

Applying Meta-Heuristic Algorithms to the Nesting
Problem Utilising the No Fit Polygon

A Thesis submitted to the University of Nottingham for
the Degree of Doctor of Philosophy

by

Graham Kendall, BSc (Hons)

University of Nottingham, Nottingham
School of Computer Science and Information Technology

October 2000

Graham Kendall 2

Contents

Contents ... 2
Figures.. 4
Tables ... 6
Abstract .. 7
Acknowledgements... 8
1. Introduction .. 9

1.1 Aim and Objectives of this Thesis .. 10
1.2 What is the problem called? ... 11
1.3 Problem Dimensions .. 13
1.4 Types of Cutting .. 14
1.5 Placement versus Cutting ... 16
1.6 Classification ... 17
1.7 NP-Completeness .. 19
1.8 Motivation for this work .. 21
1.9 Outline of the Thesis .. 22

2. Related Work .. 24
2.1 Cutting and Packing ... 24
2.2 Computational Geometry ... 53
2.3 Search Methods ... 62

3. A Simplified Problem ... 84
3.1 Introduction ... 84
3.2 The Problem .. 88
3.3 Representation of the Problem ... 89
3.4 Comparison of Algorithms ... 91
3.5 Conclusions ... 94

4. Evaluation of the Two Dimensional Bin Packing Problem using the No Fit
Polygon .. 95

4.1 Introduction ... 95
4.2 No Fit Polygon .. 97
4.3. Evaluation .. 98
4.4 Testing, Results and Comparisons.. 103
4.5 Conclusions ... 106

5. Comparing Meta-Heuristics and Evolutionary Algorithms when Applied to the
Convex Nesting Problem .. 107

5.1 Introduction ... 107
5.2 Evaluation Method .. 108
5.3 Test Data ... 110
5.4 Parameter Selection for Search Methods .. 113
5.5 Testing, Results and Comparisons.. 121
5.6 Conclusions ... 123

6. Applying Ant and Memetic Algorithms with the No Fit Polygon to the Nesting
Problem .. 125

6.1 Introduction ... 125

Graham Kendall 3

6.2 Ant Algorithms and the Nesting Problem ... 125
6.3 Memetic Algorithms .. 127
6.4 Testing and Results .. 128
6.5 Conclusions and Discussion ... 134

7. Determining the No Fit Polygon for Non-Convex Polygons and Combining
Non-Convex Polygons .. 136

7.1 Introduction ... 136
7.2 The No Fit Polygon – In Outline .. 137
7.3 D-Functions ... 139
7.4 Checking for Intersection ... 147
7.5 The No Fit Polygon – Modified Algorithm .. 151
7.6 Combining Polygons ... 166
7.7 Summary ... 175

8. Comparing Meta-Heuristics and Evolutionary Algorithms when Applied to the
Non-Convex Nesting Problem .. 177

8.1 Introduction ... 177
8.2 Comparison of Test Problems with Convex Results 178
8.3 Approximating the No Fit Polygon .. 181
8.4 Hopper & Turton Datasets ... 187
8.5 Blazewicz, 1993 Data ... 208
8.6 Summary and Discussion ... 211

9. Conclusions and Discussion .. 212
9.1 Contribution .. 212
9.2 Discussion ... 216
9.3 Future Work .. 219

References .. 222
Appendix A – Papers produced as a result of this research 237

Journal Papers ... 237
Conference Papers ... 237

Appendix B – Data for Test Problem 1 ... 238
Appendix C – Data for Test Problem 2 ... 239
Appendix D – Dataset from (Hopper, 2000a) .. 240
Appendix E – Dataset from (Hopper, 2000a) .. 241
Appendix F – Test Data from (Blazewicz, 1993)... 242

Graham Kendall 4

Figures

Figure 1.1 – Guillotine Cuts versus Non-Guillotine Cuts..................................... 15
Figure 1.2 – A Butterfly Cut ... 16
Figure 1.3 - Classification of Cutting and Packing Problems (Hopper 2000b and
based on (Dyckhoff, 1990b)) .. 18
Figure 2.1 - No. of published papers between 1940 and 1989 (Sweeney, 1992) ... 26
Figure 2.2 – Convex Hull of P1, shown as polygon with dashed vertices 57
Figure 2.3 – All vertices on P2 are to the ‘left’ of all edges of P1 indicating total
inclusion ... 59
Fig. 3.1 - Placement of two rectangles which has a minimal bounding box 88
Fig. 3.2 – Placement of two rectangles such that the area of the bounding box is
not minimised ... 88
Fig. 3.3 – Placement of two rectangles, R1 and R2, which has a minimal bounding
box, Bbox, but Area(Bbox) > Area(R1)+Area(R2) ... 89
Figure 4.1 – The No Fit Polygon ... 97
Figure 4.2 – Possible Placements .. 99
Figure 4.3 – Same Polygons, Different Solutions .. 99
Figure 4.4 – Test Data 3 .. 103
Figure 4.5 – Cache benefits (Test Data 1 & 2) ... 104
Figure 4.6 – Cache Benefits (Test Data 3) ... 104
Figure 4.7 – Effect of Re-evaluation ... 105
Figure 5.1 – Test Data 1 .. 112
Figure 5.2 – Test Data 2 .. 112
Figure 5.3 – Best Solutions Found (SA) .. 117
Figure 5.4 – Sample Solutions (Test Data 1) ... 122
Figure 5.5 – Sample Solution (Test Data 2) ... 122
Figure 6.1 – Test Data 1, α = 1, p = {0.1, 0.5, 0.9}, β = {0, 1, …, 30} 128
Figure 6.2 – Test Data 1, α = 5, p = 0.5, β = {0, 1, …, 20} 129
Figure 6.3 – Test Data 2, α = 1, p = {0.1, 0.5}, β = {0, 1, …, 30} 130
Figure 6.4 – Test Data 2, α = {1, 5}, p = 0.5, β = {0, 1, …, 30} 131
Figure 7.1 – Calculating the NFP for Non-Convex Polygons 139
Figure 7.2 – Distance of Point from a Line .. 140
Figure 7.3 – Using D-Functions to determine the relationship between AB and P
 ... 142
Figure 7.4a – AB intersects UV .. 143
Figure 7.4b – B touches UV .. 143
Figure 7.4c – A touches UV .. 143
Figure 7.4d – U touches AB .. 144
Figure 7.4e – V touches AB .. 144
Figure 7.4f – B and V touch .. 144
Figure 7.4g – A and V touch ... 145
Figure 7.4h – B and U touch ... 145
Figure 7.4i – A and U touch .. 145

Graham Kendall 5

Figure 7.4j – AB and UV do not overlap or intersect but are co-linear.............. 146
Figure 7.4k – AB and UV touch and are co-linear ... 146
Figure 7.4l – AB and UV overlap ... 146
Figure 7.5 – Checking for Intersection .. 147
Figure 7.6 – Nature of Intersections .. 148
Figure 7.7 – Determining Sliding Edge and Sliding Vertex 152
Figure 7.8 – Projecting Vertices .. 153
Figure 7.9 – Multiple Points of Contact... 155
Figure 7.10 – Polygons may intersect after extending vertices........................... 157
Figure 7.11 – Possibility of algorithm not terminating 158
Figure 7.12 – Algorithm does not have to produce a valid polygon 160
Figure 7.13 – Determining Sliding Distance when there is No Edge Intersection
 ... 162
Figure 7.14 – Simplification of Figure 7.13 for D-function Analysis 164
Figure 7.15 – Combining Two Polygons ... 167
Figure 7.16 – Polygon Relationships to Consider .. 169
Figure 7.17 – Whether to swap polygons or not when “BtouchesUV” 172
Figure 7.18 – Whether to swap polygons or not when “UtouchesAB” 173
Figure 7.19 – Whether to swap polygons or not when AandUtouch 175
Figure 8.1 – Graphical Representation of Table 8.8 ... 192
Figure 8.2 – Graphical Representation of Table 8.9 ... 195
Figure 8.3 – Category 1 Problems – EH001/002/003 No Rotation 200
Figure 8.4 – Category 1 Problems – EH001/002/003 Rotation 201
Figure 8.5 – Category 2 Problems – EH004/005/006 No Rotation 204
Figure 8.6 – Category 2 Problems – EH004/005/006 Rotation 205
Figure 8.7 – Optimal Solutions for problems EH001 and EH003 208
Figure 8.8 – Two Solutions from Blazewicz, 1993 Data 210

Graham Kendall 6

Tables

Table 1.1 - Typology of Packing and Cutting Problems (Hopper 2000b and based
on (Dyckhoff, 1990b)) .. 19
Table 2.1 - Survey Papers for Cutting and Packing Problems 27
Table 3.1 - Pairing Rectangles using Meta-Heuristic (GA, TS, SA) Algorithms .. 92
Table 5.1 – Random vs NextDoor Neighbourhood .. 115
Table 5.2 – Hill Climbing vs Simulated Annealing ... 115
Table 5.3 – Hill Climbing vs Simulated Annealing over a variety of parameters 116
Table 5.4 – Results using Test Data 2 ... 118
Table 5.5 – Tabu Search Test Results.. 119
Table 5.6 – Genetic Algorithm Test Results .. 121
Table 5.7 – Summary of Results ... 122
Table 5.8 – Results from Simplified Problem (copy of table 3.1) 123
Table 6.1 – Summary of Results ... 132
Table 6.2 – Algorithm Parameters ... 132
Table 6.3 - Memetic Algorithm for Test Data 1... 133
Table 6.4 - Memetic Algorithm for Test Data 2... 133
Table 7.1 – Detecting Intersections ... 150
Table 7.2 – Detecting if Orbiting Polygon Can Move the Full Distance 166
Table 8.1 – Best Results for Test Data 1 & 2 using Convex Algorithm 178
Table 8.2 – Results for Test Data 1 using Non-Convex No Fit Polygon Algorithm
 ... 179
Table 8.3 – Results for Test Data 2 using Non-Convex No Fit Polygon Algorithm
 ... 180
Table 8.4 – Approximating the NFP and Using Partial Evaluation 184
Table 8.5 – Using an Approximation of the NFP to Reduce Run Times 186
Table 8.6 – Searching for a Good Set of Parameters for the Memetic Algorithm189
Table 8.7 – Confirming the test results from table 8.6 190
Table 8.8 – Testing Hopper & Turton Data, Category 1 191
Table 8.9 – Testing Hopper & Turton Data, Category 2 194
Table 8.10 – Testing Hopper & Turton Data, Category 1 for 300 seconds 199
Table 8.10 – Testing Hopper & Turton Data, Category 2 data for 300 seconds.. 203
Table 8.11 – Results from (Hopper, 2000a), Expressed as % Over Optimal 207
Table 8.12 – Best Solutions from the work conducted during this thesis for
category 1 problems .. 207
Table 8.13 – Best Solutions from the work conducted during this thesis for
category 2 problems .. 208

Graham Kendall 7

Abstract
This thesis develops and investigates meta-heuristic and evolutionary approaches

to the stock cutting problem. In particular, we concentrate on hill climbing, tabu

search, simulated annealing, genetic algorithms, ant algorithms and two types of

memetic algorithm.

