, in fact, all different). Therefore, the random operator was used. The 

results produced are shown in table 5.4. 

The best quality solutions were found using simulated annealing with a geometric 

cooling schedule but at the expense of a run time almost four times that of the 
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other methods. All simulated annealing algorithms again performed better than hill 

climbing but this time using the bin height cost function performed better than the 

modified falkenauer cost function. 

 

Search 
Algorithm 

Neighbour 
Function 

Cost 
Function 

Cooling Schedule Eval Bin 
Height 

Time 
(Secs) 

SA Random Modified 
Falkenauer 

{1000,0,t=t–25,50} 1661.77 33052.20 314 

SA Random Bin Height {1000,0,t=t–25,50}  31799.20 320 
SA Random Modified 

Falkenauer 
{1000,0,t=t*0.9,50} 1520.58 30999.60 1101 

HC Random Modified 
Falkenauer 

 1683.53 33532.80 330 

 

Table 5.4 – Results using Test Data 2 
 

5.4.2 Tabu Search 

In Tabu Search (TS) the neighbourhood function has been implemented as a swap 

of two random polygons to give a new permutation. Experiments were conducted 

with various neighbourhood sizes and a value of twenty gave good results. 

The data stored in the tabu list can have an effect on the search. We tested two 

different methods. Initially just the polygon identifier was stored, which 

effectively stopped that polygon being moved again until it was removed from the 

tabu list. This did not perform very well as it restricts the search too much. This is 

borne out by the fact that the tabu list can, at maximum, store number_of_polygons 

entries, which constrains the search too much. 

Another option is to hold the complete solution in the tabu list. It was found that 

this increased the run time of the algorithm (due to checking if a move is tabu) but 

we could achieve equally good results by making moves tabu based on the first n 
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polygons in a solution. We achieved the results presented below with n=3. That is, 

if the first three polygons are the same then a move to that state is tabu. 

The results achieved on both sets of test data are shown in table 5.5. 

 

Test Data 1    
 Tabu List 

Size 
Evaluation Bin Height 

 0 368.03 171.40 
 25 342.69 169.00 
 50 323.77 165.80 
 75 386.68 172.20 
 100 386.91 171.00 
Test Data 2    
 0 1089.89 28228.50 
 25 1101.31 28362.60 
 50 1006.75 27566.40 
 75 1066.30 28142.40 
 100 1200.09 28856.40 

 

Table 5.5 – Tabu Search Test Results 
 

5.4.3 Genetic Algorithms 

For this research the PMX crossover operator (Goldberg, 1989) has been 

employed. Other operators were tested but it was found that PMX gave the best 

results. This is not surprising as PMX is designed for ordering problems. As this 

problem relies on the ordering of the polygons it falls into this category. 

The mutation operator is applied to a single chromosome. It is applied to each 

child with some (low) probability and aims to stop the population converging to a 

single solution by adding diversity to the population. We have tested two types of 

mutation which we call heavy and light mutation. Heavy mutation is applied to a 

child solution. A gene is picked at random and is swapped with another randomly 

selected gene, from the same chromosome. This is done as many times as there are 
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genes in the chromosome. Light mutation carries out the same random swap but 

only does a single exchange. 

As an initial test for the GA the crossover probability was set to 0.0 and the 

mutation probability to 1.00. This effectively turns the GA into a random search 

and the result can be used to check that the GA was actually directing the search. 

Two normalization methods were tested. Evaluation is Fitness makes the fitness of 

each chromosome the same as the value returned from the evaluation function. 

Linear Normalization adjusts the fitness of each individual so that the fitness is 

related to its evaluation but the fitness values are linear throughout the population. 

Using linear evaluation with roulette wheel selection ensures that the fitter 

members of the population do not dominate, leading to premature convergence. 

Better results were achieved with linear normalization. 

The two types of mutation described above were tested. Various values for the 

crossover and mutation probability were tried. It was found that values of 0.8 and 

0.1 gave the best results. A dynamic mutation probability was also tested, varying 

the mutation value between 0.0 and 0.5 during the course of the run. This was 

found to produce similar results, but no better, than a static value of 0.1. 

The results achieved for the genetic algorithm are shown in table 5.6. 
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Test Data 1       

 Normalization 
Method 

Crossover 
Probability 

Mutation 
Probability 

Mutation 
Type 

Eval Bin Height 

 Eval is Fitness 0.8 0.1 Heavy 684.41 192.60 
 Eval is Fitness 0.8 0.1 Light 700.10 190.40 
 Linear 0.8 0.1 Heavy 610.43 185.20 
 Linear 0.8 0.1 Light 516.41 179.00 
Test Data 2       
 N/A 0.0 1.0 Heavy 1655.78 32972.40 
 Eval is Fitness 0.8 0.1 Heavy 1727.51 32695.50 
 Eval is Fitness 0.8 0.1 Light 1607.38 32799.30 
 Linear 0.8 0.1 Heavy 1528.06 31353.00 
 Linear 0.8 0.1 Light 1377.99 30478.50 

 

Table 5.6 – Genetic Algorithm Test Results 
 

5.5 Testing, Results and Comparisons  
5.5.2 Results 

From the above results, we can make the following observations. 

Of the three methods (SA, TS, GA), GA performed the worst, although a linear 

normalization function and light mutation produces the best results on both sets of 

test data. 

Tabu search produced better results than simulated annealing for both sets of test 

data. 

The size of the tabu list does not need to be large. Once the list gets too large the 

quality of the solution starts to deteriorate. We believe this is because the search 

becomes too constrained. Intuitively, the size of the tabu list should be less than 

the number of iterations otherwise the search can never visit previously visited 

states. These results back up that view. 

Two of the better solutions we found when using tabu search against test data 1 are 

presented in figure 5.4. The nesting on the left has a bin height of 158. The right 
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hand figure has a bin height of 162. Figure 5.5 is a sample solution, using tabu 

search on test data 2. This nesting has a bin height of 26430 

 

 

 

 

 

Figure 5.4 – Sample Solutions (Test Data 1) 
 

 

 

 

 

 

 Figure 5.5 – Sample Solution (Test Data 2) 
 

A summary of all the results are shown in table 5.7. 

 Test Data 1 Test Data 2 
Tabu Search 323.77 1006.75 
Simulated Annealing 397.01 1661.77 
Hill Climbing 457.93 1683.53 
Genetic Algorithm 516.41 1528.06 

 

Table 5.7 – Summary of Results 
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5.6 Conclusions 
In this chapter, several search algorithms have been tested in order to produce 

good quality solutions to a nesting problem. The problems use convex shapes and, 

in addition, any polygons that are created during the algorithm are also convex as 

it is transformed using a convex hull algorithm. 

At this stage of the work we are still working with convex shapes as we are still 

trying to ascertain if the search methods being used are effective. It was thought 

beneficial to use convex polygons in the first instance as the algorithm for the no 

fit polygon is well known for these polygons and it is relatively efficient. In 

chapters 7 and 8 of this thesis non-convex problems are considered.  

 
 
 GA TS SA 
 Best Avg Best Avg Best Avg 
50 Rectangles 22053 22149 20024 20099 20047 20089 
100 Rectangles 79586 80356 75269 75949 73845 74003 

Table 5.8 – Results from Simplified Problem (copy of table 3.1) 
 

In chapter 3 (the results of which are re-produced in table 5.8), it was noted that 

tabu search and simulated annealing performed similarly with respect to the 

quality of solutions that were produced. It was noticeable that genetic algorithms 

did not perform well. The results in table 5.7 confirm these earlier findings in that 

genetic algorithms, again, failed to perform as well as tabu search and simulated 

annealing. In fact, genetic algorithms failed to do better than hill climbing on one 

of the problems. From this, I do not think that we can conclude that genetic 
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algorithms are not an effective search technique but, I feel, it highlights the 

problems in trying to find effective parameters for a given search technique. In 

chapter 3 (see section 3.4.2) we carried out 24 genetic algorithm tests, trying to 

find a good combination of parameters and, even then, only a small subset of the 

total number of permutation of parameters were tested. I believe this highlights 

one of the greatest problems facing designers of meta-heuristic and evolutionary 

algorithms today; that is finding a suitable parameter set for a given problem (or 

even a particular instance of a problem). 

This is further demonstrated in that for these problems tabu search is able to out 

perform simulated annealing (see table 5.7). The problem with simulated 

annealing, like genetic algortithms, is that a suitable cooling schedule has to be 

selected. As mentioned previously this is still an art more than a science. 

Tabu search benefits from the fact that there are very few parameters and, this 

works suggests that the parameter values are not too critical to the success of the 

algorithm in finding good quality solutions. 

 

In the next chapter a new search technique is explored (ant algorithms). It will be 

interesting to see how this algorithm compares to those studied so far as it has a 

number of parameters that have to be set. In fact, like chapter 3 and genetic 

algorithms, we will be forced to carry out a number of experiments to find suitable 

values for those parameters. 
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“Ants pass on food to one another by ‘kissing’. During the kiss, they also pass on 
messages which tell them what job to do” Small World: Ants 

 
 

6. Applying Ant and Memetic Algorithms with 
the No Fit Polygon to the Nesting Problem 

 

6.1 Introduction 
In this chapter ant algorithms are investigated and the results compared against the 

results from chapter 5. In addition, memetic algorithms are also compared against 

the results from the previous chapter and also those acquired using ant algorithms. 

The evaluation method used for the work in this chapter is exactly the same as that 

from the previous chapter, as are the two sets of test data. 

Ant algorithms have already been introduced in chapter 2 (section 2.3). Therefore, 

this chapter starts by considering how ant algorithms can be adapted so that they 

can be used to solve the nesting problem using the approach adopted for other 

search algorithms, and described in the previous chapter. 

 

6.2 Ant Algorithms and the Nesting Problem 
Using the Travelling Salesman Problem (TSP) ant system as a model (see chapter 

2, section 2.2.3), an ant system has been developed for the nesting problem using 

Chapter 6 
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the no fit polygon and the evaluation method described in the previous chapter 

(section 5.2). Each polygon can be viewed as a city in the TSP and these are fully 

connected so that there is an edge between each polygon and every other one. An 

ant is placed at each city (polygon) and using the trail and visibility values 

(formulae 2.6, from chapter 2) the ant decides which polygon should be visited 

(placed) next. Once an ant has placed all the polygons the edge trail values are 

updated. The edge trail values are calculated using the value returned from 

evaluating the nesting. This is equivalent to using the tour length in the TSP (Lk in 

formula 2.5, from chapter 2). 

Using the method described above we can use very similar formulae to those 

described in chapter 2 (formulae 2.3 and 2.4), with some minor amendments. 

Visibility is now defined as how the polygon, just placed, fits with the piece about 

to be placed. For example, two rectangles of the same dimensions would fit 

together with no waste so the visibility would be high. Two irregular shapes, when 

placed together, may result in high wastage. This would result in a low visibility 

value. In order to calculate the visibility, nij (where i is the polygon just placed and 

and j is the polygon just about to be placed), the combined area of the two pieces is 

divided by the best placement of the two shapes (using the NFP). That is  

 

 nij = TotalAreaij / BestPlacementij  (5.1) 

 

(Note, in order to maintain consistency in the literature we are using similar 

notation to Dorigo and thus we use nij, rather than, say visibij). 
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This returns a value between 0 and 1. In order to improve the speed of the 

algorithm all the visibility values are calculated at the start of the algorithm and 

held in a cache. The transition probability is defined as the probability of a 

polygon being placed next taking into account the polygons placed so far and the 

visibility of the next polygon. The same formula as 2.6 from chapter 2, can be used 

to calculate the transition probability. 

 

6.3 Memetic Algorithms 
A memetic algorithm can be considered to be a population based approach that 

incorporates a local search element. Each time a member of the population 

changes (after crossover or mutation in the case of a genetic algorithm and after a 

tour in the case of the ant algorithm) a local search is applied. We have used both 

genetic algorithms and ant algorithms as the main search mechanism and have 

tried other search methods (such as tabu search, hill climbing etc.) as a local search 

operator. It was found that a simple hill climbing search produces the best results. 

Other search operators produced inferior results and took longer to run. With tabu 

search, for example, the overheads in maintaining the tabu list, combined with the 

additional problems introduced in having to select suitable parameters (list size, 

neighbourhood size etc.), meant that the results were inferior to using hill 

climbing. 
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6.4 Testing and Results 
6.4.1 Ant Algorithm Parameters 

Initially we attempted to find suitable values for the parameters that control the ant 

algorithm. In order to find suitable values we carried out several hundred runs 

simply setting the parameter values at random. We used these results, along with 

the best parameters found by (Dorigo, 1996), to conduct more selective testing. 

Dorigo reported that the value of Q (the constant in formula 2.3) had little effect 

on the algorithm. We experimented with various values, {1, 10, 100, 1000}, and 

reached a similar conclusion. Therefore in the remainder of our tests Q = 100. In 

order to find a good value for the evaporation parameter, p, it was set to the values 

{0.1, 0.5, 0.9}, using a trail importance, α = 1 and a visibility importance, β, of {0, 

1, 2, …, 30}. These tests were carried out on test data 1. The results from these 

tests are shown in figure 6.1. 

 

 

Figure 6.1 – Test Data 1, α = 1, p = {0.1, 0.5, 0.9}, β = {0, 1, …, 30} 
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Figure 6.2 – Test Data 1, α = 5, p = 0.5, β = {0, 1, …, 20} 
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is due to the effect of the intensity trail becoming diminished. Taking p = 0.5 as a 
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agrees with this a test was carried that set p = 0.5, α = 5 and β = {0, 1, …, 20}. 

Figure 6.2 shows that this set of parameters produces worse results than when α = 

1. None of the tests produce an evaluation below 600, which was consistently done 

when α = 1 (figure 6.1) 

 

 

 

 

 

 

 

Figure 6.3 – Test Data 2, α = 1, p = {0.1, 0.5}, β = {0, 1, …, 30} 
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Figure 6.4 – Test Data 2, α = {1, 5}, p = 0.5, β = {0, 1, …, 30} 
 

Figure 6.4 shows the effect of trail importance, α = {1, 5} using test data 2. It 

shows that a higher value of α leads to inferior solutions. Again, this confirms the 

results from the first set of test data. In summary, the best results were achieved on 

both sets of test data when α = 1, p = 0.5, β = 20. 

6.4.2 Results 

In the previous chapter, results were presented for the various search algorithms 

when applied to the above problems. Table 6.1 shows modified results using the 

same test data and the same search algorithms. These modified tests were carried 

out for the following reasons. 

• Some of the results below have had the parameters amended from the previous 

work in order to improve the results even further. 

• By necessity, the previous work was carried out over several months and on 

different computers. Although we tried to take this into account during this 
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time it was felt beneficial to run all the algorithms on the same computer in 

order to guarantee that the results could be fairly compared, when presented 

together. 

• Running the algorithms on the same computer also gave the opportunity to 

ensure that the algorithms all ran for a similar amount of time. This is not 

always easy due to the stochastic element of the algorithms, but this was 

generally achieved. 

It is worth noting that the algorithms performed similarly, relative to one another, 

for both sets of test data (only simulated annealing and hill climbing differ). It is 

also interesting, and encouraging, that the ant algorithm out performs the other 

population based approach (genetic algorithm). 

 Test Data 1 Test Data 2 
Tabu Search 326.97 1056.96 
Ant Algorithm 371.67 1188.60 
Simulated Annealing 513.33 1269.63 
Hill Climbing 506.47 1364.77 
Genetic Algorithm 615.57 1412.82 

 

Table 6.1 – Summary of Results 
The parameters used for each algorithm are shown in table 6.2. 

Algorithm Test Data 1 Test Data 2 
Tabu Search Iterations = 400, List Size = 100, 

Neighbourhood Size = 20 
Same as test data 1 

Ant Algorithm Iterations = 615, Trail = 1, Visibility 
= 20, Evaporation = 0.5, Q = 100 

Same as test data 1 

Simulated Annealing Start = 200, Stop – 0, Decrement = 
0.5, Iterations = 66 

Start = 1000, Stop – 0, Decrement = 
10, Iterations = 80 

Hill Climbing Iterations = 8000, Neighbourhood 
Size = 1 

Iterations = 400, Neighbourhood 
Size = 20 

Genetic Algorithm Population Size = 30, Iterations = 
640 

Same as test data 1 

 

Table 6.2 – Algorithm Parameters 
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Table 6.3 and 6.4 shows the results from the memetic algorithm experiments. A 

number of runs were carried out, in order to find the best combination of 

parameters. 

 

Main Search 
Method 

 
Main Search Parameters 

 
Hill Climbing Parameters 

 
Eval 

AA Iterations = 70 Iterations = 3, Neighbourhood Size = 3 283.07 
GA Pop Size = 50, Generations = 40 Iterations = 1, Neighbourhood Size = 5 293.65 
AA Iterations = 25 Iterations = 5, Neighbourhood Size = 5 309.81 
GA Pop Size = 20, Generations = 10 Iterations = 10, Neighbourhood Size = 5 358.35 
AA Iterations = 13 Iterations = 17, Neighbourhood Size = 3 389.24 
GA Pop Size = 50, Generations = 40 Iterations = 5, Neighbourhood Size = 1 397.27 
GA Pop Size = 20, Generations = 20 Iterations = 5, Neighbourhood Size = 5 407.18 
AA Iterations = 13 Iterations = 10, Neighbourhood Size = 5 407.32 
GA Pop Size = 30, Generations = 20 Iterations = 15, Neighbourhood Size = 1 449.73 
GA Pop Size = 20, Generations = 10 Iterations = 50, Neighbourhood Size = 1 482.31 
GA Pop Size = 20, Generations = 20 Iterations = 25, Neighbourhood Size = 1 487.09 

 

Table 6.3 - Memetic Algorithm for Test Data 1 
 

 

 

Main Search 
Method 

 
Main Search Parameters 

 
Hill Climbing Parameters 

 
Eval 

GA Pop Size = 20, Generations = 20 Iterations = 5, Neighbourhood Size = 5 890.51 
GA Pop Size = 20, Generations = 10 Iterations = 10, Neighbourhood Size = 5 981.95 
GA Pop Size = 50, Generations = 40 Iterations = 1, Neighbourhood Size = 5 994.46 
AA Iterations = 13 Iterations = 10, Neighbourhood Size = 5 1014.83 
AA Iterations = 70 Iterations = 3, Neighbourhood Size = 3 1116.65 
AA Iterations = 13 Iterations = 17, Neighbourhood Size = 3 1157.31 
AA Iterations = 25 Iterations = 5, Neighbourhood Size = 5 1158.31 
GA Pop Size = 50, Generations = 40 Iterations = 5, Neighbourhood Size = 1 1178.24 
GA Pop Size = 20, Generations = 20 Iterations = 25, Neighbourhood Size = 1 1196.74 
GA Pop Size = 30, Generations = 20 Iterations = 15, Neighbourhood Size = 1 1221.18 
GA Pop Size = 20, Generations = 10 Iterations = 50, Neighbourhood Size = 1 1369.72 

 

Table 6.4 - Memetic Algorithm for Test Data 2 
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Although the parameters that lead to the best results are not identical for both sets 

of test data, it is the case that using a neighbourhood size of one, within the local 

search, does lead to inferior results. This suggests that the local search hill climber 

should be some form of steepest ascent. 

 

6.5 Conclusions and Discussion 
This is the first time that ant algorithms have been applied to the nesting problem 

and the results are encouraging. Ant algorithms out perform genetic algorithms 

and provide a viable alternative to simulated annealing, although more work is 

required for it to compete with tabu search. 

 

By comparing the results from table 6.3 and table 6.4 with table 6.1 it can be seen 

that the memetic algorithm, for both sets of test data, produced better results than 

had been achieved using the other algorithms in isolation. This might be surprising 

as we are combining two search methods (genetic algorithms and hill climbing) 

that, on their own, do not produce good results. Yet, when they are combined, the 

results are superior to any single search method. Looking more closely at the 

results in tables 6.3 and 6.4 shows that, although using a genetic algorithm as the 

main search method dominates the top of table 6.4 it is ant algorithms that appears 

at the top of table 6.3. This suggests that, to a certain extent, it is not important 

which evolutionary search method is used. It is the combination of a population 

based approach combined with a local search that is leading to good quality 

solutions. 
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This observation is further enhanced by the fact that the local search method (hill 

climbing) does not perform well on its own but when it is allowed to take a given 

solution to a local optimum it greatly assists the search process. 

 

In the next chapter an algorithm is developed to allow the no fit polygon for non-

convex polygons to be calculated. In chapter 8 we are then able to compare the 

search algorithms using non-convex polygons and judge if the observations we 

have made so far still hold true. 
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“There is no royal road to geometry.” Euclid(said to Ptolemy I), quoted in 
Proclus, Commentary on Euclid 

 

7. Determining the No Fit Polygon for Non-
Convex Polygons and Combining Non-Convex 

Polygons 
 

7.1 Introduction 
The No Fit Polygon (NFP) is a method to find all the possible arrangements of one 

polygon, in relation to another, so that the two polygons touch but do not intersect. 

Once the NFP has been calculated for the given polygons, a reference point from 

one of the polygons can be placed on any edge or vertex of the NFP in the 

knowledge that the polygon will touch but not intersect the other polygon. The 

NFP can be applied to areas such as robot motion planning (where it is often 

referred to as the Configuration Space Obstacle (CSO)). It can also be applied to 

cutting and packing problems as has been shown in the previous chapters for 

convex polygons. 

It is relatively easy to determine the NFP for convex polygons (see 7.2), using the 

algorithm presented in (Cunninghame-Green, 1992). 

Chapter 7 
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However, the Cunninghame-Green algorithm is only applicable to convex 

polygons and the construction of algorithms that determine no fit polygons for 

non-convex polygons is still very much an active research area. For example, 

(Bennell, 2001) has recently presented a revised algorithm based on the concept of 

Minkowski sums. Although the methods to determine the NFP are well known the 

implementation is delicate due to the number of degenerate cases that can occur. 

In this chapter, an algorithm is developed that enables us to calculate the NFP for 

non-convex polygons. The work is based on previous work which uses D-

Functions to define a set of primitive operations. We develop the use of D-

Functions so that vertex intersection can be reported correctly and we also develop 

the no fit polygon algorithm so that it caters for degenerate cases. The algorithm 

has been tested on a variety of cases and, so far, it has been found to be robust. 

Finally, we show, using D-Functions again, how two polygons can be combined to 

form a single polygon. 

 

7.2 The No Fit Polygon – In Outline 
The No Fit Polygon (NFP) determines all arrangements that two arbitrary 

polygons may assume such that the shapes touch but so that they cannot be moved 

closer together without intersection. The example below shows how to calculate 

the NFP for two polygons. 

Consider the two polygons in figure 7.1. The aim is to find all arrangements such 

that the two polygons touch but do not intersect. If this can be achieved then we 

know that we cannot move the polygons closer together in order to obtain a tighter 
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packing. A description of how to calculate the NFP for convex polygons was 

shown in section 4.2. 

In order to implement an NFP algorithm for convex polygons it is not necessary to 

have one polygon orbiting another. The algorithm in (Cunninghame-Green, 1992) 

works on the assumption that (for convex polygons only) the NFP has its number 

of edges equal to the number of edges of P1 and P2. In addition, the edges of the 

NFP are simply copies of the edges of P1 and P2, suitably ordered. To build the 

NFP it is a matter of taking the edges of P1 and P2, sorting them and building the 

NFP using the ordered edges. This algorithm is also presented in (Cunninghame-

Green, 1989), although here it is presented as a Configuration Space Obstacle 

(CSO). 

Calculating the NFP for non-convex polygons is more difficult. The idea is the 

same in that one polygon orbits another, tracing a reference point. However, due to 

the conditions that can arise, the algorithm is more complex and has to deal with a 

number of degenerate cases. A full description of these issues and their resolution 

is given later in the chapter. For now, we simply show an example of an NFP for 

non-convex polygons and describe one of the cases that have to be dealt with, 

which does not arise in convex polygons. Consider the two polygons shown in 

figure 7.1a 
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 a b c d e 

Figure 7.1 – Calculating the NFP for Non-Convex Polygons 
 

The top polygon is to be the stationery polygon and the bottom polygon will orbit 

it, tracing its reference point (the filled circle) as it does so. Figure 7.1a shows the 

initial position. Figure 7.1b shows the state after the orbiting polygon has made its 

first move. Figure 7.1c shows the state after the next move. Notice that the orbiting 

polygon cannot slide the full distance else it would pierce the stationery polygon. 

Therefore, it has to stop prematurely and change direction (7.1d). If the orbiting 

polygon is allowed to continue the NFP polygon is constructed as shown in figure 

7.1e. Notice that the NFP edges are no longer simply copies of the edges from the 

two polygons that formed the NFP. In addition, it is no longer the case that the 

number of edges are equal to sum of the number of the edges from the original 

polygons. Additional problems will be described as the algorithm is presented. 

 

7.3 D-Functions 
In order to build higher level operations that we can apply to polygons it is 

beneficial to define low level primitives. For example, it is useful to be able to 

detect if points are co-linear, if lines intersect or if lines overlap. The literature 

provides many ways to implement such primitives. For example, in (O’Rourke, 
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1998) a LeftOn predicate is defined which can be used to decide if a given point is 

to the left of a directed line. This predicate can be developed to decide if the point 

is to the right of the line or if the point is co-linear with the line. O’Rourke 

develops the LeftOn primitive further so that line segment intersection can be 

detected. An alternative set of primitives is defined in (Mahadevan, 1984). These 

give a larger range of primitives which can be directly applied to the NFP 

algorithm and so, are employed in this work. 

 

D-Functions are defined in (Mahadevan, 1984) but we repeat the main information 

here as they perform a central role in the remainder of the algorithm. 

 

 

 

 

 

Figure 7.2 – Distance of Point from a Line 
 

Given a vector, AB, and a point, P, the distance, d, from AB to P (see figure 7.2) is 

calculated as follows 
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where 

XN and YN are the x and y co-ordinates for point N and α is the length of AB, and is 

defined as 

 

 
22 )()( BABA YYXX −+−=α

 (7.2) 

 

Given a vector, AB, and point, P, a D-Function can be defined as DABP = sign[dα] 

or 

 

 DABP = sign[(XA - XB) (YA - YP) – (YA - YB) (XA - XP)] (7.3) 

 

where sign is used to return a value of +1, -1 or 0, depending on whether the result 

is positive, negative or equal to zero. 

Using D-Functions we can determine the position of P in relation to AB as follows 

(figure 7.3) 
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If DABP = 0 then P is either on vector AB or on an extended line segment of AB (or 

BA). 

If DABP > 0 then P is to the left of AB. 

If DABP < 0 then P is to the right of AB. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.3 – Using D-Functions to determine the relationship between 
AB and P 

 

D-Functions can be further developed to define the relationship between two lines. 

Note, that the definitions given here differ slightly from those in (Mahadevan, 

1984). These are the minimum conditions that must hold. Mahadevan presents the 
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conditions in such a way that they mirror the algorithm given in his thesis. Figures 

7.4a through to 7.4i show these conditions graphically and also describes them 

using D-Functions. 

 

AB intersects UV if 
U is to the left (right) of AB (DABU ≠ 0) 
V is to the right (left) of AB (DABV ≠ 0) 
A is to the right (left) of UV (DUVA ≠ 0) 
B is to the left (right) of UV (DUVB ≠ 0) 
A and B must be on opposite sides of UV (DUVA ≠ DUVB) 

 
Figure 7.4a – AB intersects UV 

 
 

 
B touches UV if 
B must be linear with UV (DUVB = 0) 
U cannot be linear with AB (else U would be touching B) (DABU ≠ 0) 
V cannot be linear with AB (else V would be touching B) (DABV ≠ 0) 
U and V must be on opposite sides of AB (DABV ≠ DABU) 
 
 
 

 
Figure 7.4b – B touches UV 

 
A touches UV if 
A must be linear with UV (DUVA = 0) 
U cannot be linear with AB (else U would be touching A) (DABU ≠ 
0) 
V cannot be linear with AB (else V would be touching A) (DABV ≠ 
0) 
U and V must be on opposite sides of AB (DABV ≠ DABU) 
 

 
 
Figure 7.4c – A touches UV 
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U touches AB if 
U must be linear with AB (DABU = 0) 
A cannot be linear with UV (else A would be touching U) (DUVA 
≠ 0) 
B cannot be linear with UV (else B would be touching U) (DUVB ≠ 
0) 
A and B must be on opposite sides of UV (DUVA ≠ DUVB) 

 
Figure 7.4d – U touches AB 
 
 
 
 
 

 
V touches AB if 
V must be linear with AB (DABV = 0) 
A cannot be linear with UV (else A would be touching V) (DUVA ≠ 0) 
B cannot be linear with UV (else B would be touching V) (DUVB ≠ 0) 
A and B must be on opposite sides of UV (DUVA ≠ DUVB) 

 
Figure 7.4e – V touches AB 
 
 

 
B and V touch if 
V must be linear with AB (DABV = 0) 
B must be linear with UV (DUVB = 0) 
U must not be linear with AB (DABU ≠ 0) 
 
 
 
 
 

 
Figure 7.4f – B and V touch 
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A and V touch if 
V must be linear with AB (DABV = 0) 
A must be linear with UV (DUVA = 0) 
U must not be linear with AB (DABU ≠ 0) 
 
 
 
 
 
 

Figure 7.4g – A and V touch 
 
 

 
B and U touch if 
U must be linear with AB (DABU = 0) 
B must be linear with UV (DUVB = 0) 
V must not be linear with AB (DABV ≠ 0) 
 
 
 
 
 
 

Figure 7.4h – B and U touch 
 
 
 

 
 
A and U touch if 
U must be linear with AB (DABU = 0) 
A must be linear with UV (DUVA = 0) 
V must not be linear with AB (DABV ≠ 0) 
 
 
 
 
 
 

Figure 7.4i – A and U touch 
 

It is also useful to be able to detect if AB and UV overlap. This is a special 

condition where AB and UV are co-linear (DABU = 0 and DABV = 0). When this 
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conditions exists it indicates that either AB/UV do not intersect, AB/UV are 

touching (but still co-linear) or AB, UV overlap. These conditions are shown 

below (see figures 7.4j to 7.4l). 