In carrying out this work, a number of diverse issues have had to be explored. It is

often the case that the evaluation function is a bottleneck within a search

algorithm. This thesis shows that by using a cache to store previously evaluated

solutions, the evaluation function does not have to be called when the solution is

already in the cache. This significantly improves the speed of the algorithm.

However, under certain circumstances, it is beneficial to re-evaluate a solution

even though it is stored in the cache. This thesis shows under which conditions this

applies and shows that the re-evaluation only has to be done with low probability

without affecting solution quality.

Ant algorithms are investigated for the first time with regard to stock cutting. This

algorithm is relatively new but has been applied successfully to difficult search

problems including the travelling salesman problem, vehicle routing and the

quadratic assignment problem. In addition, we have implemented and evaluated

hybrid ant algorithms with a local search operator.

This thesis also develops a no fit polygon algorithm, which is used to pack non-

convex shapes.

Throughout this thesis both tabu search and a genetic based memetic algorithm

consistently produce the best quality results. This is despite trying to find suitable

parameters for the other search algorithms so that they carry out more effective

searches.

The conclusion is that, although tabu search and a genetic based memetic

algorithm produce the best quality results, it does not follow that they are the best

search strategies for all problems. If there was one area of research that arose from

this work it is a need for investigating methods of applying the correct search

strategy to any given problem instance.

Graham Kendall 8

Acknowledgements

To my wife, Helen, for all her support throughout both my undergraduate and
postgraduate studies.

Also to the rest of my family, for the support over the past six years.

To my supervisor, Professor Edmund Burke, for all his help, support and advice
he has given me throughout the duration of my studies, both in relation to this
thesis and also in the advancement of my academic career.

To all the academic and research staff within ASAP, past and present, for making
my time spent at the University of Nottingham an enjoyable experience.

To Gerard Conroy, my third year project supervisor at UMIST, for first
introducing me to genetic algorithms.

Finally, to my internal examiner (Peter Cowling) and external examiner (Kath
Dowsland) for their thoughts and comments which have been incorporated into the
final version of this work.

Graham Kendall 9

“If we knew what it was we were doing, it would not be called research, would

it?” Albert Einstein

1. Introduction

Cutting material from stock sheets is a key process in a number of important

manufacturing industries such as the sheet metal industry, the paper industry, the

garment industry and the glass industry.

Cutting out the material in the most effective way usually has a financial incentive.

If a company is able to minimise the amount of waste it produces then there is a

quantifiable saving in the cost of raw material. This saving can either be passed on

to the customer which, in turn, makes the company more competitive in the market

place or the saving can be realised in increased profits for the company. In

addition, the company may be able to reduce its stock holding which can make

additional savings through improved cash flow. The company may also be able to

reduce its warehousing capacity, resulting in further savings.

Although the normal motivation for effective stock cutting is financial, companies

may have other objectives in implementing efficient stock cutting procedures. For

example, there may be a requirement to meet certain orders within a given time.

Chapter 1

Graham Kendall 10

Under these circumstances the order in which shapes are cut may be more

important than the packing so as to meet the deadline.

Consideration may also be given to the quality of the material being used. This is

particularly apparent in the leather industry where a given piece of leather is not

only an irregular shape but also consists of a number of different areas which vary

in quality. Different parts of the final garments may require leather of different

qualities. For example, the back of a leather jacket will require the leather of the

best quality, whereas leather used in the lining of the jacket can use material of an

inferior quality.

1.1 Aims and Objectives of this Thesis
Over recent years researchers have been using various techniques in order to solve

cutting and packing problems. However, it is difficult to find works which

compares many different search techniques when applied to the same problems.

This thesis addresses this issue by using a variety of search techniques to solve

instances of cutting and packing problems and comparing the results. This work

also introduces new algorithms to this problem domain. In particular, an ant

algorithm is applied, for the first time, to cutting and packing problems, as are

memetic algorithms. In addition, the problem of finding suitable parameters to the

search algorithms is highlighted.

The author could have chosen problems from a variety of domains (for example,

scheduling, timetabling etc.) but cutting and packing was chosen as it was of

interest to the author, a funding opportunity had presented itself (in the form of

Graham Kendall 11

EPSRC sponsorship) and there was always the possibility of developing

commercial links to develop the work even further.

In choosing this problem domain this work was able to contribute to the cutting

and packing field in a number of ways, not least of all, by developing a revised

algorithm to calculate the no fit polygon for two given polygons. It also applies ant

and algorithms to this problem for the first time.

The author hopes it is recognised that this thesis contributes to both the cutting and

packing field as well as the meta-heuristic and evolutionary computation field but

the author feels that the main contribution is in the comparison and development

of the search algorithms that have been employed.

1.2 What is the problem called?
One of the challenges in undertaking this work is being able to identify suitable

references. Dyckhoff (Dyckhoff, 1990b) gives examples from computer science,

operational research, engineering, manufacturing, and other disciplines, where the

cutting and packing problem needs to be solved. This has led to the same problems

being referred to in many ways (for example, bin packing, the trim loss problem

and one-dimensional packing). It was not until Dyckhoff (Dyckhoff, 1990b)

suggested a typology for the problem (see section 1.6) that it became apparent just

how diverse this subject had become. Unfortunately, although Dyckhoff is

frequently cited, many of the same multi-discipline problems remain to this day.

Below are just some of the terms that can be used to describe cutting and packing

problems.

Graham Kendall 12

Assortment Problem:
This problem is concerned with deciding which stock pieces to hold (and then
use) so that the objects being cut are done efficiently.

Bin Packing Problem:
An assignment of items to bins, minimising the height of the bins. Also see,
knapsack problem.

Cutting Stock Problem:
This is normally used as a generic term for the entire class of cutting and
packing problems. Strictly, the term should be used to refer to a problem
where the parts to be cut and the stock sheets are both rectangular.

Layout Problem:
An arrangement of the stencils (shapes) on the surface is called a layout
(compare with marker problem). Normally applies to the clothing industry.

Loading Problem:
Normally refers to three dimensional problems as these are often concerned
with loading pallets or lorries.

Knapsack Problem:
Determine a combination of a set of objects, that each have a value associated
with them, such that a function is minimised. This problem can be viewed as a
bin packing problem with some additional constraint on the value assigned to
each piece.

Marker Problem:
A legal placement of the stencils on the surface (compare with layout).
Normally applies to the clothing industry.

N-Partition Problem:
Consider all possible combinations of a set of numbers which sum to a given
N.

Nesting Problem:
Packing of irregular shapes. Often used in the ship building industry.

Orthogonal Packing:
The rectangles to be packed have to have their sides parallel to the bottom or
vertical edges of the bin.

Stencil Problem:
A set of irregularly shaped two-dimensional objects which have to be placed
on the surface.

Template Layout:
A stock cutting problem where there are no restrictions on the number of
shapes to be cut. For example, it might be necessary to cut a number of shapes
from a coil of sheet metal where the number of shapes to be cut is limited but
it is important to cut as many as possible.

Graham Kendall 13

Trim Loss Problem:

The waste material after all the shapes have been cut is often referred to as the
trim loss. This type of problem aims to minimise the trim loss.

1.3 Problem Dimensions
A stock cutting problem can be categorised in one of n-dimensions. The most

usual values for n are 1, 2 and 3 and these type of problems are discussed below,

followed by problems with higher values of n.

The one-dimensional (1D) problem can be seen as cutting pieces from a given

length of material. It is often referred to as strip packing. In this problem we are

only concerned with the length of the pieces that results from the cutting process.

The width of the resultant pieces is either immaterial or (more usually) fixed.

Typical applications for the 1D problem involves cutting lengths of steel from

steel bars. Many 2D problems can be converted to 1D problems by ignoring the

width of the pieces to be cut, thereby converting the problem to one in which only

the height of the shapes are of concern.

In the two-dimensional (2D) cutting problem we are concerned with cutting two

dimensional shapes from two dimensional stock sheets. The shapes can either be

rectangular in shape or can be irregular shapes.

Typical applications include glass cutting, sheet metal cutting and cardboard

cutting.

In the three-dimensional (3D) problem we are normally concerned with packing

three dimensional shapes into a given area.

Typical applications for the 3D problem include pallet loading and loading

delivery vehicles.

Graham Kendall 14

It might not seem possible that we can have an n-dimensional problem where n >

3, however, the n-dimensional stock cutting problem can be applied to applications

which might not seem immediately obvious. For example, arranging programs in

computer memory can be regarded as a 1D problem, where the width of the stock

sheet is the width of the memory (maybe 8 bits) and the height of the stock sheet

can be seen as the program length. Once we notice that many applications can be

viewed as a stock cutting application we can add further dimensions; for example

a temporal dimension. As an example, a 3D packing problem, such as loading a

goods delivery vehicle, may have a temporal dimension added due to the order in

which the goods will be unloaded. This results in attempting to pack the goods so

that they are easily accessible at each delivery point.

1.4 Types of Cutting
Guillotine cuts only allow a cut from one side of the stock sheet to the other. Some

problems only allow guillotine cuts and the shapes have to be laid out in such a

way as to accommodate this constraint. Figure 1.1 shows an example of two

layouts. One can be cut with guillotine cuts whilst the other cannot.

Graham Kendall 15

Figure 1.1 – Guillotine Cuts versus Non-Guillotine Cuts

Only guillotine cuts, for example, are allowed when cutting glass, due to the nature

of the material. The type of cutting tool can also dictate the type of cutting that is

allowed. If the company is cutting cardboard, a sharp blade (such as a Stanley

blade) could be used. If the items to be cut are packed tightly (i.e. next to each

other), they may be no scope to rotate the blade whilst within the cardboard.

Therefore, only guillotine cuts are allowed, with the blade being rotated outside

the confines of the material being cut. One company visited by the author (Molan

UK) cuts polycarbonate shapes from stock sheets. The shapes are ultimately used

in the manufacture of conservatories. To carry out the cutting operation Molan use

either a cross cut saw or a router. The cross cut saw can only perform guillotine

cuts. This is for the same reasons as described above with regard to cutting

cardboard, with the added constraint that the polycarbonate is too rigid to allow the

blade to rotate. Cutting using a router allows any pattern to be cut (depending upon

the material). This is due to the fact that the router is, in effect, a drill bit which

can move in any direction. The disadvantage is that the router is wider than the

cross cut blade so that the shapes have to be increased in size to accommodate for

Can be cut with guillotine cuts Cannot be cut with guillotine cuts

Graham Kendall 16

the waste produced by the router. Molan actually insist that their polycarbonate

shapes are laid out so that they can all be cut with guillotine cuts. This allows them

to use either the cross cut saw or the router for any job.

Another company visited during the course of this work (Esprit Automation Ltd.)

produce cutting machines for various industries. Their machines offer the option of

not having to be constrained by guillotine cutting but they need to deal with an

additional complication. As the cutting tool turns a corner it can lead to burring

which results in the corners of the shapes not being cleanly cut. To alleviate this

problem Esprit use a cutting pattern which leaves the shape at a corner and

performs a type of butterfly cut. This allows it to produce sharp corners. This

cutting operation is shown in figure 1.2, with the broken line showing the path of

the cutting tool.

Figure 1.2 – A Butterfly Cut

1.5 Placement versus Cutting
The ultimate industrial aim is normally to cut out a number of shapes from a given

stock sheet. However, for the purposes of research, the problem is often reduced to

simply laying out the shapes and disregarding the cutting operation. To find the

Graham Kendall 17

best layout is often acceptable but in some situations simply finding a good layout

may not be good enough to solve a particular problem. For example, an additional

constraint might be to minimise the cutting time. This could involve solving an

instance of a travelling salesman problem to find the shortest possible tour for the

cutting tool.

1.6 Classification
In order to make information exchange across different disciplines Dyckhoff

(Dyckhoff, 1990b) proposed a typology of packing problems. Packing problems

are formed from an intersection of geometry and combinatorics. Problems can be

divided between those involving some spatial dimension(s) and those involving

non-spatial dimension(s). The former group consists of packing and loading

problems in up to three dimensional Euclidean space. The latter group of problems

consist of those not involving a spatial dimension such as a temporal dimension or

an even more abstract dimension such as computer memory.

Those problems which operate in Euclidean space can be divided into cutting and

packing problems. Cutting problems are those which involve a large object(s)

(stock sheet, roll of material etc.) which must be divided into smaller objects,

usually represented as a set of orders. Packing problems involve filling a bin(s)

with a number of given shapes. From the above description it can be appreciated

that cutting problems are usually two dimensional and packing problems are

normally three dimensional.

Graham Kendall 18

These observations are shown in figure 1.3.

Figure 1.3 - Classification of Cutting and Packing Problems (Hopper
2000b and based on (Dyckhoff, 1990b))

Dyckhoff’s classification can be viewed as classifying any problem using four

characterics. This typology is shown in table 1.1. Using this proposed typology the

problems tackled in this work can be classified as 2/V/O/, that is, two dimensional

(2), a selection of large objects that must be packed with a number of smaller

items, all of which must be packed (V), there is only one large object (O). Further

examples of various problem types can be found in (Dyckhoff, 1992).

Geometric and Combinatorial Problems

Concrete Abstract

Cutting

• Paper
• Metal
• Glass
• Textile

• Capital Budgeting
• Coin Change
• Memory Allocation
• Multi Processor

Scheduling
• Knapsack Problems

Packing

• Vehicles
• Pallets
• Containers
• Bins

Graham Kendall 19

Characteristic Symbol Description
Dimension 1

2
3

One Dimension
Two Dimension
Three Dimensional

Kind Of Assignment B
V

All Objects and a Selection of Items
A Selection of Objects and All Items

Assortment of Large Objects O
I
D

One Object
Identical Figures
Different Figures

Assortment of Small Objects F
M
R
C

Few Items (of different figures)
Many Items of Many Different Figures
Many Items of Relatively Few Figures
Congruent Figures

Table 1.1 - Typology of Packing and Cutting Problems (Hopper 2000b
and based on (Dyckhoff, 1990b))

1.7 NP-Completeness
P problems are a class of problems that can be solved in polynomial time. They are

often referred to as easy problems as P problems include problems with running

times such O(log n) and O(n), but this class can also include such problems of

order O(n1000). Therefore, easy, does not necessarily transform to short

computation times.

Non-deterministic Polynomial problems (NP problems) are a class of decision

problems that has some algorithm that can guess a solution and then verify

whether or not the guess is correct in polynomial time.

One way to view these problems is to imagine an exponentially large number of

processors so that you can try all the guesses at once. Alternatively, you could be

very lucky and always guess right the first time. In this case NP problems become

P problems. One open question in computer science is whether NP problems = P

problems, assuming you do not have the luxury of an infinite number of processors

or can guess right every time, which is a realistic assumption.

Graham Kendall 20

Most scientists are convinced that P≠NP, that NP problems are inherently hard and

only have exponential time algorithms. But this yet to be proven.

If a problem is such that every problem in NP is polynomially transformable to it,

the problem is said to be NP-Hard. If in addition the problem itself belongs to NP

it is said to be NP-Complete. An example of a problem which is NP but not NP-

Complete is finding the XOR of two binary digits. The problem is NP, as it can be

verified quickly that the answer is correct. However, knowing how to XOR two

binary digits does not help solve another NP-Complete problem such as finding

the hamiltonian cycle in a graph. Therefore, this problem is NP but not NP-

Complete.

As an example of an NP-Hard problem consider a decision problem to decide if

there exists n star shaped polygons whose union is equal to a simple polygon, P1.

This problem is NP-Complete. The optimization problem, finding the minimum n

of star-shaped polygons whose union is equal to P1, is NP-hard.

The NP-Complete class is of interest as many important problems are known to be

NP-Complete. An example is the satisfiability problem. Given a logical

expression, is there an assignment of truth values to the variables of the expression

that make it true?

Bin Packing has been shown to be NP-Hard in the strongest sense as there is little

hope of finding a polynomial time optimisation algorithm for it (Garey, 1979).

Coffman (Coffman, 1988) shows how the one-dimensional bin packing problem

can be reduced to a problem of deciding whether a list of numbers can be

Graham Kendall 21

partitioned into two sets with equal sums. This problem has been shown to be NP-

Complete by (Karp, 1972).

Garey and Johnson (Garey, 1979) is recognised as the standard text on NP-

Completeness.

1.8 Motivation for this work
The nesting problem (and variants) have been studied since the 1940’s so it is

reasonable to ask why is there still an interest in studying this problem? The

answer lies in the fact that there are new techniques that can be applied in

searching for good quality solutions to the problem.

The motivation behind this work is two-fold. Firstly, although the problem has

been the subject of rigorous research there are many new areas for research. This

can be seen, for example, in the commercial arena. Over the duration of this

research the author has spoken to a number of companies who all need better ways

to nest shapes so as to minimise their waste. The problems are compounded by

additional constraints set by the companies. This only makes the problem even

more challenging. To demonstrate that this area is still very much a research topic,

one company the author is working with (Esprit Automation Ltd.) has committed

about £50,000 over a three year period. This supports two EPSRC funded projects

(a Teaching Company Scheme award and a CASE for New Academics award),

which run from October 2000 for three years.

A second motivation for this research is to apply modern search techniques to this

problem. This has been done in previous work but this is the first time a variety of

Graham Kendall 22

techniques have been applied and compared against one another. In particular, this

is the first time ant algorithms have been applied to the nesting problem.

1.9 Outline of the Thesis
This work concentrates on the 2D packing problem. In particular, meta-heuristics

and evolutionary algorithms are used to search for good quality solutions to these

problems. In addition, the concept of the no fit polygon (NFP) is used to pack two

shapes together in the most efficient way.

In chapter 2 a review of related work is presented. A detailed review of cutting and

packing is presented, along with a review of various meta-heuristic and

evolutionary algorithms.

Chapter 3 presents a simplified problem that was used in order to show that the

search techniques applied in the rest of the work are able to effectively explore the

search space. This work was published by Burke and Kendall (Burke, 1998).

In chapter 4 methods are presented that allow the search algorithms to be speeded

up. Particular emphasis is placed on the evaluation function which is the most

computationally expensive part of the algorithm. This work was published by

Burke and Kendall (Burke, 1999d).

Convex problems are studied in chapter 5 which uses a convex version of the NFP.

Five search techniques are used; Hill Climbing, Simulated Annealing, Tabu

Search, Genetic Algorithms and Memetic Algorithms. This work was published by

Burke and Kendall (Burke, 1999a), (Burke, 1999b).

In chapter 6 particular emphasis is placed on the ant algorithm search technique as

this has never before been applied to cutting and packing problems. The algorithm

Graham Kendall 23

is described along with the way it has been applied to cutting and packing

problems. The results are compared to those from chapter 5. This work was

published by Burke and Kendall (Burke, 1999c).

In Chapter 7, the NFP is considered in some detail, paying particular regard to the

non-convex algorithm. One particular contribution of this thesis is in presenting a

revised algorithm that allows calculation of the no fit polygon for non-convex

shapes. In addition, some recent work is discussed as, during the latter part of this

work, other researchers Bennell, Dowsland and Dowsland (Bennell, 2001),

independently, published a non-convex NFP algorithm.

Chapter 8 utilises the revised NFP algorithm so that non-convex problems can be

tackled. The results are compared against those from chapter 5. In addition, further

problems are tackled to demonstrate the effectiveness of the techniques used.

Summary and Conclusions, with suggestions for further work, complete the work.

Graham Kendall 24

“Any change in structure and function which can be effected by small stages,
is within the power of natural selection.” Origin of Species

2. Related Work

This chapter presents the related work with regards to this thesis. Cutting and

Packing is treated mainly chronologically. Following the discussion on cutting and

packing, the other two areas of particular importance to this thesis are addressed;

computational geometry and search methods.