 

 
 
AB and UV do not overlap or intersect but are co-
linear 

 
 
 
 
 
 

 
 
 
Figure 7.4j – AB  and UV do not overlap or intersect but are co-linear 
 

 
AB and UV touch and are co-linear 

 
 
 
 
 
 
 

 
Figure 7.4k – AB and UV touch and are co-linear 
 
 

 
AB and UV overlap 

 
 
 
 
 

 

 
Figure 7.4l – AB and UV overlap 
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Any other conditions, other than those described above mean that that AB, UV do 

not intersect. 

 

The algorithms that implement D-Functions for the conditions shown in figure 7.4 

are shown in (Mahadevan, 1984). 

 

7.4 Checking for Intersection 
When constructing the no fit polygon it is necessary to determine whether two 

polygons intersect (for reasons explained below). The usual description as to how 

this can be achieved is to check every edge on one polygon against every edge on 

the other polygon and, if any edges intersect, it means that the polygons intersect. 

This can be seen in figure 7.5a. 

 

 
 
 
 
 
 
 
 
 a b c 

Figure 7.5 – Checking for Intersection 
 

Mahadevan does not offer any additional advice in this area as the algorithm 

simply states “check for intersection.” However, implementing a simple ‘check 

line’ approach, does not work in all cases. Consider figure 7.5b. These polygons 
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obviously intersect yet none of their edges intersect as all the intersections are 

through vertices. It has been suggested that vertex intersections should be treated 

in the same way as edge intersections. Whilst this would resolve the problem in 

figure 7.5b, in that the polygons would be reported as intersecting, it would now 

incorrectly report that the polygons in figure 7.5c intersect, when in fact they do 

not (this depends on the definition of intersection – for our purposes, touching is 

not an intersection). Therefore, there is a requirement that reports intersection 

correctly, ideally using D-Functions so that the primitives already developed can 

be used. 

Analysis of the nature of intersections leads to the following observations. 

It is assumed that the vertices are ordered counter-clockwise and that the first 

vertex (zero) is the bottom right hand vertex. These indices are shown in figure 

7.5a but have been omitted from some of the other figures for reasons of clarity. 

In figure 7.5a, when checking edge(1,2) of P1 against edge(0,1) of P2 then 

intersection will be returned by the D-Function. 

 
 
 
 
 
 
 a b c 

Figure 7.6 – Nature of Intersections 
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Consider figure 7.6a, which is a simplified version of figure 7.5b. Assume that we 

are checking edge(1,2) of P1 against the edges of P2. When we compare edge(1,2) 

of P1 against edge(2,3) of P2 the D-Function will return “VtouchesAB” (assuming 

P1 takes on the edges AB and P2 takes on the edges UV). Simply using edge 

intersection as a means for determining polygon intersection, would return a result 

indicating that the polygons do not intersect. However, if the situation is analysed 

further it can be seen that vertex 3 of P2 is touching AB. The preceding, previous, 

vertex (2) is to the right of AB and the edge following it (0), next, is to the left. As 

the previous and next vertices are on different sides of line AB it indicates that the 

polygons intersect. If we apply this same principle to figure 7.5c the previous and 

next points will be on the same side of the line indicating that the polygons do not 

intersect; which is indeed the case. 

A further condition that can arise is where one (or both) of the points (either 

previous or next) is linear with the point that intersects AB. This situation will 

arise with the two shapes shown in figure 7.6b. If, for example, the rectangle is 

placed on top of the protruding part of the other polygon (figure 7.6c) then all 

intersections will be through vertices but when we apply D-functions to this 

configuration they will report linear conditions. Therefore, simply checking if 

previous and next are on opposite sides of the line is not enough to capture all 

intersecting cases. Further analysis leads to the following conditions, which check 

for intersection (see table 7.1). 
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previous Next  
Right Right NO Intersection 
Right Left Intersection 

Right Linear NO Intersection 
Left Right Intersection 

Left Left NO Intersection 
Left Linear Intersection 

Linear Right NO Intersection 
Linear Left Intersection 

Linear Linear NO Intersection 
 

Table 7.1 – Detecting Intersections 
 
This table can be realised into an implementation using the following algorithm. 
 
p1, p2 are polygons, represented by vertices in ccw order 
p1v, p2v is the number of vertices in p1 and p2 
D_fn_Analysis is a function that returns the relationship of two lines using D-
Functions 
All arithmetic on polygon vertices is assumed to be modular 
 
For i = 0 until i = p2v-1 
 For j = 0 until j = p1v-1 
  ContactType = D_fn_Analysis(p2[i], p2.[i + 1], p1.[j], p1.[j+1]] 
   switch(ContactType) 
    case intersect 
     return interection 
 
    case UtouchesAB 
     BeforeIdx = j-1 
     AfterIdx = j+1 
     If VtxI( p2.[i], p2.[i+1], p1.[BeforeIdx], p1.[AfterIdx]) 
      return intersection 
 
    case VtouchesAB 
     BeforeIdx = j 
     AfterIdx = j+2 
     If VtxI(p2.[i], p2.[i+1], p2.[BeforeIdx], p2.[AfterIdx] 
      return intersection 
 
    case AtouchesUV 
     BeforeIdx = i-1 
     AfterIdx = i+1 
     If VtxI(p1.[j], p1.[j+1], p2.[BeforeIdx], p2.[AfterIdx]) 
      return intersection 
 
    case BtouchesUV 
     BeforeIdx = i 
     AfterIdx = i+2 
     If VtxI(p1.[j], p1.[j+1], p2.[BeforeIdx], p2.[AfterIdx]) 
      return intersection 
 j = j+1 
i = i+1 
return no_interesct 
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The function VtxI (Vertex Intersection) is passed four points as parameters. The 

first two parameters represent a line. The third and fourth points are the previous 

and next points. They need to be checked against the line and whether the 

polygons intersect is dictated by referring to table 7.1. 

 

7.5 The No Fit Polygon – Modified Algorithm 
7.5.1 Introduction 

In 1984 Mahadevan (Mahadevan, 1984) described a method that calculates the no 

fit polygon (NFP) for two non-convex polygons. In implementing the algorithm 

some degenerate cases were found. In this section Mahadevan’s method will be 

described, followed by a description of the degenerate cases and how they have 

been overcome. 

Section 7.2 of this work described the orbiting principle that forms the basis of 

Mahadevan’s algorithm. That is, one polygon orbits another, and at each position 

the reference point is stored and these points eventually make up the vertices of the 

NFP. 

The starting position is given by taking the largest y-coordinate of the orbiting 

polygon and the smallest y-coordinate of the stationery polygon. The polygons are 

aligned on these vertices. In this position the polygons are guaranteed not to 

intersect. 

7.5.2 Sliding Edge and Sliding Vertex 

In order to move the orbiting polygon to the next position a vertex (the sliding 

vertex) must slide along an edge (the sliding edge). The sliding edge can be on 

either the stationery polygon or the orbiting polygon. Similarly, the sliding vertex 
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can be on either polygon. However, the sliding edge and sliding vertex cannot be 

on the same polygon. The sliding edge and sliding vertex can be determined using 

D-Functions as follows. 

In each of the figures in figure 7.7, vertex B is on the stationery polygon, S. Vertex 

E is on the orbiting polygon, O. B and E are in contact with one another. 

 

 
 
 
  
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 7.7 – Determining Sliding Edge and Sliding Vertex 
 

• If F is to the left of BC (DABC > 0) then the sliding edge is EF and the sliding 

vertex is B (see figure 7.7a) 
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• If F is to the right of BC (DABC < 0) then the sliding edge is BC and the sliding 

vertex is E (see figure 7.7b) 

• If F is linear with BC (DABC = 0) then the sliding edge is EF and the sliding 

vertex is B (see figure 7.7c) 

 

7.5.3 Determination of Sliding Distance 

When using the orbiting method on convex polygons it is always possible to move 

the orbiting polygon the full extent of the sliding edge. When the polygons are 

non-convex, this may not be possible (see figure 7.1b and 7.1c). Therefore, before 

moving the orbiting polygon, a check must be made as to how far the polygon can 

be moved. This is done by extending every vertex on the orbiting polygon, in the 

direction of motion, by the length of the sliding edge. The extended sliding edge is 

checked to see if it intersects any edge on the stationery polygon. 
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Figure 7.8 – Projecting Vertices 
 

In figure 7.8a the sliding vertex, SV, is on the stationery polygon, S, and the 

sliding edge, PQ, is on the orbiting polygon, O. The orbiting polygon should move 
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the full distance of PQ but when P is extended it intersects S at I. Therefore, the 

orbiting polygon can only be moved by the distance PI. Under these circumstances 

the new sliding edge is the edge that was intersected and the new sliding vertex is 

the vertex that intersected S (in this case P). Alternatively, the new sliding edge 

and sliding vertex can be determined using D-Functions, as described above. 

Each vertex on S must also be extended in the opposite direction of motion by the 

distance of the sliding edge in order to check it does not intersect O (see figure 

7.8b). 

If no intersections are found then the orbiting polygon can be moved the full 

distance of the sliding edge. 

Equations 7.4 and 7.5 give a method to extend a point in a given direction. This 

can be used to extend point R, by a distance of PQ, in the direction of PQ, where 

N.x and N.y are the x and y co-ordinates for point N. 

 

 Extend.x = R.x + (Q.x – P.x) (7.4) 

 Extend.y = R.y + (Q.y – P.y) (7.5) 

 

7.5.4 Multiple Points of Contact 

In figure 7.8 it is relatively easy to determine the sliding edge and vertex as there 

is only one point of contact between the two polygons. However, it is possible to 

have multiple points of contact (see figure 7.9). 
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 a b c 

Figure 7.9 – Multiple Points of Contact 
 

Figure 7.9a shows two points of contact, each of which are candidates for being a 

sliding edge and sliding vertex. Figures 7.9b and 7.9c show numerous points of 

contact (the larger shape in figure 7.9b is a T shape, which has been rotated in 

figure 7.9c). Mahadevan mentions the possibilities of multiple contact points but 

gives no method for determining them. Our algorithm checks each edge of one 

polygon against each edge on the other polygon. Using D-Functions it is possible 

to determine when a contact is found and thus identify the potential sliding edge 

and vertex. 

Once a sliding edge/vertex has been identified the orbiting polygon can be moved, 

using the checks described above to ensure that a vertex on one polygon does not 

pierce the edge of the other polygon. However, it is possible, not to detect an 

intersection before the orbiting polygon has moved but moving the polygon still 

leads to an intersection (an example is shown below). Due to this a data structure 

is maintained so a search for valid sliding edge and vertex can be continued, 

should the current candidates lead to an invalid (intersecting) move. This data 

structure simply holds the vertex index of the stationery and orbiting polygon so 
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that the search can be continued from that point. The data structure is reset after 

each valid move so that the search starts from the zero’th vertex on each polygon. 

 

7.5.5 Check for Intersection After Potential Move 

Once the orbiting polygon has been moved it is necessary to check if the two 

polygons intersect. This is needed as the projection of the vertices described above 

does not capture all cases where intersection will occur. This is due to the fact that 

only the vertices have been extended but intersection could occur on any edge. The 

example given in (Mahadevan, 1984) is shown in figure 7.10. In figure 7.10a the 

sliding edge has been identified as PQ and the sliding vertex as A. The direction of 

travel is shown by the arrow. If every vertex on the orbiting polygon, O, is 

extended by length PQ in the direction of travel, no intersection is detected. 

Similarly, if every vertex on S is extended by length PQ in the opposite direction 

of travel, no intersection is detected. Therefore the move is made by moving P so 

that it aligns with A (figure 7.10b). It is now obvious that the polygons intersect. 

By continuing the search for a sliding edge and vertex, using the configuration of 

7.10a, another point of contact would identify QR as the sliding edge and B as the 

sliding vertex. This move will not result in intersection and thus the move can be 

made permanent. At this point the search for a sliding edge and vertex will be reset 

so that the next sliding edge/sliding vertex search will start afresh (that is, start 

searching at the zero’th vertices). 
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 a b 

Figure 7.10 – Polygons may intersect after extending vertices 
 

7.5.6 Additions to the Algorithm 

Apart from the additions to the intersection procedure (section 7.4), the algorithms 

described above are the same as that described by Mahadevan (Mahadevan, 1984). 

However, there are some degenerate cases where the algorithm does not work. Our 

work has corrected these areas so that the algorithm is more robust. 

 

Checking for Cycles 

Consider figure 7.11a, which is part way through the NFP algorithm. Depending 

on the order in which the next contacts are determined the next position could 

either be figure 7.11b or figure 7.11c.  
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 a b c 

Figure 7.11 – Possibility of algorithm not terminating 
 

Arriving at figure 7.11b presents no problem in that the orbiting polygon, O, can 

continue its journey around the stationery polygon, S. However, by moving 

immediately to the configuration of figure 7.11b the more compact packing of 

figure 7.11c will be missed. Therefore, depending on the eventual use to which the 

no fit polygon will be put it may be more beneficial to ensure that every contact is 

explored so that tighter packings are not passed over. Now consider figure 7.11c. 

This results in a tighter packing of the two polygons but presents two additional 

problems. Firstly, when O tries to move again, the only viable option is to move 

back to the configuration shown in figure 7.11a. From here the next move could be 

back to the configuration of figure 7.11c. In order to stop the algorithm entering an 

infinite loop there needs to be a mechanism to identify these situations and recover 

from them. 