2.1 Cutting and Packing
2.1.1 Introduction

The stock cutting problem has been a research area since the 1940’s, although the

main research started in the early 1960’s. Over the past half-century many

techniques have been developed in order to produce good cutting patterns for a

variety of problems and industries.

Due to the problem being NP-complete, exact techniques, such as linear

programming cannot be used for large instances of the problem. In recent years

heuristic based techniques have been applied to the problem and this is likely to

continue to be an active research area for many years. This is not only due to the

Chapter 2

Graham Kendall 25

fact that heuristic based approaches have been shown to produce good quality

solutions to the problem but also due to the fact that new heuristic approaches are

being investigated all the time. As an example, this work considers ant algorithms

for the first time in the context of cutting and packing.

In the future, as well as continuing to develop heuristic based approaches a new

idea, named hyper-heuristics, is starting to attract academic interest. This approach

develops heuristics that choose other heuristics in order to find a good solution for

a particular problem instance. In fact, the author has just started working in this

area and the results will, hopefully, be implemented within a commercial

application. This work is being done with the support of two EPSRC grants (a

CASE for new Academics award and a Teaching Company Scheme award) and

with additional funding from a local company (Esprit Automation Ltd.).

It is interesting to note how interest in the subject has developed over the years. In

(Sweeney, 1992) a summary of the papers published for the stock cutting problem

between 1940 and 1990 is given. Sweeney lists over 350 papers, various

dissertations and theses as well as work in progress and conference proceedings. In

total over 400 references are given. A summary, by year, of the number of papers

published is shown in figure 2.1.

Graham Kendall 26

Figure 2.1 - No. of published papers between 1940 and 1989
(Sweeney, 1992)

It can be seen how interest has developed since the 1960’s. It would not be

practical to mention every paper that has been published in this literature review.

Therefore, the approach taken is to highlight those papers which are thought to be

the most important within the field and also those most applicable to the research

area that this thesis addresses.

Over the years there have been several survey documents produced looking at

work carried out to date. The main survey papers are listed in table 2.1.

Number of Stock Cutting Papers Published up
to 1990

12 33
88

206

0

100

200

300

Pre 1960 60's 70's 80's

Graham Kendall 27

Author(s) Year Author(s) Year
Brown 1971 Martello and Toth 1987
Salkin and de Kluyver 1975 Rode and Rosenberg 1987
Golden 1976 Dyckhoff, Finke and Kruse 1988
Hinxman 1980 Dyckhoff and Wäscher 1990a
Garey and Johnson 1981 Coffman and Shor 1990
Israni and Sanders 1982 Dowsland 1991
Sarin 1983 Haessler and Sweeney 1991
Rayward Smith and Shing 1983 Dowsland and Dowsland 1992
Coffman, Garey and Johnson 1984a Dyckhoff and Finke 1992
Berkey and Wang 1985 Sweeney and Paternoster 1992
Dowsland 1985 Dowsland and Dowsland 1995
Dyckhoff, Kruse, Abel and Gal 1985 Hopper and Turton 1997
Israni and Sanders 1985 Hopper and Turton 2000a
Dudzinski and Walukiewicz 1987

Table 2.1 - Survey Papers for Cutting and Packing Problems

The review by Hopper and Turton (Hopper, 2000a) is particularly useful, being the

most recent. The author has also found K. Dowsland and W Dowsland

((Dowsland, 1985), (Dowsland, 1991), (Dowsland, 1992) and (Dowsland, 1995))

to be particularly useful during the course of this research, due the number of

survey papers they have published and due to the their depth of experience in this

field.

2.1.2 The Stock Cutting Problem

In 1940 Brooks et.al. (Brooks, 1940) published a paper discussing how to dissect a

rectangle into squares. Nothing more was published on stock cutting problems for

over ten years, until Dantzig (Dantzig, 1951) and Kantorovich and Zalgaller

(Kantorovich, 1951) highlighted the relationship between the stock cutting

problem and linear programming (LP) theory.

Graham Kendall 28

(Paull, 1956), (Eisemann, 1957), and (Vajda, 1958) used linear programming

techniques to solve a restricted version of the rectangular layout problem when

cutting rolls of paper.

Most of the work done before 1960 was concerned with the paper manufacturing

industry. In 1961 Gilmore and Gomory (Gilmore, 1961) presented a linear

programming method that, for the first time, solved the one-dimensional cutting

problem to optimality. In (Gilmore, 1963) this work is developed further and was

applied to the problem of cutting paper. They give an example of the complexity

of the problem by stating that faced with a standard roll of paper of 200in and a

demand for forty different lengths ranging from 20in to 80in the number of

possible cutting patterns can exceed 100 million. This means they are faced with

an LP problem with up to 100 million columns. In their paper they outlined a

column generation procedure that avoided this difficulty. The procedure involves

solving a knapsack problem at every pivot step.

Many future papers would refer back to this work and develop it further.

In (Gilmore, 1965) Gilmore and Gomory presented a method for solving the two-

dimensional stock cutting problem. They had to place some restrictions otherwise

the number of columns in the LP model was too great. However, they argued, that

many industries have such restrictions and that their work could still be used to

solve practical problems. One restriction they placed on the problem was that the

cutting had to be done in stages. In effect, this meant only allowing guillotine cuts.

Graham Kendall 29

In (Gilmore, 1966) they studied more closely the knapsack problem when it is

applied to one and two-dimensional stock cutting. In this work they used a

dynamic programming technique.

In (Wolfson, 1965) the trim loss problem was approached from a different angle.

Instead of trying to minimise the waste using available stock lengths, Wolfson

considered the best lengths to hold in stock so that trim loss was minimised. If, for

example, you have two stock lengths of 22” and 17” and you need to cut two

lengths of 12” then the trim loss is 15” ([22-12] + [17-12]). But if the stock lengths

were 20” and 16” then the waste is only 9”.

The problem is that as the number of stock lengths and required lengths increases,

so does the scale of the problem. Wolfson states that if you are trying to cut ten

lengths from one hundred stock lengths then there are 1.7x1012 combinations.

In order to reduce the problem to manageable proportions Wolfson points out that

certain trim losses remain fixed no matter what stock lengths are being used. If, for

example, you have stock lengths of 17” and 22” then any length greater than 17”

must be cut from the 22” stock item. In this case the waste remains constant. This

principle is used to reduce the size of the problem space.

This work was enhanced by (Cohen, 1966) who showed that the problem could be

modeled using dynamic programming.

(Barnett, 1967) showed that a simplified version of the stock cutting problem

could be solved using simpler algorithms that those previously presented. Their

algorithm allows non-guillotine cuts which are often necessary in order to obtain

an optimal solution. The ability to allow non-guillotine cuts was at the expense of

Graham Kendall 30

placing restrictions on the size of rectangles with regards to their relationship to

one another.

The placement of the rectangles is based on the method of removing two opposite

corners of a chess board and then filling the remainder of the board with dominoes

(Golomb, 1966).

In 1968 (Hahn, 1968) presented an algorithm that optimally produced a layout for

stock sheets that contained defects. In fact, the defects were marked as rectangles

on the stock sheet and the other rectangles were fitted in around these. All the

stock sheets were considered to be of the same size.

The algorithm was based on the dynamic programming technique of (Gilmore,

1966) but, as the cutting process was done in three stages, it only needed to solve

one-dimensional problems.

The technique assigned a value to each rectangle. It is important that a large

rectangle be assigned a higher value than two rectangles with the same combined

area. This is because it is harder to place a large rectangle especially when the

stock sheet contains defects. The values for the rectangles are calculated using a

quadratic function, which allows the user to supply two coefficients which can be

changed to introduce some priority rules. Other user-defined functions are also

allowed to assign values to the stock sheets but the functions must be non-linear.

(Haims, 1970) considered the problem of packing irregular shapes into rectangles

and then packing the rectangles using a dynamic programming approach. This was

to be the first of many solutions that took this two-stage approach.

Graham Kendall 31

Haims presents the method he uses to pack the rectangles. The clustering method,

which clusters a number of shapes into the smallest enclosing rectangle, is

presented in (Haims, 1966).

Eilon and Christofides (Eilon, 1971) looked at the knapsack problem as a zero-one

programming problem and also developed a heuristic to solve the same problem.

They applied both programs to the same fifty problems. In all but two, the

heuristic method found the optimal solution, using significantly less computational

time than the zero-one method. The heuristic method worked by sorting the items

to be packed in ascending order of value and also sorting the available space in

each knapsack in ascending order of size. Then the algorithm searched through

both lists and assigned items to the best available space. There was also a “re-

shuffle” procedure which improved feasible solutions but it was found that this

was not always needed.

(Haessler, 1971) pointed out that the trim loss was not the only factor that should

be considered when trying to devise a suitable cutting pattern. It may be the case

that an optimal cutting pattern requires that the operators have to frequently set up

the machine in order to accommodate a new pattern. It might be preferable to have

a less optimal cutting pattern (i.e. with higher trim loss) but which results in the

operators not having to attend to the cutting machine as often.

Haessler formulated the problems as a mathematical programming model and used

a heuristic procedure from a PhD dissertation (Haessler, 1968) to solve the

problem.

Graham Kendall 32

In (Haessler, 1975) a stock cutting problem, where the trim loss is not the only

consideration, is formulated such that it had a certain aspiration level. If the

aspiration level was not reached in one iteration it was lowered and another

iteration was done. This continued until a solution was found within the aspiration

level.

(Herz, 1972) used a recursive search technique for multistage guillotine cutting

problems. It was an improvement over exhaustive iterative-type approaches but

was not efficient for medium sized problems.

Dyson et. al. (Dyson, 1974) also considered the problem where the trim loss is not

the only factor to consider. They stated that, in practice, there were many factors

that had to be taken into account when devising a cutting pattern. One example

they give is that if an order is not completed in a continuous number of stock

sheets then the partially competed order has to be taken from the production line

and stored until the other parts of the order have been cut.

In order to overcome this they use Gilmore’s linear programming model to create

a cutting pattern and then they used a travelling salesman algorithm to order the

cutting patterns so that there are no discontinuities in the orders. They also tried a

heuristic approach but reported that it was only marginally better than the manual

methods and could not be implemented for practical reasons (e.g. the computer

being too far away from the shop floor).

In (Freeman, 1975) an algorithm is given that encloses a shape into a minimal

rectangle which could then be packed using one of the known algorithms.