In the modified algorithm this is achieved by using a stack that stores valid 

positions. Each time a valid placement is found an item is pushed onto the stack. 

Each stack item contains three elements. 
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1. The current vertex index of the stationery polygon that is being processed as 

part of the next contact algorithm 

2. The current vertex index, plus 1, of the orbiting polygon that is being 

processed as part of the next contact algorithm. 

3. The polygon description of the orbiting polygon that reflects its position, 

before it was moved based on the sliding edge and vertex that are now stored 

(1 and 2, above). 

 

If an item is popped off the stack the vertex indices are passed to the next contact 

algorithm. These are used as starting points for establishing the next contact 

between the orbiting and stationary polygons.  By adding one to the orbiting 

polygon index before pushing it onto the stack it effectively moves the checking 

procedure on one stage from the position that existed when the item was pushed 

onto the stack. The polygon is pushed onto the stack so that the current position is 

stored and can be restored. 

Another check the algorithm needs to make is to ensure that repeated positions are 

not revisited. For example, the original algorithm could find itself in the 

configuration shown in figure 7.11c. The next valid configuration will be that 

shown in fig 7.11a. However, this position will already have been seen, therefore, 

it is regarded as an invalid position. 

When the position in figure 7.11c is reached the algorithm will search for the next 

valid position. It will arrive at the position shown in figure 7.11a and discover, by 

peeking at the polygon at the top of the stack and comparing it against the current 
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position, that this position has already been seen. Therefore, it will ignore this 

move and continue to look for another valid position. Not being able to find one it 

will pop the top item from the stack and will set the orbiting polygon to the 

polygon just popped (i.e. the position shown in figure 7.11a). The next contact 

vertices will be set to those that were stored on the stack. These will have been the 

indices in effect when the position in fig 7.11a was originally reached, except the 

orbiting index will have been incremented by one. The result is that the algorithm 

will continue and find the position shown in fig 7.11b. 

 

Valid Polygons 

A secondary problem is that the vertices returned from the algorithm are not 

guaranteed to generate a polygon when they are navigated in a counter clockwise 

order. 

 

 

 

 

 

 

 a b 

Figure 7.12 – Algorithm does not have to produce a valid polygon 
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Figure 7.12a shows the no fit polygon that is produced by the two polygons in 

figure 7.11, under the assumption that the algorithm progresses from figure 7.11a 

to figure 7.11b and does not find the configuration shown in figure 7.11c. If the 

configuration in figure 7.11c is reached this results in an additional point on the no 

fit polygon, as shown in figure 7.12b. It is no longer possible to draw a polygon, at 

least not a simple polygon, as an edge would need to be drawn from the right hand 

point in figure 7.12b to the left hand point in this figure. Once the algorithm 

backtracked, an edge would then be drawn in the opposite direction before the no 

fit polygon was completed as shown in figure 7.12a. 

A potential solution is to not store the left hand point in figure 7.12b. This is easily 

achieved by removing the point from the NFP polygon at the time there is a need 

to remove an item from the stack. However, this gives a potential problem in that 

the packing shown in figure 7.11c is effectively lost. In the application that is 

developed in this thesis we want to find the tightest possible packings. Therefore it 

is beneficial not to discard any potential solutions due to backtracking. Due to the 

nature of our problem we are only interested in the vertices of the NFP. Therefore, 

our NFP algorithm only needs to return a list of vertices never has to construct a 

polygon. 

Different applications will obviously have different requirements. Therefore, the 

way in which the algorithm is implemented by other researchers is dependent upon 

the particular use of the resultant NFP, but we have highlighted several aspects 

which need to be considered. 
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Finally, as the NFP is built it is possible for three (or more) points on the NFP to 

be co-linear. Whilst this does not affect the properties of the resultant polygon it 

can lead to inefficiencies as the number of vertices on the NFP is greater than it 

needs to be to represent the same polygon. Therefore, we have introduced a check 

into our algorithm that checks for co-linear points as the NFP is built. This check 

is easily performed using D-Functions. 

 

Sliding Distance 

In section 7.5.3 a discussion was given as to how to determine the sliding distance 

for a given orbiting polygon. The amount that the polygon is allowed to slide is 

determined by recognising edge intersections. However, consider figure 7.13. 

 

 

 

 

 

 

 

 a b c 

Figure 7.13 – Determining Sliding Distance when there is No Edge 
Intersection 

 

In figure 7.13a, the sliding vertex will be identified as vertex A+1. The sliding 

edge will be the vertex leading towards U. Therefore, the direction of travel is 

A A+1 

A-1 

U 

V 



 

Graham Kendall   163 

shown by the arrow leading from A. Vertex projections (as discussed in 7.5.3) will 

detect no edge intersections, therefore the polygon will be moved the full length of 

the sliding edge (7.13b). The usual check for intersection will now be carried out 

and it will be found that the polygons intersect. Therefore, the state will revert to 

that shown in 7.13a. The algorithm now tries to determine a new sliding edge and 

vertex. Not finding any suitable candidates the algorithm will either cycle or 

terminate. 

The problem is due to the fact that the projection of vertex A (7.13a) is not able to 

detect that it can only move as far as V. The only indication that there is a potential  

problem is when the vertex A is extended (call this edge A, B) and, using D-

functions, it is found that “VtouchesAB”. However, the situation is complicated in 

that a configuration such as that shown in 7.13c could also arise. Extending the 

same edge as before, D-functions will return “VtouchesAB” but, in this instance 

the polygon can move the full distance. In fact, it is desirable if we want the 

concavity to be explored. 

Therefore, it is necessary to identify some condition that allows the configurations 

of 7.13a and 7.13c to be differentiated. 

Similar analysis to that carried out for checking for intersection through vertices 

(section 7.4) leads to the following observations. 

Let the orbiting vertex being extended be called AB. 

Call the vertices before and after A, A-1 and A+1 respectively. 

The stationery polygon has vertices U and V. At a given point in the NFP 

algorithm, the D-functions will return “VtouchesAB” (see figure 7.13a). 
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7.14a shows a simplified version of 7.13a, at the point when the D-functions return 

VtouchesAB. Figure 7.14b is the state of 7.13c when VtouchesAB. 

 

 

 

 

 

 

 

 a b 

Figure 7.14 – Simplification of Figure 7.13 for D-function Analysis 
 

Looking at figure 7.14 it is apparent that if U is linear with AB (which implies it is 

also linear with V), then A can slide the full distance as neither A,A-1 or A,A+1 

will intersect UV. 

If U is not linear with AB then two other conditions need to be checked to 

ascertain if A can slide the full distance. If U (in relation to AB) and A-1 (again in 

relation to AB) have different values, this indicates that A can slide the full 

distance without A,A-1 or A,A+1 intersecting UV. To put it another way, if A-1 

and U are on opposite sides of AB, then A can slide the full distance. In addition 

the same must hold for U (in relation to AB) and A+1 (in relation to AB). 

Of course, D-Functions can be used to check these conditions and this can be 

expressed as follows. 
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IF (D_fn(A, B, U) ≠ D_fn(A, B, A-1)) AND (D_fn(A, B, U) ≠ D_fn(A, B, A+1)) 

THEN 

Move Full Distance 

ELSE 

Move as far as V 

 

These observations can be captured in the following table. The final column gives 

a statement which captures whether A can be moved the full distance or if A can 

only be moved as far as V. The two highlighted rows shows the conditions in force 

for figure 7.13a (higher row) and figure 7.13c (lower row). 
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Relationship 

with AB 
Conditions to Check Move Full Distance or Not 

U A-1 A+1 U linear 
AB? 

U & A-1 
different? 

U & A+1 
different? 

(U is linear) ∨ ((U & A-1 
different) ∧ (U & A+1 

different)) 
left left left FALSE FALSE FALSE Move to V 
left left right FALSE FALSE TRUE Move to V 
left left linear FALSE FALSE TRUE Move to V 
left right left FALSE TRUE FALSE Move to V 
left right right FALSE TRUE TRUE Move Full Distance 
left right linear FALSE TRUE TRUE Move Full Distance 
left linear left FALSE TRUE FALSE Move to V 
left linear right FALSE TRUE TRUE Move Full Distance 
left linear linear FALSE TRUE TRUE Move Full Distance 
right left left FALSE TRUE TRUE Move Full Distance 
right left right FALSE TRUE FALSE Move to V 
right left linear FALSE TRUE TRUE Move Full Distance 
right right left FALSE FALSE TRUE Move to V 
right right right FALSE FALSE FALSE Move to V 
right right linear FALSE FALSE TRUE Move to V 
right linear left FALSE TRUE TRUE Move Full Distance 
right linear right FALSE TRUE FALSE Move to V 
right linear linear FALSE TRUE TRUE Move Full Distance 
linear left left TRUE TRUE TRUE Move Full Distance 
linear left right TRUE TRUE TRUE Move Full Distance 
linear left linear TRUE TRUE FALSE Move Full Distance 
linear right left TRUE TRUE TRUE Move Full Distance 
linear right right TRUE TRUE TRUE Move Full Distance 
linear right linear TRUE TRUE FALSE Move Full Distance 
linear linear left TRUE FALSE TRUE Move Full Distance 
linear linear right TRUE FALSE TRUE Move Full Distance 
linear linear linear TRUE FALSE FALSE Move Full Distance 

 

Table 7.2 – Detecting if Orbiting Polygon Can Move the Full Distance 
 

7.6 Combining Polygons 
Once the NFP has been determined for two given polygons, similar to the non-

convex algorithm, the best placement needs to be found that minimises the area for 

the two polygons when they are placed together. This is achieved by placing the 

reference point of the orbiting polygon on each vertex of the NFP and returning 

the placement which returns the best fit. To decide which is the best fit, similar to 
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the non-convex case, the convex hull is calculated. The convex hull is used as a 

measure, rather than combining the polygons, as combined polygons will be 

identical, with regards to their area, and thus there will be no way of deciding 

between one placement and another. If there is more than one placement that 

returns the same minimum area, one placement is used at random, although all the 

placements are stored in the cache for future use. This part of the algorithm is 

exactly the same as for the non-convex case that was explored earlier in this thesis. 

Once the best placement has been found the two polygons are combined to form 

one polygon which is used as the next stationery polygon. 

 

Combining two polygons is an operation which is seemingly simple but the 

implementation is delicate. Initially, the basic idea will be described, followed by 

the implementation issues that had to be overcome before the algorithm could be 

realised. 

 

 

 

 a b 

Figure 7.15 – Combining Two Polygons 
 

Figure 7.15a and figure 7.15b show a simple case of combining two polygons. 

There are libraries of algorithms that allow these types of operation to be done 

(e.g. LEDA and CGAL) but this work is implemented using our own algorithms 

which draw heavily on D-Functions. 
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The basic idea behind the algorithm is to identify a vertex on one of the polygons 

which is guaranteed to be on the combined polygon. In the case of figures 7.15a 

and 7.15b this could be the vertex identified by the filled circle. The algorithm 

proceeds to move around this polygon, at each stage, checking (using D-Functions) 

if there is any contact with the other polygon. If there is a contact then a decision is 

made whether to switch to the touching polygon, and continue to move around that 

one. Before describing the combine algorithm some support algorithms must be 

defined. 

 

Given an edge, AB, from polygon, P1, it is possible to establish the relationship of 

AB with another polygon P2.  Each edge on P2 is checked against AB to check this 

relationship. As each edge of P2 is processed it is called UV. Once the relationship 

between the P1 and P2 has been established the algorithm can return an index 

which represents U and the type of contact between the two polygons. 
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Figure 7.16 – Polygon Relationships to Consider 
 

Figure 7.16 shows several configurations that demonstrate some of the cases that 

have to be considered. In figure 7.16a, AB is the edge from P1 and UV, on P2, is 

being considered. D-Functions will return that “BtouchesUV”. As there are no 

other contacts with AB the function will return the index of U and a contact type 

of “BtouchesUV”. However, one other check is required, as shown in figure 7.16b. 

Two of the vertices of P2 lie on one of the edges, UV, that is currently being 

checked. When P1 is checked against P2 it will return a contact type of 

“BtouchesUV”. However, in this case, the contact type is not valid as it is not valid 

to switch from AB on P1 to UV on P2. This is a simple check to make. When a 

contact type of “BtouchesUV” is returned if V is to the left of AB, then it is not 

valid to swap polygons. This is easily checked with D-Functions. 
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In figure 7.16c, there are two occurrences of “UtouchesAB” (there are also 

occurrences of “VtouchesAB” but these can be ignored). The next stage will be to 

move onto P2, so that the combined polygon can continue to be formed. However, 

a decision needs to be made as to which edge on P2 is employed. In this case it is 

the edge that is closest to A on AB. Therefore, in this case, the function can return 

a contact type of “UtouchesAB” and U as the index nearest A. 

In figure 7.16d, the situation is similar to figure 7.16c in that there are two 

occurrences of “UtouchesAB” but they cannot be differentiated by their distance 

from A as they are effectively the same point. In this case, the edge to be used 

should be the one that forms the smallest angle with AB. 

 

We now have the necessary conditions to return the relationship between P1 and 

P2. The function, which we have called CombineReln, returns an index which 

represents U and the type of contact found and is a key component in the main 

combine algorithm. The combine algorithm can be shown formally as follows. 

 

Variable types 
Integer Crnt_Vertex : Vertex index being processed 
Integer Uidx : Vertex index for the “other” polygon 
Polygon Crnt_P : Polygon which is currently being considered 
Polygon Other_P : The “other” polygon 
Point A : Current vertex on Crnt_P 
Point B : Vertex_A +1 
 
 
1. Crnt_Vertex ← Vertex guaranteed to be on resultant polygon 
2. Crnt_P ← Polygon on which Start_vertex is placed 
3.  
4. A ← Crnt_P[Crnt_Vertex] 
5. B ← Crnt_P[Crnt_Vertex +1] 
6. DO  
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7. CombineReln(A, B) RETURNS Uidx & Contact 
8. SWITCH(Contact) 
9. CASE : BtouchesUV 
10. IF(D_fn(A, B, Crnt_P[Crnt_Vertex +2] = right 
11. Crnt_Vertex ← Crnt_Vertex +1 
12. BuildNewPolygon(Crnt_P[Crnt_Vertex]) 
13. A ← Crnt P[Crnt_Vertex] 
14. B ← Crnt_P[Crnt_Vertex +1] 
15. ELSE 
16. BuildNewPolygon(Crnt_P[Crnt_Vertex +1]) 
17. A ← Crnt_P[Crnt_Vertex +1] 
18. B ← Other_P[Uidx +1] 
19. Crnt_Vertex = Uidx 
20. SwapPolygons() 
21. ENDIF 
22. CASE : UtouchesAB 
23. IF(D_fn(A, B, Other_P[Uidx +1] = left 
24. Crnt_Vertex ← Crnt_Vertex +1 
25. BuildNewPolygon(Crnt_P[Crnt_Vertex]) 
26. A ← Crnt P[Crnt_Vertex] 
27. B ← Crnt_P[Crnt_Vertex +1] 
28. ELSE 
29. BuildNewPolygon(Other_P[Uidx]) 
30. A ← Other_P[Uidx] 
31. B ← Other_P[Uidx +1] 
32. Crnt_Vertex = Uidx 
33. SwapPolygons() 
34. ENDIF 
35. CASE : BandUtouch 
36. IF(theta(A, B, Crnt_Vertex, newA) 
37. SwapPolygons() 
38. ENDIF 
39. BuildNewPolygon(B) 
40. Crnt_Vertex = newA 
41. A ← Crnt P[Crnt_Vertex] 
42. B ← Crnt_P[Crnt_Vertex +1] 
43. CASE : AandUtouch OR nointersect 
44. Crnt_Vertex ← Crnt_Vertex +1 
45. BuildNewPolygon(Crnt_P[Crnt_Vertex]) 
46. A ← Crnt P[Crnt_Vertex] 
47. B ← Crnt_P[Crnt_Vertex +1] 
48. END_SWITCH 
49. UNTIL finished processing polygons 
 

There are a number of support routines. 

• D_fn(…) is the D-Function primitive (see figure 7.3). 

• BuildNewPolygon(…) takes a vertex as a parameter and adds this vertex to the 

polygon being built (that is, the combined polygon). 
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• SwapPolygons(…) controls the process of swapping between one polygon and 

the other, when the necessary condition arises. 

• theta(…) is used to determine, which edge, from those available should be 

moved to next. This operation is discussed further below. 

• CombineReln(…) has been discussed above. 

 

Using CombineReln, the relationship between P1 and P2 is established. Each of the 

contact types of interest is discussed below. These discussions should be read in 

conjunction with the algorithm shown above. Notice, the complications for the 

combine algorithm come from the fact that as polygons are combined self 

intersecting polygons can be formed (see 7.16b, 7.16c and 7.16d). If this were not 

the case, the combine algorithm would be considerably simpler to implement. 

 

BtouchesUV 
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Figure 7.17 – Whether to swap polygons or not when “BtouchesUV” 
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Given the configuration is figure 7.17a, if “BtouchesUV” the vertex following B is 

to the right of AB. This indicates that navigation should continue on the same 

polygon. Given the configuration shown in 7.17b, navigation should change to the 

other polygon. 

 

UtouchesAB 

If “UtouchesAB” is returned, given the configuration shown in figure 7.18a, then 

the vertex following U (that is V) is to the left of AB. This indicates that 

navigation should continue on the same polygon. Given the configuration shown 

in 7.18b, navigation should change to the other polygon as V is to the right of AB. 

 

 

 

 

 a b 

Figure 7.18 – Whether to swap polygons or not when “UtouchesAB” 
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BandUtouch 

If B and U touch, it is necessary to check if a polygon switch should take place by 

checking the angles of various edges with edge AB. In doing this, the angle of B, 

B+1 is calculated and this is compared with the angle of every edge from the other 

polygon. The edge which forms the smallest angle is the next edge on the polygon 

being formed. This is the operation carried out by the theta function. It returns a 

boolean stating if a swap should take place. It also returns an index for the new A 

vertex. 

In figure 7.19a, the smallest angle with AB is B,B+1. Therefore, no polygon swap 

will take place and the new A index will be the current B index. 

Later, the situation will be as shown in figure 7.19b. In this case, the smallest 

angle is found to be with the other polygon. This indicates that a polygon swap 

should take place. Also notice, that the new AB edge will not be the UV edge. 

Instead, it is the dashed edge. This is the reason why all edges have to be checked 

on the other polygon. Whereas, only one edge has to be checked on the current 

polygon as if navigation is to continue around the current polygon, is has to be on 

edge B,B+1. 
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 a b 

Figure 7.19 – Whether to swap polygons or not when AandUtouch 

 

NoIntersect and AandUtouch 

If either of these conditions arise it indicates that naviagtion around the current 

polygon should be continued. 

 

7.7 Summary 
We have presented an algorithm to produce a no fit polygon using non-convex 

polygons. We believe this algorithm is more robust than the algorithm it is based 

on (Mahadevan, 1984) as it deals with more degenerate cases. Our algorithm 

allows polygon intersections to be more accurately reported. This method of 

intersection uses D-Functions which are already integral to the NFP algorithm. 

The revised algorithm also deals with cases where the algorithm has to backtrack, 

in order to stop it entering an infinite loop. 

Depending on the polygons, certain configurations may be passed over. However, 

it is quite simple to ensure that the algorithm considers all possible moves before 

deciding where the orbiting polygon should move to. It may also be the case that 

the backtracking has to remove a vertex from the NFP that is being constructed. In 
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our implementation we prefer not to do this. Instead, we return an array of vertices 

because this is all our application requires. 

 

In addition, this chapter has presented an algorithm to combine two polygons that 

relies heavily on D-Functions. Whilst this area is not new (see LEDA 

(http://www.mpi-sb.mpg.de/LEDA/leda.html), for example), the author has found 

no literature that uses D-Function to perform this operation. In the context of this 

work, it is beneficial to use D-Functions as they are already used for the NFP 

algorithm, they are well understood and it means we can make use of primitive 

functions which we already have available. 

The algorithm is complicated by the fact that after several combine operations 

have been carried out, it is possible to have polygons that is self-intersecting. The 

algorithm presented here is able to deal with these cases. 
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“The most extensive computation known has been conducted over the last 
billion years on a planet-wide scale: it is the evolution of life. The power of 
this computation is illustrated by the complexity and beauty of its crowning 
achievement, the human brain.” David Rogers, Weather Prediction Using a 

Genetic Memory 
 
 

8. Comparing Meta-Heuristics and 
Evolutionary Algorithms when Applied to the 

Non-Convex Nesting Problem 
 

8.1 Introduction 
Previous chapters of this thesis (chapters 5 and 6) have shown that, using 

evolutionary and meta-heuristic approaches can give good quality solutions to the 

nesting problem. In those chapters only convex pieces were used as these are 

easier to manipulate and it was beneficial to show that the methods employed did 

produce better quality solutions than straight forward approaches such as hill 

climbing. 

In chapter 7, a no fit polygon algorithm was developed that allowed manipulation 

of non-convex polygons. Having this algorithm available allows us to continue the 

investigation using non-convex shapes. Intuitively, we would expect even better 

solutions to be produced. To ascertain if this is the case we, initially, test the non-

Chapter 8 



 

Graham Kendall   178 

convex algorithms against the two test problems we have used thus far and then 

data from the literature is tested. 

 

8.2 Comparison of Test Problems with Convex Results 
 

In chapter 6, ant algorithms and memetic algorithms were used as a search 

mechanism for two test problems. The best results were obtained using a memetic 

algorithm and are summarised in table 8.1. 

 

Test Data Best Evaluation 
1 283.07 
2 890.51 

 

Table 8.1 – Best Results for Test Data 1 & 2 using Convex Algorithm 
 

These results were obtained using experiments that carried out 8000 evaluations. 

On a Pentium PII (laptop) with 16MB main memory this took about ten minutes. 

Identical runs were carried out using the non-convex no fit polygon algorithm and 

the number of evaluations were adjusted so that the algorithms ran for about the 

same amount of time. To achieve this the searches were only allowed to carry out 

300 evaluations. All the same searches were conducted and the results are shown 

in table 8.2 and table 8.3. All results are averaged over 10 runs. The results are 

sorted in ascending order of evaluation. 
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Search Type Parameters Evaluation Row Height Standard 
Deviation (Eval) 

Memetic 
Algorithm 

GA Popsize = 6, 
Generations = 8, 

Hill Climbing Iters 
= 2, N/H Size = 4 

129.77 156.00 22.39 

Simulated 
Annealing 

Schedule = {40, 0, 
4, 30) 

129.87 156.50 36.44 

Tabu Search Iters=30, List Size 
= 20, N/H Size = 

10 

132.09 157.00 57.50 

Hill Climbing Iters = 30, N/H 
Size = 10 

134.78 157.00 71.71 

Memetic 
Algorithm 

GA Popsize = 10, 
Generations = 10, 
Hill Climbing Iters 
= 3, N/H Size = 1 

147.24 158.00 41.04 

Simulated 
Annealing 

Schedule = {200, 
0, 20, 30) 

156.83 158.00 51.03 

Tabu Search Iters=30, List Size 
= 10, N/H Size = 

10 

168.80 158.80 52.31 

Hill Climbing Iters = 300, N/H 
Size = 1 

171.49 160.20 44.84 

Ant Algorithm Ants=13, Iters=12, 
Trail=1, 

Visibility=20, 
Evaporation=0.5, 

Q=100 

174.54 159.60 72.15 

Simulated 
Annealing 

Schedule = {60, 0, 
4, 20} 

179.02 159.40 73.61 

Memetic 
Algorithms 

Ants = 13, AA 
Iters = 6, Hill 

Climbing Iters = 4, 
NH Size = 1 

185.54 162.40 59.75 

Genetic Algorithm Pop Size = 18, 
Generations = 30 

191.80 160.60 81.16 

 

Table 8.2 – Results for Test Data 1 using Non-Convex No Fit Polygon 
Algorithm 
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Search Type Parameters Evaluation Row Height Standard 
Deviation (Eval) 

Memetic 
Algorithm 

GA Popsize = 6, 
Generations = 8, 

Hill Climbing Iters 
= 2, N/H Size = 4 

857.80 26663.00 146.27 

Tabu Search Iters=30, List Size 
= 20, N/H Size = 

10 

871.67 26867.63 197.90 

Memetic 
Algorithm 

GA Popsize = 10, 
Generations = 10, 
Hill Climbing Iters 
= 3, N/H Size = 1 

872.03 26987.12 129.90 

Memetic 
Algorithms 

Ants = 13, AA 
Iters = 6, Hill 

Climbing Iters = 4, 
NH Size = 1 

925.12 27185.91 136.49 

Ant Algorithm Ants=13, Iters=12, 
Trail=1, 

Visibility=20, 
Evaporation=0.5, 

Q=100 

933.15 27268.53 128.75 

Simulated 
Annealing 

Schedule = {2000, 
0, 200, 30} 

944.15 27367.30 99.07 

Tabu Search Iters=30, List Size 
= 10, N/H Size = 

10 

964.77 27533.27 152.52 

Hill Climbing Iters = 30, N/H 
Size = 10 

994.82 26874.97 152.34 

Simulated 
Annealing 

Schedule = {1000, 
0, 100, 30} 

1000.79 27675.30 170.94 

Simulated 
Annealing 

Schedule = {1000, 
0, 200, 60} 

1003.50 27740.35 113.76 

Genetic Algorithm Pop Size = 18, 
Generations = 30 

1026.82 27935.78 190.51 

Hill Climbing Iters = 300, N/H 
Size = 1 

1030.82 27896.10 221.15 

 

Table 8.3 – Results for Test Data 2 using Non-Convex No Fit Polygon 
Algorithm 

 

Not surprisingly, better results are achieved using the non-convex algorithm than 

with the convex algorithm. This was to be expected as pieces are able to fit into 

gaps that are not available when only working with convex shapes. 
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In addition, both sets of results support the findings from earlier chapters i.e. in 

that a memetic algorithm (based on a genetic algorithm) gives better quality results 

than a single algorithm used in isolation. It is also interesting to note, especially for 

test data 1, that the standard deviation of the evaluation function shows that the 

memetic algorithm produces good quality results on a more consistent basis than 

some of the other search algorithms. 

 

8.3 Approximating the No Fit Polygon 
Utilising the no fit polygon does lead to good quality solutions for the problems 

that have been addressed above. However, the NFP algorithm is computationally 

expensive. It would be beneficial if the NFP could be approximated, without loss 

of solution quality. One way to achieve this is to take each vertex of the orbiting 

polygon and place it on each vertex of the stationery polygon. At each placement, 

the polygons are tested for intersection. If they intersect, the algorithm continues, 

to check more vertices. If no intersection is detected, the polygons are combined 

and the convex hull calculated. The combined polygons with the minimum convex 

hull area is returned as the best placement. 
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This algorithm can be shown more formally as follows. 

 

S ← Stationery Polygon 
O ← Orbiting Polygon 
sv ← Random Vertex on Stationery Polygon 
start ← sv 
ov ← Random Vertex on Orbiting Polygon 
 
do {  

Align ov on sv 
 
 if no intersection 
  C ← Combine(O, S) 
  if ConvexHull(C) is smallest so far 
   P ← C 
  end if 
 
 end if 
   
 sv = sv +1 [using modulus arithmetic] 
} while(start ≠ sv) 
 
return P 
 
 

Notice that the starting vertices are chosen randomly. This is to ensure that if two 

placements (for the two given polygons) have more than one convex hull which 

has the minimum area then each has a chance of being selected. If placements 

always started at, say, the zero’th vertex then the algorithm would always return 

the same placement, which may not be the best placement later in the nesting 

procedure (see section 4.3). 

If we wish to use the cache it is necessary to store all the minimum placements in 

the cache and return one of the placements at random. This approximated no fit 

polygon algorithm will now operate in the same way as described in chapter 4. 
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Another possible performance improvement is to stop the evaluation of a 

particular permutation of polygons, once the evaluation exceeds the current 

minimum. Intuitively this seems like a good idea as if the polygons being 

evaluated exceeds the minimum evaluation found thus far, it is pointless 

continuing as the current evaluation cannot improve on the best nesting found so 

far. However, some of the search algorithms require a full evaluation to be carried 

out due to the way they operate. 

Simulated annealing needs to carry out a full evaluation as it needs the change in 

evaluation so that it can use this value in the acceptance function in deciding 

whether to move to the solution under consideration. Ant algorithms need to carry 

out a full evaluation so that each ant can decide how much pheromone to deposit 

on each edge. Finally, a genetic algorithm also requires a full evaluation as the 

parent chromosomes are selected for breeding based on the fitness. In order to 

assign a fitness value a full evaluation has to be carried out. 

 

Experiments were run to test the two ideas presented above. Four initial 

experiments were run, combining all the possible combinations. They can be 

summarised as follows. 

1. Use the no fit polygon algorithm and do not stop evaluations when the 

minimum is exceeded. 

2. Use the no fit polygon algorithm but stop evaluations when the minimum is 

exceeded. 
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3. Use the approximated no fit polygon algorithm and do not stop evaluations 

when the minimum is exceeded. 