Graham Kendall 33

(Adamowicz, 1976a) presented a method for laying out rectangles using a dynamic

programming method. The method mimics the way a human operator would lay

out rectangles. That is, by laying the rectangles, that have at least one common

dimension into strips. The solutions were not often optimal but they were

generally good and the computation times were reasonable.

Adamowicz and Albano (Adamowicz, 1976b) considered how to cluster shapes

into rectangles as it is easier to lay out rectangles on a stock sheet rather than a

given set of polygons.

This work has been much cited mainly due to the use of the No Fit Polygon (NFP),

which had originally been presented in (Art, 1966). The NFP allows you to find all

the possible positions that one polygon can take with respect to another so that the

polygons touch but do not overlap. Using this approach it allows you to find the

minimal enclosing rectangle for two polygons.

The NFP forms a major theme throughout this thesis. There are two methods to

calculate an NFP for non-convex polygons. One method uses the orbiting principle

described in section 4.2 and which is investigated in more depth in chapter 7 of

this work for non-convex pieces.

An alternative method is to use minkowski sums. Minkowki sums are widely used

in robot motion planning [(Canny, 1987), (Ghosh, 1993), (Lozano-Pérez, 1979),

(O’Rourke, 1998), (Ramkumar, 1996), and (Schwartz, 1990)] and in image

analysis (Serra, 1982).

Graham Kendall 34

In chapter 3 of (Zhenyu, 1994) “The Theory of Minkowski Sum and Difference” is

presented, with particular reference to compaction algorithms. In this work the

author states

“Although the Minkowski sum and difference has been extensively used in robot motion

planning via the configuration space approach, we have seen very few efforts in applying it

to packing problems.”

The work proceeds to show how to calculate the minkowski sum and difference

for intersection and containment problems, in particular proving a crucial property

with respect to starshaped polygons which results in a simplified algorithm for

computing the minkowski sum for these type of polygons.

In (Bennell, 2001) the authors state

“However, unless all the pieces are convex, it is widely perceived as being difficult to

implement [the no fit polygon], and its use has therefore been somewhat limited.”

indicating that calculating the no fit polygon for non-convex pieces is still an

active area of research. Bennell’s paper presents a revised and simplified method

for deriving the no fit polygon using minkowski sums and derives a set of simple

rules that are easier to implement.

In this thesis the orbiting method of calculating the NFP is used (with

modifications – see chapter 7) although we would like to have had access to

(Bennell, 2001) earlier in this PhD programme.

Adamoiwicz and Albano (Adamowicz, 1976b) describe how to cluster two

polygons together but the principle can be extended to cluster any number of

Graham Kendall 35

polygons together. The authors also present a number of problems such as finding

a workable data structure for polygon manipulation. This is potentially

computationally expensive and has high storage costs. Another problem they pose

is trying to find suitable pairs of polygons to cluster from the given set of

polygons. One suggestion as to how best to do this is to choose two shapes that are

roughly the same size and rotate one through 180°.

The work in (Adamowicz, 1976b) was used in (Albano, 1977) where the

techniques were used in an interactive system that allowed the operator to

manipulate the layout proposed by the algorithm. As well as briefly describing the

method again and presenting the data representation the paper also describes the

functionality that is available to the operator.

The work from (Haessler, 1971) was developed by Coverdale and Wharton

(Coverdale, 1976). Like Haessler’s work their enhanced heuristic algorithm

considers other factors other than simply trim loss (e.g. set up time for the machine

operators).

Chambers and Dyson (Chambers, 1976) looked at the stock cutting problem from

a different angle. In some ways it was similar to (Wolfson, 1965) in that they

considered the best stock sizes to hold rather than trying to simply reduce the trim

loss using the available stock sizes. Whereas Wolfson considered the one-

dimensional problem, Chambers and Dyson applied the problem to a two-

dimensional situation (glass cutting).

The paper uses two techniques (integer programming and a heuristic method).

Both methods made real savings when applied to real-life problems.

Graham Kendall 36

Christofides and Whitlock (Christofides, 1977) suggested a tree search approach

for the two-dimensional problem that had a restriction of only allowing guillotine

cuts.

The search tree that is produced is reduced in size by ensuring that there are no

duplicate nodes (for example, by the same cutting pattern being produced by a

different sequence of cuts).

Good computational results were recorded for medium sized problems (for

example, twenty rectangles taking an average of 130 seconds and generating a tree

with 38,807 nodes).

In 1978, Albano and Orsini (Albano, 1978) also presented a tree based solution

which was applied to generic knapsack problems and M-Partition problems.

The solution they present has a simple structure, linear storage requirements and,

on average, lower computation times than other algorithms.

The work done by Gilmore and Gomory in 1961 and 1963 (Gilmore, 1961 and

1963) was improved by (Haessler, 1980) when he produced a modified algorithm

that gave the same trim loss values but produced solutions with better

characteristics. For example, the algorithm used fewer stock sheets. The improved

algorithm was at the expense of computational speed but the increased execution

time was negligible.

Albano and Osrini (Albano, 1980b) state that the two-dimensional stock cutting

problem, even with a guillotine cutting restriction, when stated as a mathematical

model, can only be solved to optimality for medium sized problems. This is due to

Graham Kendall 37

the time and space complexity. In their paper they present a tree search heuristic

algorithm. It is an improved and extended version of (Adamowicz, 1976a). The

heuristic is still based on laying out rectangles into strips using a bottom left

placement policy but, in addition, the problems can be broken down into sub-

problems. How this sub-problem generation is solved is defined by one of six

strategies. Experimental results are shown, together with the data that produced

those results.

In (Baker, 1980a) a heuristic was presented which packed rectangles at the bottom

left of the stock sheet. Using this heuristic it can be shown the employment of an

unordered list of rectangles can result in bad packing patterns. However, simply

sorting the list of rectangles by decreasing order of widths guarantees that the total

bin height is at most three times the optimal height.

This work was improved by Coffman et. al. (Coffman, 1980) when they presented

two new algorithms (Next Fit Decreasing Height (NFDH) and First Fit Decreasing

Height (FFDH)). Both algorithms take the rectangles to be nested, sort them into

height order and place them in rows. For example, the FFDH algorithm tries to

improve the nesting efficiency by placing rectangles at the end of rows that still

have space available.

In (Albano, 1980b), for one of the first times (if not the first), the term Artificial

Intelligence (AI) was used in connection with the stock cutting problem. Albano

and Osrini formulated the search for an optimal solution as a heuristic search and

used terms which are common in the domain of AI today. For example, they talk

Graham Kendall 38

about the search being in a certain state and applying operators to move from one

state to another.

The approach they use is an A* algorithm (although they do not use the term).

They expand the lowest cost search node which is given by the evaluation function

g(n)+h(n), where g(n) is the cost of the search so far and h(n) is a heuristic

measure that estimates the amount of waste in the optimal solution should the

current piece be included in the placement. If it were possible to find suitable

values for h(n) then an optimal solution could be found. However, this is not

possible so only “good” solutions can be found. In addition, other restrictions are

placed on the search so that the computational times are acceptable. For example,

the size of the search tree is limited and the number of successor states is also

limited.

Dyckhoff, in 1981, (Dyckhoff, 1981) stated that the LP model developed by

Gilmore and Gomory in the early 60’s (Gilmore, 1961, 1963, 1965) did not work

in some situations. Dyckhoff presented another LP model that had advantages

when there were many items to be cut or there were a large number of stock items.

This model is also able to deal with cases where the trim loss is not valueless and

can be used later in the cutting process.

Another heuristic solution was presented in (Bengtsson, 1982). This addresses the

problem of both two-dimensional bin packing (where you can consider the bin as

an open ended rectangle) and where the rectangles are fixed in size (i.e. several

stock sheets of given sizes). The rectangles are allowed to rotate through 90°. The

heuristic sorts the rectangles and then arranges them in piles. As the algorithm

Graham Kendall 39

progresses it checks to see if the current arrangement has any chance of beating the

best arrangement known so far (by assuming that there is zero waste for the

remaining rectangles). If the previous best arrangement is better than the current

one then the current search terminates.

The algorithm is not looking for an optimal solution but it aims to find a near

optimal solution in a reasonable amount of time. Experiments on randomly created

rectangles produced trim loss of between 2% and 5%. The authors cannot compare

their results with earlier work as nobody has tackled exactly the same problem.

A new LP solution to the knapsack problem was presented in (Akinc, 1983). This

solution gave optimal values for many of the variables very quickly. A branch-

and-bound technique was then applied to the reduced problem. The method

worked efficiently for up to 5000 variables.

(Chazelle, 1983) developed this work. The best known implementations required

O(N3) steps. The implementation of the algorithm in this paper required linear

space, O(N), and quadratic time, O(N2). The paper also discusses the data structure

required to implement the algorithm and how that data structure should be

updated.

Otten (Otten, 1982) produced a data structure called the Slicing Tree Structure.

This allowed a series of cuts to be represented as a tree, with each node

representing one cut to the stock sheet. Although the idea was first proposed with

floorplan design in mind the structure has been used in various stock cutting

problems.

Graham Kendall 40

Wang (Wang, 1983) used a heuristic approach that, unlike (Christofides, 1977),

did not attempt to find all the possible cuts that could be made and thus find the

optimal cutting pattern. Wang’s approach was to iteratively add rectangles

together to form patterns that were suitable for guillotine cutting. Wang gives the

data used for the testing and reports that the results were good.

Dori and Ben-Bassat (Dori, 1984) looked at the problem of placing irregular

shapes (polygons) onto a plane (stock sheet). The paper considered the template-

layout problem. The approach adopted was two phased. The first stage was to find

a convex polygon that fitted around the shape. Next, a suitable polygon was found

that could be used to enclose the shape and that was also suitable to tile the plane.

Test data and results are given and various limitations of the algorithm are listed.

Roberts (Roberts, 1984) used a heuristic technique to tackle the problem of cutting

worktops for a local company. The problem could not be formulated as an LP

model due to the “L” shaped pieces. Four other reasons are also given as to why

the LP model developed by Glimore could not be used.

The heuristic Roberts used is a two stage approach. The first stage effectively

breaks down the problem into a series of one-dimensional problems by cutting all

the straight pieces and pairing “L” shaped pieces so that they are similar to one

straight piece.

Shapes which do not fit into this one-dimensional scheme are catered for on an ad-

hoc basis by the heuristic.

Graham Kendall 41

Roberts system was actually developed for a customer and in the first twelve

months it was judged to have produced less waste than the previous manual

system. In addition there was no noticeable build up of offcuts.