4. Use the approximated no fit polygon algorithm but stop evaluations when the 

minimum is exceeded. 

 

The test data was taken from (Hopper, 2000a), using the first set of test data in 

category 1. This data comprises 16 rectangles which are to be nested in a bin of 

width 20. 

 

The results obtained are shown in table 8.4, with the results being averaged over 

ten runs. The test numbers refer to the numbers given above for the four proposed 

tests, with the description being given for ease of reference. 

 

Test Number Test Type Evaluation Time (seconds) 
1 Normal NFP/Complete Eval. 128.52 2495 
2 Normal NFP/Partial Eval. 131.10 1872 
3 Approx. NFP/Complete Eval. 178.90 614 
4 Approx. NFP/Partial Eval. 180.75 475 

 

Table 8.4 – Approximating the NFP and Using Partial Evaluation 
 

At first sight the results are not encouraging. Using test 1 as a baseline, this uses 

the NFP algorithm that has been developed earlier in this thesis (chapter 7) and 

carries out complete evaluations. When partial evaluations are used, with the NFP 

algorithm developed in chapter 7 (test 2), the results show that the algorithm runs 

faster with no significant difference in solution quality. However, if the 
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approximated NFP algorithm is used (test 3 and 4), there is a significant speed 

improvement but also a reduction in solution quality. This is due to the fact that 

the normal NFP algorithm allows vertices of the orbiting polygon to rest on edges 

on the stationery polygon. Using the approximation algorithm means that at least 

one vertex of the orbiting polygon must be aligned with a vertex of the stationery 

polygon. 

Therefore, at first sight, it would seem advisable to implement partial evaluation 

but to continue to use the slower, but better quality, NFP algorithm developed in 

chapter 7. However, further investigation shows that this may not have to be the 

case. 

The tests were run using tabu search. Thirty iterations were done, using a list size 

of ten and a neighbourhood size of ten. Using the approximate no fit polygon and 

partial evaluation the algorithm speed can be improved from 2495 seconds to 475 

seconds, an improvement of over 500%, but it leads to a solution quality that is 

approximately 40% worse. 

However, there could be a trade off between these two extremes. It may be 

possible to run the algorithm for longer, using the faster methods, achieve good 

quality solutions but still save on the execution time of the algorithm. 

Table 8.5 shows the results of these experiments 
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No. Iterations, List 
Size, N/H Size 

Test Type Evaluation Time (seconds) 

1 30,10,10 Normal NFP/Complete Eval. 128.52 2495 
2 30, 10, 10 Approx. NFP/Partial Eval. 180.75 475 
3 60, 10, 10 Approx. NFP/ Partial Eval. 110.83 970 
4 75, 30, 20 Approx. NFP/ Partial Eval. 105.32 2287 

 
Table 8.5 – Using an Approximation of the NFP to Reduce Run Times 
 

The first two rows of table 8.5 are the best and worst results from table 8.4, to 

allow easier comparison. Row three doubles the number of iterations from the 

original tests. The result is an improvement of solution quality but in significantly 

less time than using the original NFP algorithm with complete evaluation (row 1). 

Adjusting the tabu search parameters so that the algorithm, using the approximate 

no fit polygon and partial evaluation, runs for a similar amount of time as tabu 

search in row 1 then a better quality solution can be obtained yet with a lower 

execution time (see row 4). 

Based on these results it seems sensible to use the partial evaluation as this 

improves the execution time of the algorithm, with no loss of solution quality. 

It also seems appropriate to use the approximated no fit polygon algorithm. Over 

the same number of evaluations, the original no fit polygon does lead to better 

quality solutions. However, the approximated no fit polygon allows more of the 

search space to be explored and ultimately leads to better quality solutions in 

shorter execution times. 

Therefore, the work in the remainder of this chapter uses both the approximated no 

fit polygon and partial evaluation. 
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8.4 Hopper & Turton Datasets 
The TSP (travelling salesman problem) community have access to a set of test 

problems (see, for example http://www.crpc.rice.edu/softlib/tsplib/) that are 

available to the community to allow researchers to use a common set of problems 

to test new algorithms. The cutting and packing field is limited in this respect, 

although it is encouraging to see that Hopper and Turton (Hopper, 2000c) are 

trying to address this problem. In addition, Hopper and Turton (Hopper, 2000a) do 

present several datasets (appendix D and E) which are investigated here. 

 

8.4.1 Comparison over 7000 iterations 

As an initial test of the Hopper and Turton datasets, several of the search methods 

were selected and these were tested against the category 1 and 2 datasets in 

(Hopper, 2000a) and reproduced in appendix D and E of this thesis. 

The algorithms selected were hill climbing, HC, (to provide a base case), a genetic 

algorithm, GA, (to provide a population based approach) and tabu search, TS, and 

a memetic algorithm, MA, as these had proved to be the most effective searches 

found so far. 

The category 1 and 2 data from (Hopper, 2000a) provides six sets of data, 

EH001..EH006. Each data set was run against each algorithm. In addition, the runs 

for each data set/algorithm were run twice, once allowing the shapes to rotate 

through 90°, the other run allowing no rotation. The results was averaged over ten 

runs. Therefore, there are 480 separate runs (8 algorithms (HC, TS, GA, MA, each 
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one run with and without rotation)), 6 data sets with all results being averaged over 

10 runs). 

 

For the hill climbing algorithm 7000 iterations were made, with a neighbourhood 

size of one. When allowing rotation the rotation probability, rp, was set to 0.5. 

This was used to decide if the current iteration should swap two polygons or rotate 

a random polygon. The value of rp was set to 0.5 on the basis that for any given 

problem there is no knowledge as to what is the best orientation of any given 

polygon. Therefore, it seemed reasonable to have an equal chance of swapping or 

rotating polygons. 

 

For the genetic algorithm the population size was set to twenty and the number of 

iterations set to 350. This makes a total number of iterations of 7000. However, 

this is slightly misleading as in a genetic algorithm crossover is only made with 

some probability. Therefore, it could be argued that the number of iterations is less 

than for some of the other algorithms. Indeed, in general, the GA took less time to 

run. This is something addressed more fully in section 8.5, where the algorithms 

are compared using time rather than the number of iterations. 

The other parameters for the GA were set to the best parameters found so far (see 

section 5.4.3 of this thesis). When rotation was not allowed, mutation simply 

swapped two randomly chosen polygons. When rotation was allowed the mutation 

operator rotated a random polygon. 
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For tabu search, 350 iterations were carried out with a neighbourhood size of 20. 

This resulted in 7000 iterations. However, the tabu list size was set to 50. Due to 

this, the algorithm took longer than, say, hill climbing due to the overheads in 

checking and maintaining the tabu list. Again, this issue will be addressed in 

section 8.5. 

 

The memetic algorithm is a genetic algorithm with a hill climbing local search 

operator. In order to find a suitable mix of a global search strategy (GA) and a 

local search strategy (HC), several test runs were carried out which varied the 

parameters of the two algorithms, but maintained the overall number of iterations 

at about 7000. The results of these tests are shown in table 8.6 

 

Parameters Avg. Eval. 
GA : PopSize = 10, Gens = 20 , HC : Iters = 7, NH Size = 5 112.07 
GA : PopSize = 20, Gens = 20 , HC : Iters = 5, NH Size = 4 128.89 
GA : PopSize = 20, Gens = 20 , HC : Iters = 20, NH Size = 1 149.76 
GA : PopSize = 20, Gens = 20 , HC : Iters = 20, NH Size = 1 157.64 
GA : PopSize = 8, Gens = 16 , HC : Iters = 15, NH Size = 4 166.11 
GA : PopSize = 8, Gens = 16 , HC : Iters = 60, NH Size = 1 186.46 

 

Table 8.6 – Searching for a Good Set of Parameters for the Memetic 
Algorithm 

 

This was an arbitrary set of tests run on the second set of test data from category 1, 

therefore, one additional test was carried out to provide some form of justification 

for using the parameters in the top row of table 8.6. Using the first set of test data 

from category 1, two more tests were run. The results are shown in table 8.7 
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Parameters Avg. Eval. 
GA : PopSize = 10, Gens = 20 , HC : Iters = 7, NH Size = 5 47.53 
GA : PopSize = 20, Gens = 20 , HC : Iters = 5, NH Size = 4 85.15 

 
Table 8.7 – Confirming the test results from table 8.6 

 

These results indicate that the parameters shown to be the best from table 8.6 are a 

reasonable selection. They will be used for the tests carried out below. 

When running the memetic algorithm, the rotation (or not) decision is the same as 

for the individual algorithms, that is the mutation operator, if applied rotates a 

randomly selected polygon through 90°. 

 

The results from the tests, for category 1 data, using the four search algorithms 

described above are shown in table 8.8. The notation for the problem is as follows 

 

Ehnnn is the problem type within the category where problems EH001, EH002 

and EH003 are the three problems from category 1 (16 or 17 polygons) and 

EH004, EH005 and EH006 are the three problems from category 2 (25 polygons). 

HC, GA, TS, MA describe the search algorithm being used (Hill Climbing, 

Genetic Algorithm, Tabu Search and Memetic Algorithm) If ‘(R)’ appears at the 

end of the problem description it indicates that rotation is allowed. 

For example, “EH003 TS (R)” is the third problem from category one. Tabu 

search is the search method being used and rotation is allowed. 

“EH005 MA” indicates the second problem from category 2, a memetic algorithm 

is being used a the search mechanism and no rotation is allowed. 
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This notation is used throughout this chapter to describe the various problem 

types. 

 

Problem Avg. Eval. 
EH001 HC 82.64 
EH001 GA 111.83 
EH001 TS 64.10 
EH001 MA 47.53 
  
EH001 (R) HC 141.83 
EH001 (R) GA 188.87 
EH001 (R) TS 127.98 
EH001 (R) MA 123.27 
  
EH002 HC 143.98 
EH002 GA 156.71 
EH002 TS 125.06 
EH002 MA 112.07 
  
EH002 (R) HC 136.42 
EH002 (R) GA 134.09 
EH002 (R) TS 128.03 
EH002 (R) MA 115.20 
  
EH003 HC 153.57 
EH003 GA 152.45 
EH003 TS 99.18 
EH003 MA 97.93 
  
EH003 (R) HC 160.39 
EH003 (R) GA 193.87 
EH003 (R) TS 122.65 
EH003 (R) MA 116.58 

 

Table 8.8 – Testing Hopper & Turton Data, Category 1 
 

A graphical representation of these results is shown in figure 8.1. 
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Figure 8.1 – Graphical Representation of Table 8.8 
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Each group of four bars in figure 8.1 represents one particular problem type. By 

looking at figure 8.1 or table 8.8 several observations can be made. 

Firstly, memetic algorithms perform better in all cases. This is encouraging as it 

agrees with the results obtained previously in this thesis. Secondly, tabu search 

performs better than both genetic algorithms and hill climbing. Again, this is in 

agreement with previous results in this thesis. 

It is disappointing to note that the genetic algorithm was frequently out performed 

by the hill climbing algorithm. This is both disappointing and unexpected. This is 

not necessarily due to the fact that a genetic algorithm is a poor search strategy. 

Instead it is a further indication that this algorithm is sensitive to the parameter 

values, as has already been indicated by the work presented in section 3.4.2 to find 

good value for GA parameters and in the conclusions drawn in section 5.6 of this 

thesis. 

The same testing was carried out on the category 2 data of Hopper and Turton. The 

results are shown in table 8.9 and figure 8.2. 
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Problem Avg. Eval. 
EH004 HC 277.78 
EH004 GA 261.53 
EH004 TS 221.44 
EH005 MA 220.76 
  
EH004 (R) HC 277.78 
EH004 (R) GA 268.76 
EH004 (R) TS 244.91 
EH005 (R) MA 174.00 
  
EH005 HC 180.22 
EH005 GA 221.28 
EH005 TS 129.58 
EH005 MA 149.90 
  
EH005 (R) HC 240.27 
EH005 (R) GA 185.60 
EH005 (R) TS 166.28 
EH005 (R) MA 196.58 
  
EH006 HC 274.44 
EH006 GA 130.89 
EH006 TS 83.36 
EH006 MA 63.45 
  
EH006 (R) HC 222.03 
EH006 (R) GA 240.92 
EH006 (R) TS 194.16 
EH006 (R) MA 180.01 

 

Table 8.9 – Testing Hopper & Turton Data, Category 2 
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Figure 8.2 – Graphical Representation of Table 8.9 
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Again, tabu search and the memetic algorithm performed better than the other 

search algorithms. In fact, the memetic algorithm produced the best quality 

solutions in all but two of the problems (EH005  and EH005 (R)). 

 

8.4.2 Comparison over fixed time interval 

In the experiments of 8.4.1 the number of iterations was fixed. This, it could be 

argued, leads to an unfair comparison as each algorithm runs for a different 

amount of time. In fact, this is the case, for a number of reasons. A genetic 

algorithm (GA), for example, only has to call the evaluation function if the 

probability of crossover or mutation is exceeded. If not, then no action is required. 

If the GA does not call the evaluation function, is this regarded as an iteration or 

not? There are arguments for and against. Assuming the evaluation function is not 

called, it should not be ignored as an iteration. The GA is designed with this 

principle in mind. The same parent survives to the next generation, which could, in 

itself, be a good thing. However, it could also be argued that an iteration should 

only be counted if the evaluation function is called. This argument has some 

substance but there is still an overhead to the algorithm (e.g. calling the random 

number generator) which unjustly penalises the algorithm. 

Another factor which gives support for not measuring the algorithms using the 

number of iterations is that the cache can have a significant effect as to whether 

the evaluation function should be called. If many items are found in the cache, 

then more iterations will be carried out. 
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Given these arguments a better comparison would be to allow the algorithms to 

execute for a specified time before terminating. For the results we show below 

each algorithm was allowed to run for 300 seconds. This figure was chosen as it is 

a good compromise between allowing the algorithms to find a good solution but 

not allowing it to run for so long, so that a real world user would find the search 

time unacceptable. These tests were run on an AMD 650 and, as before, all results 

are averaged over ten runs. 

The parameters for the algorithms were the same as for those in 8.4.1. In addition, 

simulated annealing, ant algorithms and a memetic algorithm with an ant 

algorithm as the primary search mechanism were also tested. 

The parameters for the ant algorithm were the same as those used in chapter 6 (see 

section 6.4.1). For the ant based memetic algorithm, the same ant algorithm 

parameters were used and the same hill climbing parameters were used as for the 

genetic based memetic algorithm. 

The simulated annealing cooling schedule was a little more difficult to determine. 

The problem arises as, ideally, you need the algorithm to terminate just as it 

reaches its 300 second limit. If, for example, the cooling schedule was only half 

way through completion, we would expect a sub-optimal solution as the algorithm 

had not yet started to converge. To ascertain a starting temperature 500 iterations 

of the algorithm were run with an extremely high temperature (so that the 

majority, if not all, the solutions were accepted – in effect a random search). Over 

the 500 iterations the average change in any increase in the evaluation function 

was calculated. This was used to set the starting temperature so that, given the 
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average increase in the evaluation function, approximately 60% of worse solutions 

would be accepted. This is based on the advice of Dowsland (Dowsland, 1995a) 

and Rayward-Smith (Rayward-Smith, 1996). The cooling schedule was then set so 

that it would terminate when the temperature was as near to zero as possible. This 

resulted in the following cooling schedules. 

 

Category Test Data 1 
Starting Temperature = 500 
Final Temperature = 0 
Iterations at Each Temperature = 500 
Temperature Decrement = 20 
 

Category Test Data 2 
Starting Temperature = 600 
Final Temperature = 0 
Iterations at Each Temperature = 250 
Temperature Decrement = 25 
 

The reason that the different categories of problem require a different number of 

iterations is due to the fact that category 2 problems contain more shapes than 

category 1 problems, so more time is spent in the evaluation function. 

The algorithms are run against each set of data twice, once fixing the orientation of 

the shapes and once allowing rotation. Only the ant algorithm does not allow the 

shapes to rotate. This is due to the fact that rotation is performed by a mutation 

operator and the ant algorithm, as implemented, has no such operator. The ant 

based memetic algorithm does allow rotation as this can be performed through the 

mutation operator within the local search (hill climbing) operator. 
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The results for category 1 data are shown in table 8.10 and figures 8.3 and 8.4. The 

problem type represents the six problems in category 1 as defined by Hopper and 

Turton. The search methods are AA (ant algorithm), GA (Genetic Algorithm), HC 

(Hill Climbing), MA(AA) (ant based memetic algorithm, MA(GA) (genetic based 

memetic algorithm), SA (simulated annealing) and TS (tabu search). Eval. is the 

averaged evaluation over 10 runs of the algorithm. The results are sorted in 

ascending order of the evaluation function with each problem type. 

Problem 
Type 

Search 
Method 

 
Eval. 

  Problem 
Type 

Search 
Method 

 
Eval. 

EH001 MA (GA) 68.26   EH001 (R) MA (GA) 143.11 
 TS 77.81    MA (AA) 146.69 
 MA (AA) 106.32    TS 158.54 
 HC 108.72    GA 165.11 
 SA 111.63    SA 167.21 
 GA 121.73    HC 171.95 
 AA 140.92    AA N/A 

        
EH002 MA (GA) 166.46   EH002 (R) TS 184.08 
 TS 171.75    MA (GA) 188.47 
 GA 179.64    HC 202.85 
 HC 192.56    MA (AA) 215.32 
 AA 263.55    GA 216.64 
 MA (AA) 271.40    SA 255.36 
 SA 388.13    AA N/A 

        
EH003 MA (GA) 106.44   EH003 (R) MA (AA) 159.26 
 TS 108.14    MA (GA) 160.01 
 GA 131.89    TS 166.28 
 SA 154.65    HC 177.11 
 AA 161.89    GA 218.06 
 MA (AA) 172.11    SA 218.55 
 HC 179.45    AA N/A 

 
Table 8.10 – Testing Hopper & Turton Data, Category 1 for 300 

seconds 
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Figure 8.3 – Category 1 Problems – EH001/002/003 No Rotation 
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Figure 8.4 – Category 1 Problems – EH001/002/003 Rotation 
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Figure 8.2 and 8.3 presents the same data as table 8.10 but in a graphical format. It 

shows that in the majority of cases either the genetic based memetic algorithm or 

tabu search found the best quality solutions. In fact, with only two exceptions the 

genetic based memetic algorithm and tabu search were the search strategies which 

found the two best quality solutions. 

An ant based memetic algorithm found the second best solution in EH001 (R), but 

with the genetic based memetic algorithm and tabu search still performing well. 

For EH003 (R) (bottom of figure 8.4) The ant based memetic algorithm found the 

best quality solution, but with the genetic based ant algorithm and tabu search 

having similar evaluation values. 

Apart from the ant based memetic algorithm performing well in EH001 (R) and 

EH003 (R), it did not perform particularly well for the other problems. In fact, the 

other search algorithms also performed poorly across all the problems. 

 

Table 8.10 and figures 8.5 and 8.6 show the test results from the second category 

of test data. Similar conclusions can be drawn from these results in that the genetic 

based memetic algorithm and the tabu search, without exception, produce the best 

quality solutions. It is difficult to draw conclusions from the results for the other 

search algorithms. It is disappointing to note that ant algorithms always seem to 

perform badly, as does simulated annealing. The remainder sometimes perform 

badly and other times perform reasonably well. Yet, none of the search methods 

can beat the genetic based memetic ant algorithm or tabu search. 
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Problem 
Type 

Search 
Method 

Eval.   Problem 
Type 

Search 
Method 

Eval. 

EH004 TS 215.38   EH004 (R) TS 194.16 
 MA (GA) 236.44    MA (GA) 222.03 
 GA 276.42    MA (AA) 373.19 
 SA 305.07    HC 413.40 
 HC 311.44    GA 449.89 
 MA (AA) 323.48    SA 571.42 
 AA 389.60    AA N/A 

        
EH005 MA (GA) 143.88   EH005 (R) MA (GA) 219.03 
 TS 161.04    TS 244.37 
 GA 264.11    GA 376.44 
 SA 278.29    HC 377.04 
 MA (AA) 283.74    MA (AA) 379.70 
 AA 314.74    SA 554.22 
 HC 377.04    AA N/A 

        
EH006 TS 108.31   EH006 (R) TS 196.72 
 MA (GA) 123.05    MA (GA) 243.07 
 MA (AA) 206.73    MA (AA) 342.36 
 GA 255.92    HC 381.28 
 HC 261.90    GA 460.12 
 SA 281.92    SA 535.06 
 AA 352.63    AA N/A 
 

Table 8.10 – Testing Hopper & Turton Data, Category 2 data for 300 
seconds 
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Figure 8.5 – Category 2 Problems – EH004/005/006 No Rotation 
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Figure 8.6 – Category 2 Problems – EH004/005/006 Rotation 
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In Hopper and Turton (Hopper, 2000a) the results from various search algorithms, 

both heuristic and meta-heuristic are presented. The figures are shown as the best 

solution expressed as a percentage above the optimal solution. These figures are 

re-produced in table 8.11. The top part of the table shows the results for a purely 

heuristic approach where BL is a bottom left heuristic and BLF is also a bottom 

left heuristic but with the ability to fill holes. DH and DW assumes the shapes 

have been pre-sorted by height and width respectively. 

The middle part of the table shows the results from the hybridisation of the bottom 

left heuristic with various meta-heuristic search algorithms (genetic algorithm 

(GA), naïve evolution (NE), simulated annealing (SA), hill climbing (HC) and 

random search(RS)). 

The final part of the table shows the results from using the bottom left with fill 

heuristic with the same meta-heuristic search algorithms. 
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 Category 1 
% 

Category 2 
% 

BL 25 39 
BL-DH 17 68 
BL-DW 18 31 
BLF 14 20 
BLF-DH 11 42 
BLF-DW 11 12 
   
GA+BL 6 10 
NE+BL 6 8 
SA+BL 4 7 
HC+BL 9 18 
RS+BL 6 14 
   
GA+BLF 4 7 
NE+BLF 5 7 
SA+BLF 4 6 
HC+BLF 7 10 
RS+BLF 5 8 

 

Table 8.11 – Results from (Hopper, 2000a), Expressed as % Over 
Optimal 

 

Table 8.12 shows the best results we achieved for category 1 problems. 

 % Over Optimal 
EH001 0 
EH002 10 
EH003 0 
EH001 (R) 5 
EH002 (R) 5 
EH003 (R) 10 
Average 5.00 

 

Table 8.12 – Best Solutions from the work conducted during this thesis 
for category 1 problems 
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It can be seen that we are competitive with the results from table 8.11. Two of our 

optimal results are presented in figure 8.7. 

 

 

 

 

 

Figure 8.7 – Optimal Solutions for problems EH001 and EH003 
 

For the larger problem (25 rectangles) our solutions average 11% over optimal 

(see table 8.13). Again, this is competitive with the solutions shown by Hopper. 

 

 % Over Optimal 
EH004 13 
EH005 7 
EH006 7 
EH004 (R) 13 
EH005 (R) 13 
EH006 (R) 13 
Average 11.00 

 

Table 8.13 – Best Solutions from the work conducted during this thesis 
for category 2 problems 

 

8.5 Blazewicz, 1993  Data 
Oliveira (Oliveira, 1998) presents a new algorithm (TOPOS) for nesting problems. 

One of the test problems they consider comes from (Blazewicz, 1993). This 

problem has 28 shapes of seven different types. The shapes are to be packed into a 
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bin of width 15. The aim, as usual, is to minimise the bin height. The data is 

shown in appendix E. 

 

The algorithm used by Oliveira (TOPOS) utilises the no fit polygon. It also has a 

local search/heuristic algorithm and various measures (waste, overlap and 

distance) that are used in the evaluation function. In addition they have some pre-

processing procedures that sorts the shapes in various ways (e.g. decreasing length, 

decreasing area, decreasing concavity etc.). 

Due to the domain knowledge, heuristics and pre-processing built into their system 

we cannot hope to compete with their solution (which has a bin height of 28.9, 

which improves on the previous best by 3.5%). In addition, the authors of this 

paper have conducted many experiments (126 variants of the algorithm) to help 

find this solution and state that there are still open questions which could make the 

algorithm produce even better results. 

It is interesting to see how our algorithm performs on this problem, using one of 

the best search strategies found so far. We decided to use tabu search as this has 

minimal parameters and the values for those parameters have shown not to be too 

sensitive to the problem instance. The parameters were set to the same values we 

have used throughout this chapter (list size = 50, neighbourhood size = 20). 

Rotation, via the mutation operator was allowed with a probability of 0.5. The 

algorithm was allowed to run for 300 seconds. 
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Two of the best solutions are shown in figure 8.8. These both have bin heights of 

38. Although this is much greater than the Oliviera solution it is encouraging to 

note that tabu search finds solutions that look reasonable. Even more encouraging 

is the fact tabu search can be applied with little regard for the parameter values. If 

we tried to use some of the other algorithms it would take many test runs to 

ascertain the values for the parameters. Even then there would be no guarantee that 

the optimum set of parameters had been found. 

 

 

 

 

 

 

 

 

 

Figure 8.8 – Two Solutions from Blazewicz, 1993 Data 
 

Although, tabu search did does not compete with the solution found by Oliviera 

the authors are encouraged that a relatively simply search strategy can produce a 

reasonable solution, using no domain knowledge or pre-processing. 
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8.6 Summary and Discussion 
This chapter of the thesis has shown that the ideas we have presented throughout 

this thesis produce competitive results when applied to test data from the literature. 

Using the no fit polygon would lead to excessive execution times. However, we 

have shown that it is possible to approximate the no fit polygon without loss of 

solution quality, In fact, better solutions can be found as more of the search space 

can be explored. 

Although not tackled in this thesis the majority of packing problems are likely to 

benefit from some form of pre-processing. Taking the problem shown in section 

8.5, there are seven different shapes. Obviously, if some of these shapes are 

packed prior to employing the search strategy, then there will be less shapes to 

pack. For example, rectangles (and squares) with a common dimension could be 

pre-packed. Similarly, triangles with identical dimensions can be tightly packed if 

one of them is first rotated through 180°. The author believes that pre-processing 

of shapes will lead to even better quality solutions and in shorter times. However, 

deciding which shapes to pack together, and to what extent the shapes should be 

pre-packed, is a difficult problem in itself but the author would like to make this 

one of the streams of the future research that is planned (see section 9.3). 
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9. Conclusions and Discussion 
 

9.1 Contribution 
 

This thesis has contributed in four main areas which are summarised in the 

following four sections. 

 

9.1.1 Speeding up Evaluations 

When using meta-heuristic and evolutionary search strategies, the evaluation 

function is called at each iteration of the algorithm. If the evaluation function is 

computationally expensive (which is often the case) it can lead to a bottleneck in 

the algorithm. In this thesis, we have shown methods that speed up the algorithm. 

The proposed enhancements are both intuitive and may have been implemented in 

other work, but they have not (to the author’s knowledge) been reported in the 

literature. 

Our algorithm is speeded up by using a cache to store previously seen, partial and 

complete, solutions. If, when a solution is being evaluated, it is found in the cache 

then the evaluation function is not called. Instead, the value from the cache is 

retrieved and used. In chapter 4 of this thesis we have shown that by varying the 

size of the cache (and thus the number of solutions that can be stored) the 

execution time of the algorithm can be varied. However, due to the nature of the 

problem under consideration, there are circumstances where a partial solution 

stored in the cache will lead to a sub-optimal solution later in the search. Examples 

of this occurring are given in chapter 4. 
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To resolve this problem a re-evaluation parameter has been introduced. This 

parameter takes a value between zero and one, which is used to calculate a 

probability of using the data stored in the cache, if it exists. If this parameter is set 

to zero the cached data will always be used. If the parameter is set to one it is 

equivalent to setting the cache size to zero as the cached data will never be 

accessed. The higher the value of this parameter the less use of the cache will be 

made. However, if the value is too low then a potentially sub-optimal solution 

could be retrieved from the cache, which could lead to a reduction in the quality of 

the solutions found. 

The results in chapter 4 show that the re-evaluation parameter can be set to a low 

value (0.1), without affecting solution quality. 

 

These techniques, in the opinion of the author, are an important aspect in 

developing meta-heuristics and evolutionary algorithms. As well as being reported 

in this thesis, this work was also presented at the CIE 26 (Burke, 1999d) and we 

hope that this will persuade other researchers to use and report on these 

techniques. 

 

9.1.2 Development of the No Fit Polygon Algorithm for Non-Convex Polygons 

A large part of this thesis has been the investigation and development of the no fit 

polygon (NFP). The NFP for convex shapes is simple to understand and the 

algorithm is well known (Cunninghame-Green, 1992). However, the non-convex 

case, although simple to understand, is difficult to implement. In chapter 7 of this 

thesis the work of Mahadevan (Mahadevan, 1984) is developed so that the NFP 
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polygon algorithm presented in his PhD thesis is more robust in that it deals with 

more degenerate cases. In resolving these degenerate cases, algorithms have been 

presented which, for example, deal with intersection when it occurs through 

vertices rather than through edges. All the enhancements made during for this 

thesis have made use of D-functions. These are primitive operations which allow 

the algorithm designer to build many more complex operations. 