In 1985 Beasley (Beasley, 1985a) presented an exact algorithm that solved the

two-dimensional stock cutting problem that was not restricted to guillotine cuts.

This was the first time an exact algorithm for this problem had been presented.

The method uses a zero-one integer model and allows moderately sized problems

to be solved in realistic times.

Beasley published another paper in 1985 (Beasley, 1985b) in which he pointed out

an error in (Glimore, 1966) and provided a correct dynamic programming model.

This model is applied to large problems and the results are presented.

Also in 1985 a short paper (Smith, 1985) applied genetic algorithms (GA) to the

bin packing problem. The problem was represented as a list of rectangles and two

algorithms, SLIDE PACK and SKYLINE PACK, were used to process the list to

fit the rectangles into the bin. SLIDE PACK places a rectangle in a corner of the

bin and lets it fall to the farthest away corner, as if under gravity but which drags it

in a diagonal direction. The effect is a zigzag motion as the rectangle falls into

place. SKYLINE PACK is slower as its tries all possible positions and all

orientations. However, it leads to better packings.

A modified crossover operator had to be used as standard crossover would have

produced invalid solutions, in the same way that a standard one-point crossover

used for solving an instance of the travelling salesman problem would lead to

Graham Kendall 42

invalid tours. Evaluation was carried out on the basis of how well the rectangles

had been packed (i.e. trim loss)

The GA produced similar results to a technique based on dynamic programming

and using heuristics but produced the results 300 times faster. If higher packing

density is required the program can simply be left to run for a longer period.

Dagli (Dagli, 1987) used a heuristic approach to solve the two-dimensional cutting

problem. A number of constraints are presented that can arise in this type of

problem (e.g. sheet defects) but only three are used within the paper. These are;

the rectangles must not overlap, the rectangles must lie within the boundary of the

stock sheet and there must be a specified tolerance between the shapes to allow for

cutting.

The heuristic is based on the idea of assigning a priority to each shape. This

priority is used to select which shape to place next. Eleven priority rules are built

into the system together with a user definable priority.

Two of the priorities include the maximum and minimum area. Even using these

simple priorities the trim loss was reduced from 20% to 7.7% using a real life

example.

Qu and Sanders, in 1987, (Qu, 1987) tackled the problem of nesting irregular

shapes. The approach either enclosed the shape in a rectangular module or broke

the shape down into a number of rectangles. Qu states that little work has been

done in the area of irregular shape nesting but recognises the work of (Haims,

1970), (Adamowicz, 1976b) and (Roberts, 1984). Qu discarded the idea of

developing a data structure to store a complete shape representation. This decision

Graham Kendall 43

was made for two reasons. Firstly it uses valuable computer memory. Secondly the

computational requirements to manipulate such a representation would be too

great. Instead, if shape representation was required to greater accuracy, this could

be achieved by using smaller rectangles to mimic the contours of the shape.

The heuristic that Qu used was based on placing rectangles as near to the bottom

left hand corner as possible.

(Berkey, 1987) looks at the two-dimensional bin-packing problem by adapting the

bottom-left bin packing heuristics. The authors present implementation details and

their results indicate that their heuristics are suitable for practical use.

(Sarker, 1988) formulated a dynamic programming model that solved the one-

dimensional slitting problem. The model takes into account defective areas so that

the cuts can be made so as to maximise the value of the resultant pieces.

Towards the end of the 80’s a simulated annealing approach was applied to the bin

packing problem (Kampe, 1988). This is an optimisation technique first introduced

by Kirkpatrick et al. (Kirkpatrick, 1983).

In 1991 (Dietrich, 1991) presented a rule based approach to the trim loss problem.

It was based on the principle of the rectangular stock sheet consisting of a number

of holes (initially one hole covered the entire stock sheet). The next best stock

piece was chosen in order to fill one of the holes. This has the effect of reducing

the size of one of the holes, maybe creating another hole and possibly allowing

another hole to expand.

It was shown that it was more preferable to select a stock piece that had a “two-

degree” fit (that is, it fits a hole exactly in both its dimensions). Following that it

Graham Kendall 44

was preferable to choose a “one-degree” fit rectangle (fits a hole exactly in one of

its dimensions). Lastly, a “zero-degree” fit was chosen. That is, a stock piece that

fits into a hole but one of its dimensions is not the same as any of the dimensions

of the hole.

When there was a choice of two stock pieces various heuristics were tried. For

example, longest piece, largest area etc. Area heuristics were found to out-perform

length based heuristics.

The algorithm was tested using previously published data and results shows that it

performs well.

(Yeong, 1991) reports the experiences of a Singaporean company. After outlining

research to date the authors describe their particular problem. As none of the

published research is able to solve their problem directly they develop their own

three stage heuristic, with each stage being optional depending on the outcome of

the previous stage. The result of the heuristic is a list of stock items to order. That

is, the heuristic solves the assortment problem as opposed to the trim-loss problem.

(Prasad, 1991) uses a heuristic approach to nest sheet metal blanks. The heuristic

sorts the blanks in descending order of area. It takes each shape in turn and tries to

fit it in various positions in relation to those shapes already placed.

Jain et. al. (Jain, 1992) used simulated annealing to produce an optimal solution

for nesting blanks. Their approach places no restriction on the shape of the pieces

to be nested but only allows two or three shapes. This is done on the basis that

producing blanks from, say, a coil of sheet metal only requires two or three shapes

to be nested and then the pattern is repeated.

Graham Kendall 45

Due to the fact that there is no restriction on the shapes that can be nested there are

various geometry problems that need to be addressed. These are more fully

discussed in the geometry section of this literature review but the problem is

essentially how to detect if two shapes overlap.

When compared to a multi-start algorithm (e.g. hill climbing and returning the best

solution from a number of runs) it was found that the simulated annealing

approach found a solution with about half the trim loss of a multi-start approach.

(Arbel, 1993) used a column generation procedure to pack irregular shapes. But,

due to the potential number of columns a pruning strategy was used to limit the

number of columns that were actually generated.

The time complexity of the algorithm was further reduced by estimating the

packing area that a particular column would produce rather than actually doing the

packing.

In 1993 (Dowsland, 1993) developed a “jostle” algorithm. Pieces are initially laid

out using a leftmost placement policy, using a random ordering of the pieces.

Unlike (Albano, 1980a) the placement of the pieces is not limited by the profile of

those already placed. Pieces are allowed to jump over one another and fill holes.

The pieces are then “jostled” to try and produce a more compact packing.

In 1993 (Oliveira, 1993) used simulated annealing for the nesting problem.

Although this optimisation technique had been used for bin packing (Kampe,

1988) and nesting a small number of repeating blanks (Jain, 1992), this was the

first time it has been used for a general nesting problem. The simulated annealing

algorithm which laid out the pieces randomly (allowing overlaps). The

Graham Kendall 46

neighbourhood was defined as the movement of one piece to an adjacent position.

The objective function minimised the total length of the plate and penalised

overlap.

Another meta-heuristic approach, tabu search, was used by (Blazewicz, 1993).

They employed a similar neighbourhood structure to (Oliveira, 1993) except that

the piece being moved was not allowed to overlap other pieces.

(Cagan, 1994) used shape annealing which is a development of the simulated

annealing idea. Shapes are defined by grammars which dictate permissible

orientations of the pieces. The shape annealing algorithm is used to determine

whether a randomly selected shape rule should be applied to the current

configuration. The example presented in the paper is to pack as many half

hexagons as possible into a predefined area. The results are acceptable but not

provably optimal.

This extended simulated annealing method is then applied to the knapsack

problem and the author reports good, though not optimal solutions.

(Vasko, 1994) considers the assortment problem where a two-stage cutting

approach is used that only allows guillotine cuts with the first series of cuts being

made across the width of the material and the second series of cuts being made

parallel to the width.

The algorithms used are based on a modified version of the authors program from

1991 (Vasko, 1991) and a facility location algorithm developed by Erlenkotter

(Erlenkotter, 1978)

Graham Kendall 47

Heckmann and Lengauer (Heckmann, 1995) uses simulated annealing, with a

dynamic cooling schedule, for the nesting problem (specifically the textile industry

which has a range of specific constraints).

As well as describing the cooling schedule and the type of moves allowed the

paper also discusses two different ways that shapes can be represented. Both

models were tested and the polygonal model was preferred to the raster model

because of the improved accuracy given by this representation.

The approach works by initially laying out the shapes so that they fit loosely on to

a stock material. Simulated annealing is then used to move the shapes around.

During this process overlaps are allowed but the final configuration must not have

any overlapping shapes.

(Vassilos, 1995) also used simulated annealing to pack arbitrarily shaped

polygons. Much of their work was based on (Jain, 1992). Unlike Jain the number

of shapes to be packed is not limited to just two or three. The approach used by

Jain to detect overlapping shapes (based on detecting intersecting lines) is not

suitable for Vassilos’s algorithm as it does not allow for one polygon being

completely enclosed by another. Therefore another method is used based on

(Sedgewick, 1992).

Vassilos et. al. also show that a simple decrement cooling schedule is not suitable

for the larger polygon packing problem. Instead they suggest a polynomial cooling

schedule and show that it is effective by using it to pack circles in a square which

they compare against previous results using other methods to perform this type of

packing.

Graham Kendall 48

Heistermann and Lengauer (Heistermann, 1995) looked at the nesting problem

within the leather industry. Like the textile industry they are typically working

with non-rectangular shapes. In fact, the paper deals with polygonal shapes with

pre-processing of any shapes that are not already in this form.

The leather industry has particular constraints which need to be considered. For

example, different areas of the hide are of different quality and have to be used for

different parts of the finished garment. Also, some parts of the hide may be

unusable due to, for example, the hide having marks from a barb wire fence.

To tackle these difficulties the hide is split into different quality zones.

The method used by Heistermann and Lengauer is a heuristic greedy algorithm.

They report waste of between 20% and 40%. This compares with average waste of

30% for human nesting. The algorithm takes between two and three minutes to

run.

The selection of a greedy heuristic was chosen as this was the only method able to

produce a nest in the given timescales (an iterative approach, due to the NP-

completeness of the problem, would take too long). The heuristic works by

choosing the best place on the hide to place the next piece and then choosing the

most suitable piece to place at that location. No iteration or backtracking is carried

out.