The changes made to the NFP algorithm appear robust and allowed us (in chapter 

8) to work with non-convex pieces. 

 

It is well known that there are two algorithms for calculating the NFP for non-

convex polygons. The approach used in this thesis is based on the orbiting 

principle. Another approach uses the concept of minkowski sums. 

During the course of this work it was discovered that another researcher, Julia 

Bennell et. al. (Bennell, 2001) was also working on a new NFP algorithm based on 

minkowski sums. 

Although (in one sense) it is beneficial to have researchers working independently 

on a given problem, for this research, it would have been helpful to have access to 

a no fit polygon algorithm at that start of this research. In many ways, it is 

unfortunate that both Bennell and Kendall were unaware of each others work until 

both pieces were almost completed. 

 

9.1.3 Applying Ant Algorithms to the Stock Cutting Problem 

In 1996, Dorigo et. al. (Dorigo, 1996) applied a new type of algorithm to the 

travelling salesman problem (TSP). The so called ant algorithms have since been 
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applied to various problems including vehicle routing and the quadratic 

assignment problem. 

This thesis (for the first time) has investigated ant algorithms for the nesting 

problem. Using Dorigo’s ant system as a model the nesting problem is described 

as a set of polygons that are nested in the order presented. The ants, in deciding the 

order in which to visit the polygons use a measure as to how well the polygons fit 

together as a visibility measure. Apart from this one change the algorithm is based 

on the standard ant algorithm approach presented in Dorigo’s seminal paper. 

The experiments conducted in this thesis found the same values for the control 

variables for the algorithm as those found by Dorigo in his 1996 work. It is these 

values that were used in the remainder of this thesis. 

As well as implementing ant algorithms, we have also applied a local search 

operator to each permutation of polygons found by the ants in the hope that 

moving to a local optimum each time will lead to better quality results overall. 

This gives rise to a type of memetic algorithm (i.e. an evolutionary algorithm with 

a local search operator). 

Initial results from this thesis show that ant algorithms, whilst not competing with 

tabu search or a genetic based memetic algorithm, are competitive with a genetic 

algorithm, which is another population based approach. Later results are not so 

conclusive and the memetic based ant algorithm does not show promising results, 

something that is commented upon below (see 9.2). 
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9.1.4 Search Strategies 

In completing this work we have attempted to investigate and develop the latest 

meta-heuristic algorithms to ascertain which ones produce the best quality 

solutions. To allow this it was necessary to choose a representation that all the 

search algorithms were able to use. The choice of representation was discussed at 

the start of chapter three of this work. It is recognised that other representations are 

available but the author still feels that the list based method that was used was the 

most suitable for this work. 

One of the major problems in implementing these algorithms is choosing suitable 

values for the various control parameters for the given algorithm. A large amount 

of time was spent trying to find suitable parameters for some of the algorithms (see 

chapters 3 and 6). However, this aspect of implementing meta-heuristic algorithms 

is an up and coming research area and, at present, the best we can do is to make 

educated guesses at the parameters and run a number of experiments to see how 

they perform. The author believes that he has acquired suitable parameters for the 

problems presented in this thesis, but these values may not perform well across a 

wide range of problems. 

 

 

9.2 Discussion 
This work has applied a range of meta-heuristic algorithms to a series of stock 

cutting problems. The obvious conclusion from the results is that a genetic based 

memetic algorithm and tabu search are the search strategies of choice for this 

problem domain. However, it would be a mistake to draw this conclusion. The 
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conclusion that should be drawn is that it is still extremely difficult to derive 

parameters for algorithms so that those algorithms work well across a whole range 

of problems. Take, for example, ant algorithms. When they were applied to a 

problem in chapter 6 they appeared to show a certain degree of promise. However, 

a large part of chapter 6 was devoted to finding suitable parameters for the 

algorithm and, eventually, the algorithm was able to compete favourably with 

another population based approach, a genetic algorithm. 

Chapter 8 was approached with a certain degree of optimism for ant algorithms but 

they simply failed to perform, using the parameter values that had pain stakingly 

been found in chapter 6. The author has no doubts that he could have searched for 

a set of suitable parameters once again that would have made ant algorithms an 

effective search strategy. That is, until another problem instance was presented. 

Simulated annealing and genetic algorithms have similar problems in that the 

number of parameters that need addressing is not only critical to the successful 

operation of the algorithm, but the values must change with each problem instance. 

Hill climbing suffers from the obvious downside in that it gets stuck in local 

optima. 

 

Tabu search stands alone as the only algorithm that is capable of escaping from 

local optima and has the benefit of having very few parameters that have to be 

adjusted (only the list size and the neighbourhood size). It is also noticeable that 

the parameter values supplied to tabu search do not seem too critical to the 

successful running of the algorithm. Throughout this thesis, tabu search has used 
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the same parameter set. Despite being used to solve different instances of stock 

cutting problems the algorithm has always performed well. 

 

It is a little surprising that a genetic based memetic algorithm performs as well as 

it does, whereas a genetic algorithm and hill climbing do not perform well in 

isolation. The success of the memetic algorithm is probably due to the fact that the 

genetic aspect of the algorithm is providing a broad search across the search 

landscape and the hill climbing operator allows any one area to be explored more 

fully. Therefore, the algorithm is able to explore large areas of the landscape with 

the GA and then exploit those areas with the hill climbing operator. 

 

Why, then, does an ant based memetic algorithm not perform as well as the genetic 

based memetic algorithm? If you consider the interaction between the two search 

processes that comprise a memetic algorithm it may provide an insight as to why 

the ant based version fails to live up to initial expectations. The genetic based 

version uses information contained in the chromosome itself (i.e. the ordering of 

the genes) to produce a new generation. The local search operator has the task of 

improving this permutation, which is passed back to the genetic algorithm as a 

(potentially) fitter chromosome than existed before. 

An ant algorithm works very differently. The knowledge as to whether the current 

solution is a good one is contained, not only in the ordering of the polygons, but 

also in the pheromone levels that are held independently and not passed to the 

local search operator. When the solution is passed back to the ant algorithm by the 
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local search operator, it may represent a good solution, but the pheromone levels 

will not have been updated to reflect this. Therefore, although the ordering is now 

better the ant cannot exploit this information as it still uses the pheromone levels 

from before the local search was executed. 

For the ant based memetic algorithm there is no feedback between the ant 

algorithm and the local search operator. For the genetic based version this 

feedback happens automatically due to the fact that both search strategies operate 

directly on the chromosome. With the ant version there is additional information, 

by way of pheromone trails, which the local search operator has no knowledge 

about. 

 

In summary, this work has shown that tabu search appears to be an effective 

search strategy for stock cutting problems. However, it does not mean that the 

other algorithms should be discounted. Rather, future work needs to concentrate 

on setting suitable parameter values. This is discussed further below, in section 

9.3.  

 

9.3 Future Work 
9.3.1 Commercial Exploitation 

As a result of this work the author has been able to secure two funded awards to 

allow this research programme to be taken forward. 

A teaching company scheme started on the 1st October 2000 and will run for three 

years. The aim of this project is to exploit stock cutting research and incorporate 

these ideas into a commercial package. The company, Esprit Automation Ltd., 
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already sells a nesting package but realise that to maintain their competitive 

advantage they must produce more efficient nestings, in less time. 

A teaching company associate will be employed by the University of Nottingham 

for three years and will work at our partner company, Esprit Automation Ltd. The 

TCS is being funded by both the DTI (Department of Trade and Industry) and 

Esprit Automation Ltd. The total funding amounts to £126,268. 

 

The author has also secured a CASE for New Academics award. This, again 

funded by the EPSRC and Esprit Automation Ltd., will allow the work in this 

thesis to be further developed by a three year PhD studentship. This funding 

amounts to £42,120. One of the conditions of a CNA award is that the student 

spends at least three months every year working at the sponsoring company. It is 

fortunate that the TCS and CNA award are being funded by the same company so 

the TCS associate and the CNA student will be able to work closely together. 

  

 

This work has highlighted that particular search strategies work well for certain 

instances of a problem. However, we are unable to state that a genetic based 

memetic algorithm and tabu search will work well across all problems, even if the 

problems were restricted to the domain of stock cutting. In fact, the “no free lunch 

theorem” (Wolpert, 1997) proves that no one search technique can perform better 

than any other search technique across all problem domains. Therefore, the 
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ultimate goal is to be able to find suitable search strategies for the problem domain 

and problem instance under consideration at that time. 

This has recently been recognised in the academic community and the research 

group to which the author is associated has recently secured an EPSRC grant to 

look at the concept of hyper-heuristics. The author is a co-investigator on this 

grant. 

This research takes the concept of a heuristic to a higher level, in that heuristics are 

developed which search for other heuristics. Although this is currently “blue sky” 

research it is hoped that given a particular problem instance the hyper-heuristic 

will identify the most suitable search strategy to explore the search space for that 

problem. If the problem changes (even if that is only a small change, for example, 

reducing the amount of search time available), the hyper-heuristic should be able 

to adapt to this situation and apply a different search strategy. 

 

As part of this research project, it is hoped to apply the idea of hyper-heuristics to 

the stock cutting problem. As such, the CNA student will become involved in this 

project which will ultimately lead to the TCS associate becoming involved. This 

could lead to the idea of a hyper-heuristic being incorporated into commercial 

stock cutting software within the next three years. 
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Appendix B – Data for Test Problem 1 
 
Number of Items : 13 
BinWidth : 80 
Optimal Bin Height : 140 
 
 

Test Data 1 
(no. of items : width x height) 

2 : 60 x 14 
2 : 22 x 26 
1 : 42 x 44 
1 : 62 x 26 
1 : 18 x 70 
2 : 18 x 48 
1 : 20 x 28 
2 : 28 x 16 
1 : 24 x 16 
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Appendix C – Data for Test Problem 2 
 
Number of Items : 13 
BinWidth : 6240 
Optimal Bin Height : unknown 
 

Test Data 2 
(no. of vertices : x, y coordinates) 

3 : 3024,0 : 0,3357 : 0,0 
5 : 2025,0 : 2130,0 : 2130,7785 : 0,7785 : 0,2235 
4: 2475,2760 : 2475,6060 : 0,6060 : 0,0 
4 : 2127,0 : 2127,5328 : 0,2871 : 0,0 
5 : 1050,0 : 2130,2235 : 2130,7785 : 0,7785 : 0,0 
3 : 3024,0 : 3024,3357 : 0,0 
4 : 2850,0 : 2850,5850 : 0,2730 : 0,0 
4 : 1785,0 : 1785,2550 : 0,2550 : 0,0 
4 : 2220,0 : 2220,5940 : 0,5940 : 0,2310 
4 : 2550,0 : 2550,3015 : 0,6060 : 0,0 
3 : 3054,0 : 3054,3390 : 0,3390 
4 : 2127,0 : 2127,2871 : 0,5328 : 0,0 
3 : 3054,3390 : 0,3390 : 0,0 
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Appendix D – Dataset from (Hopper, 2000a) 
 
Number of Items : 16 or 17 items 
BinWidth : 20 
Optimal Bin Height : 20 
Category : 1 
 

Problem 1 
(width x height) 

Problem 2 
(width x height) 

Problem 3 
(width x height) 

2 x 12 4 x 1 4 x 14 
7 x 12 4 x 5 5 x 2 
8 x 6 9 x 4 2 x 2 
3 x 6 3 x 5 9 x 7 
3 x 5 3 x 9 5 x 5 
5 x 5 1 x 4 2 x 5 
3 x 12 5 x 3 7 x 7 
3 x 7 4 x 1 3 x 5 
5 x 7 5 x 5 6 x 5 
2 x 6 7 x 2 3 x 2 
3 x 2 9 x 3 6 x 2 
4 x 2 3 x 13 4 x 6 
3 x 4 2 x 8 6 x 3 
4 x 4 15 x 4 10 x 3 
9 x 2 5 x 4 6 x 3 
11 x 2 10 x 6 10 x 3 
 7 x 2  
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Appendix E – Dataset from (Hopper, 2000a) 
 
Number of Items : 25 items 
BinWidth : 40 
Optimal Bin Height : 15 
Category : 2 
 

Problem 1 
(width x height) 

Problem 2 
(width x height) 

Problem 3 
(width x height) 

11 x 3 11 x 2 12 x 7 
13 x 3 2 x 3 7 x 7 
9 x 2 10 x 7 7 x 1 
7 x 2 8 x 4 5 x 1 
9 x 3 9 x 5 3 x 2 
7 x 3 7 x 2 6 x 2 
11 x 2 4 x 1 7 x 2 
13 x 2 6 x 1 5 x 2 
11 x 4 4 x 5 3 x 1 
13 x 4 8 x 3 6 x 1 
3 x 5 1 x 3 12 x 6 
11 x 2 5 x 5 9 x 6 
2 x 2 3 x 1 12 x 2 
11 x 3 12 x 4 7 x 2 
2 x 3 6 x 2 10 x 3 
5 x 4 2 x 4 4 x 1 
6 x 4 11 x 4 5 x 1 
12 x 2 10 x 2 16 x 3 
1 x 2 3 x 2 5 x 3 
3 x 5 11 x 2 4 x 2 
13 x 5 3 x 4 5 x 2 
12 x 4 26 x 4 10 x 3 
1 x 4 8 x 4 9 x 3 
5 x 2 3 x 2 16 x 3 
6 x 2 6 x 2 5 x 3 
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Appendix F – Test Data from (Blazewicz, 
1993) 

 
Number of Items : 28 
BinWidth : 15 
Optimal Bin Height : unknown 
 

Blazewicz, 1998 
(no. of vertices : x, y coordinates) 

6 : 0,0 : 2,-1 : 4,0 : 4,3 : 2,4 : 0 3 
8 : 0,0 : 3,0 : 2,2 : 3,4 : 3,5 : 1,5 : –1,3 : –1,1 
8 : 0,0 : 2,0 : 3,1 : 3,3 : 2,4 : 0,4 : –1,3 : –1,1 
8 : 0,0 : 2,1 : 4,0 : 3,2 : 4,5 : 2,4 : 0,5 : 1,3 
7 : 0,0 : 5,0 : 5,5 : 4,5 : 3,2 : 2,2 : 0,1 
3 : 0,0 : 2,3 : –2,3 
4 : 0,0 : 2,0 : 2,2 : 0,2 

 
Each shape appears four times, making a total of 28 shapes 
 
 
This data is re-produced in (Oliveira, 1998) 
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