(Fayard, 1995) used a linear programming model and a heuristic to produce

solutions to the stock cutting problem. The paper reports that optimal solutions are

found 91% of the time.

Graham Kendall 49

The algorithm produces optimal strips of rectangles by solving one-dimensional

knapsack problems. Another one-dimensional problem is solved to place the

optimal strips onto the stock sheet.

(Li, 1995) considers the problem of compacting layouts that have already been

placed. As well as compacting, the authors also use separation so that shapes can

be moved apart in order to fit in another shape. This is the first time that this

method has been tried in order to improve layouts. Although human operators can

produce highly efficient layouts they find it difficult to compact and separate the

layouts in order to make the layout more efficient. This is due to the fact that the

human operator can only move one piece at a time whereas a computer algorithm

is able to move all the pieces at the same time (relatively speaking). A

representative from a textile firm stated that a 0.1% reduction in wastage could

save the company $2 million a year. Two algorithms are presented. The first, using

a velocity-based optimisation model, shows that it is not suitable for this purpose.

The second algorithm uses a linear programming model.

(Kröger, 1995) presents a genetic algorithm (GA) approach to the nesting problem.

The representation the author uses is based on a slicing tree structure. This

structure can be converted to a string of characters which can be manipulated by

the GA and can also be parsed to create the cutting pattern.

The idea of meta-rectangles is used. This groups rectangles together so that the

complexity of the problem is reduced.

Graham Kendall 50

Various operators (both crossover and mutation) are described and the author

states that the work is empirically better than methods such as random search or

simulated annealing.

In May 1995 Karen Daniels (Daniels, 1995) published her PhD thesis, undertaken

at Harvard University, entitled Containment Algorithms for Nonconvex Polygons

with Applications to Layout. This was the second student (the other being (Zhenyu,

1994), discussed above) supervised by Victor Milenkovic to publish their PhD

thesis in this area in a twelve month period. Daniels focussed on two-dimensional

containment problems where both the shapes and the container can be irregular

(nonconvex) shaped polygons. Daniels also used compaction techniques to

accelerate the search as well as using a pre-packing strategy for multi-stage pattern

layout for the apparel industry.

(Bounsaythip, 1996) also used a genetic algorithm as a method of solving the

nesting problem. The shapes that were nested were irregular and were represented

by a “comb” (this representation can be likened to pressing a comb with moveable

teeth into the sides of the shape). Like (Kröger, 1995), a tree based structure is

used, which the GA manipulates.

The crossover and mutation operators are described along with experimental

results. The results are compared against a simulated annealing implementation

and the authors report favourable results.

Also in 1996 (Falkenauer, 1996) presented another genetic algorithm

implementation. Much of the paper considers the encoding scheme for the problem

Graham Kendall 51

and gives examples of why obvious coding schemes are inefficient both in terms

of the crossover operator and in the way that two different genes can represent the

same packing solution. A representation is proposed which the author claims is

more efficient that the classic ‘Holland-style’ GA. This representation ensures that

the GA keeps groups of good genes together.

Daza’s paper of 1995 (Daza, 1995) also used a genetic algorithm to solve the two-

dimensional guillotine cutting problem.

Their approach was to use a string representation of a binary tree which was then

manipulated by the GA. The latter part of the paper extends the notation so that the

rectangles can be rotated. Their results demonstrate that the approach is superior to

(Oliveira, 1990), which itself was an improvement on (Wang, 1983).

(Hower, 1996) compares three evolutionary/meta-heuristic algorithms (Genetic

Algorithm, Simulated Annealing and Evolution Strategy) when nesting small

numbers (4 and 6) of triangles and rectangles. In addition, the three algorithms are

also compared against a CSP (constraint satisfaction problem) model of the

problem which finds all the optimal solutions. The user is able to interact with the

system so that the (semi-) automatic layout can be changed by choosing an object

and placing it in another position. The author reports that all three evolutionary

strategies were able to find good solutions in very fast times (too fast to be

measured).

Shpitalni and Manevich (Shpitalni, 1996) presents a new Integer Linear

Programming (ILP) model for the two-dimensional stock cutting problem. The

importance of their model was the ability to formulate the problem as an ILP

Graham Kendall 52

problem. This had not been done before. The focus of this paper is to build a

model; not to accelerate the solution which it admits would take large amounts of

computer time.

(Mileham, 1996) presented a new algorithm (the total fit algorithm) for packing

rectangles onto stock sheets. The algorithm is designed for low volume, high

variety manufacturing environments. The total fit algorithm contains three sub-

algorithms (strip fit, area fit and strip squeeze). They are applied in the order given

with strip squeeze only applicable if non-guillotine cuts are allowed.

The results from their work are compared against (Baker, 1980a) and (Coffman,

1980) and it is reported that it significantly out-performs these two methods.

(Dagli, 1997) proposed two approaches to the stock cutting problem, both based

on artificial neural networks (ANN).

The first approach uses just an ANN, which is trained using back-propagation. The

second method combines an ANN with a genetic algorithm (GA).

The results show that the average waste for the ANN approach was 7.88%. The

combined ANN/GA approach produced packings between 94% and 97%.

In (Oliveira, 1998) a new algorithm was presented (TOPOS). Pieces are placed on

the plate one by one and the location of the next piece is ascertained by calculating

the No Fit Polygon using the partial pieces already placed and the piece about to

be placed. Once the best placement has been found the piece is added to the partial

solution and the next piece is placed. The results of this work are compared

(directly or indirectly) with the results of (Dowsland, 1993), (Oliveira, 1993) and

(Blazewicz, 1993). The algorithm is run against five data sets, which are available

Graham Kendall 53

in the literature and also given in the paper, and computational results are

presented.

Bennell and Dowsland (Bennell, 1999) use tabu search to produce solutions for

irregular packing problems. In addition, problem specific knowledge is injected

into the problem domain and this is shown to produce better and better solutions as

more changes are made. The results show that their approach is competitive with

other approaches reported in the literature.

2.2 Computational Geometry
A complete literature review of computational geometry is not presented here as

most of it is not relevant to the stock cutting problem. For example, much of the

computational geometry literature, considers computer graphics which is outside

the scope of this work.

One of the fundamental data structures in computational geometry is the

representation of a point. All of the textbooks implement a point in some way;

maybe as a C++ struct (Sedgewick, 1992), as a typedef of an integer (O’Rourke,

1998) or as a C++ class (Laszlo, 1996). A point is generally represented as an

integer because of the increased speed and accuracy over a floating point

representation. It is usual to use a Cartesian co-ordinate representation for a point.

One of the primitive operations needed for a point is to rotate it. Hearn (Hearn,

1994) gives the equation that allows a point to be rotated about any rotation

position given just its x,y co-ordinates.

To rotate around the origin the formulae are

Graham Kendall 54

newx = x * cos(θ) - y * sin(θ);

newy = x * sin(θ) + y * cos(θ);

where θ is a the degree of rotation in radians.

To rotate around a given point, xp and yp, the following can be used.

newx = xp + (x - xp) * cos(θ) - (y - yp) * sin(θ);

newy = yp + (x - xp) * sin(θ) + (y - yp) * cos(θ);

These equations are well known and are given, for example, in (Adamowicz,

1976b).

If a point can be rotated then rotating a polygon is reduced to rotating a series of

points. The most common requirement is to rotate a polygon around one of its

vertices, pv. Each point, with the exception of pv, has to be rotated around pv.

The literature is in general agreement that the best way to represent an arbitrary

polygon is by using a list of points to represent each vertex (Laszlo, 1996,

O’Rourke, 1998, Sedgewick, 1992) with the last vertex in the list assumed to be

connected to the first. This can either be done by using a circular linked list. Or,

alternatively, by an array or linear list and using the mod operator to implement the

circular property.

It is also generally accepted that the points should be in counter clockwise order.

Once the representation of a polygon has been defined there are fundamental

operations that we need to be able to perform on the polygon. Many of these

operations call upon primitive functions.

Graham Kendall 55

One important primitive is to calculate the area of a triangle given its Cartesian co-

ordinates. O’Rourke (O’Rourke, 1998) presents one such algorithm and describes

how this can be used as a basis to calculate the area of a polygon. In essence an

arbitrary vertex on the polygon is taken and triangles are formed by joining this

vertex to all others. The polygon area is now reduced to summing the area of the

triangles. This works for convex as well as non-convex polygons as, in non-

convex cases, triangles are formed outside of the polygon but due to the

orientation they will have negative area and will be deducted from the overall sum.

Another useful primitive is to decide the relationship between two points, p1 and

p2, and another point, p3. It is useful, for example, to decide if p3 is co-linear with

p1, p2 or if p3 is to the left (or right) of p1,p2.

In (O’Rourke, 1998) this property is returned via a Left predicate (i.e. is p3 on the

left of the line represented by p1, p2?). The Left predicate calculates the area of a

triangle formed by the three points. If the area is positive it indicates that p3 is to

the left of p1 and p2. If the area is zero, the points are collinear. If the area is

negative it shows that p3 is to the right of p1 and p2.

(Sedgewick, 1992) uses the same basic principle but instead of a Left predicate,

the operation is implemented as a CCW (Counter Clockwise) function. This

returns an integer depending on whether the points travel clockwise or counter

clockwise. It is Sedgewick’s algorithm that is most often quoted in the literature on

Cutting and Packing. This is due to the fact that many of the algorithms only need

to know how points are oriented with regard to one another and an area calculation

is not required, which is the basis of O’Rourke’s algorithm.

Graham Kendall 56

An alternative is to use D-Functions (Mahadevan, 1984). This is the primitive

adopted in this work due to the fact that the modified no fit polygon algorithm

presented in this work uses D-Functions. D-Functions are described in chapter 7.

A fundamental property in computational geometry is to decide if two lines (where

a line is represented by two vertices) intersect. Sedgewick (Sedgewick, 1992) uses

the CCW primitive to implement this algorithm. O’Rourke (O’Rourke, 1998) uses

the Left predicate as the basis for his intersection algorithm.

Both of these algorithms simply return a boolean stating if the lines intersect.

Sometimes it is necessary to know the point of intersection. O’Rourke (O’Rourke,

1998) describes an algorithm to do this and states that in this situation it is

necessary to leave the comfortable world of integer co-ordinates and return

floating point values that represent the x and y co-ordinates of the point of

intersection.

D-Functions (Mahadevan, 1984) can also be used and their use is shown in chapter

7. Line intersection is obviously fundamental to many other algorithms (such as

deciding if two polygons overlap).

Another useful primitive is to calculate the angle a given line (represented by two

points) makes with the horizontal. This primitive is useful in many situations. For

example, you can take an arbitrary number of points, sort them according to the

angle they form with the horizontal and then create a polygon by assembling the

points into a polygon data structure using a counter clockwise ordering based on

their angle.

Sedgewick (Sedgewick, 1992) uses a theta function to carry out this operation

Graham Kendall 57

which, when given two points, returns a real number that is not the angle formed

with the horizontal but it does have the same properties. The reason that the actual

angle is not calculated is because this would require a call to the tangent function,

which is computationally expensive.

Having defined the primitive operations for a polygon it is now possible to define

higher level operations.

A fundamental operation for a polygon is being able to find its convex hull. This

can be visualised as stretching an elastic band around a shape. The contour made

by the band is the convex hull of the shape. Figure 2.2 shows this, although the

convex hull, represented by the dashed line has been slightly enlarged so that it is

visible.

Figure 2.2 – Convex Hull of P1, shown as polygon with dashed
vertices

There are several algorithms that can be used to calculate the convex hull of an

arbitrary polygon.

Package (or Gift) Wrapping is described in (O’Rourke, 1998), (Sedgewick, 1992)

P1

Graham Kendall 58

and (Preparata, 1985). The original idea for this method was proposed by (Chand,

1970). The algorithm works by choosing a point that is obviously on the convex

hull (for example, the vertex with the smallest y co-ordinate) and then sweeping a

horizontal ray in the positive direction and moving it round until another point is

hit. This point is guaranteed to be on the hull. Of course, in practice the algorithm

needs to consider each point to see which one will be hit next by the sweep line. In

(Sedgewick, 1992), the theta function is used to determine which point should be

next on the hull.

The main disadvantage with this algorithm is that it runs in O(n2) in the worst case,

which is when every point is on the hull.

Other convex hull algorithms are also available. For example, Quick Hull

(Preparata, 1985) is an alternative to Package Wrapping but it is the Graham Scan

(Graham, 1972) that is most often used with regards to the Cutting and Packing

group of problems. The main advantage of this algorithm is that it runs in O(n log

n) in the worst case. Most of the computational geometry textbooks show an

implementation of the Graham Scan.

Another basic operation needed in cutting and packing is to decide if two polygons

intersect. There are two ways in which we can represent the intersection. The first

is just to return a boolean value indicating if the polygons intersect. A more

complex, but potentially more useful, operation is to return a polygon that

represents the intersecting area. In addition we need to consider both convex and

non-convex polygons. The operation is a lot more complex for non-convex

polygons.

Graham Kendall 59

With regard to convex polygons, the obvious method to decide if two polygons

intersect is to check each line of one polygon against every line of the other

polygon. If any lines intersect then the polygons intersect. However, one

degenerate case has to be taken into account, i.e. if one polygon totally includes

another. Assuming that no lines intersect, inclusion can be tested for by taking

every point on one polygon and checking to see if it lies to the left (using the Left

Predicate or the CCW primitive) of every line of the other polygon. In doing this,

the normal assumption must hold that the vertices are stored in a counter-

clockwise direction so that the edges are directed edges. Figure 2.3 shows this

Figure 2.3 – All vertices on P2 are to the ‘left’ of all edges of P1
indicating total inclusion

Sedgewick (Sedgewick, 1992), although not presenting an algorithm to detect if

two polygons intersect, does provide all the necessary algorithms to implement the

method described above. It also states that such a naive approach to check if any

lines intersect runs in time proportional to n2, where n is the number of edges.

Therefore, an algorithm is presented that can detect if any two lines intersect that

runs in time proportional to n log n (but still n2 in the worst case). This method,

P1

P2

Graham Kendall 60

based on maintaining a scan line as it passes across a plane containing the points,

was originally proposed by (Shamos, 1976).

In 1978 Shamos (Shamos, 1978) developed the first algorithm that ran in linear

time; O(n + m), where n and m are the number of edges.

In (O’Rourke, 1998) an algorithm is presented that also achieves O(n + m) time.

This is based on an algorithm developed by O’Rourke and his students (O’Rourke,

1982). The algorithm involves two lines “chasing” one another around the edges

of the polygons and plotting points as the head of the lines are advanced. At

termination the algorithm returns a polygon representing the overlap area. This

method is also described in (Preparata, 1985).

As in many areas of computational geometry, implementation of algorithms (such

as testing for intersection) is delicate. For example, is one polygon touching

another returned as intersection? What happens should the polygons only intersect

at the vertices (so there are no edge intersections)? These questions, in relation to

this work, are considered in chapter 7.

With regard to the stock cutting problem, another useful algorithm is one that

generates the No Fit Polygon (NFP). This algorithm determines all arrangements

that two arbitrary polygons may assume such that the shapes do not overlap. The

concept of the NFP was originally proposed by (Art, 1966) but was used by

(Adamowicz, 1972 and 1976b).

This work relies heavily on the NFP, for both convex and non-convex polygons.

Chapter 7 is devoted to this topic although the NFP is also discussed in other

chapters where necessary.

Graham Kendall 61

An alternative to implementing computational geometry algorithms is to use the

libraries of routines that are available. Two of the better known are LEDA

(http://www.mpi-sb.mpg.de/LEDA/leda.html) and CGAL (Computational

Geometry Algorithms) (http://www.cs.uu.nl/CGAL/). It was decided early in this

research project that these libraries would not be used. This decision was made for

a number of reasons.

• Some algorithms are not provided by these libraries; most noticeably a no fit

polygon algorithm could not be found.

• Although the primitives supplied by the library algorithms could be used to

implement a no fit polygon it was thought beneficial, certainly in the early

stages, to implement these algorithms so that a better understanding could be

gained.

• It is recognised that these algorithms are high in space/time complexity. The

quote below is from the LEDA FAQ.

27. What is the run time/space overhead compared to programs written in

C?

Dr. Ulrich Lauther from the Siemens AG made a couple of experiments and

compared LEDA graph algorithms with his own hand-coded and well-tuned

C-programs. The running time of LEDA programs are typically slower by a

factor between 2 and 5. The space requirement of the LEDA graph data

structures is larger by a factor of about 2.

Graham Kendall 62

2.3 Search Methods
This section presents a review of the search algorithms that were considered

during the course of this work.

2.3.1 Heuristic Search Methods

A heuristic algorithm uses domain knowledge in order to search for a solution. The

greedy algorithm (so called as it takes the biggest bite towards the solution at any

given time) is one example. Applying a greedy algorithm to the travelling

salesman problem (TSP) results in taking the shortest route to the next city at any

given point. A greedy algorithm cannot guarantee to find an optimal solution but it

can give a reasonable solution, although it can suffer towards the end of the search

as it may be forced to take more expensive options that were ignored earlier.

The A* algorithm (Hart, 1968, 1972), uses domain knowledge to decide which

step to take next. The cost of the solution so far (an exact measure) is added to an

estimated cost (using a suitable heuristic) to give an estimated cost of the final

solution. A* can be proved to produce an optimal solution if the heuristic never

under estimates the cost to the goal. In this case the heuristic is said to be

admissible.

The problem with these approaches is two-fold. Firstly, they can lead to poor

quality solutions. This can be seen with the greedy approach having to take bad

steps towards the end of the algorithm, which degrades the overall quality.

Secondly, although a heuristic approach such as the A* algorithm, can be proven

to give an optimal solution (provided that the heuristic is admissible), the number

of nodes that have to searched rises exponentially for most problems.

Graham Kendall 63

2.3.2 Neighbourhood (or Local Search) Methods

To address some of the problems with heuristic algorithms, strategies have been

developed which allow the search space to be explored using the concept of a

neighbourhood. These methods maintain a single solution and move to a

neighbouring state in an attempt to find a better quality solution. A set of states is

considered at each move and one is chosen depending on the algorithm being used.

The way in which the set of neighbourhood states is defined is problem specific.

Unlike heuristic approaches, the search does not necessarily need any domain

knowledge, only the ability to evaluate a solution so that it can be compared

against other solutions.

These search methods are also referred to as local search as they confine their

moves to a point in the search space that is next to (a neighbour) of the current

state.

Various types of neighbourhood search are described below.

Hill Climbing
Hill climbing starts with a random point in the search space and considers some of

its neighbourhood states. If a state is found that is better than the current state, it

becomes the current state. This process continues until a state has been reached

which contains no better states in the neighbourhood.

A modification to this algorithm is steepest ascent hill climbing. This considers all

the states in the neighbourhood before choosing which one will replace the current

state. If two neighbourhood states return the same evaluation then one can be

Graham Kendall 64

chosen at random. For large neighbourhoods, a neighbourhood size can be

specified. In fact, standard hill climbing is simply steepest ascent hill climbing

with neighbourhood size = 1.

A further refinement is random restart hill climbing. The algorithm is run a

number of times, each time starting at a random position. The best solution from

all the hill climbing algorithms is returned.

The problem with hill climbing is that it can get stuck in local optima, where the

current solution cannot be improved upon but there is a better solution elsewhere

in the search space. Rich (Rich, 1993) contains a description of hill climbing, as do

the majority of AI textbooks. The algorithm shown below is typical and is taken

from (Russell, 1995).

Function HILL-CLIMBING(Problem) returns a solution state
Inputs: Problem, problem
Local variables: Current, a node
 Next, a node

Current = MAKE-NODE(INITIAL-STATE[Problem])
Loop do

Next = a highest-valued successor of Current
If VALUE[Next] < VALUE[Current] then return Current
Current = Next

End

Simulated Annealing (SA)
The ideas that form the basis of simulated annealing were first published in 1953

(Metropolis, 1953). The motivation for the algorithm comes from the physical

annealing process in which a solid is heated until it melts and is then slowly cooled

to a low energy state so that large, uniform crystals can develop. However, if the

material is cooled too quickly then imperfections will occur. The Metropolis

Graham Kendall 65

algorithm (Metropolis, 1953) regards the material as a system of particles and

simulates the change in energy of the system when it is cooled. The algorithm

cools the system until it converges to a steady, frozen state.

Thirty years later simulated annealing was introduced by (Kirkpatrick, 1983) as a

strategy to search for feasible solutions in combinatorial optimisation problems.

Simulated annealing is similar to hill climbing in that it always accepts better

moves but it can also accept worse moves with some probability. This allows it to

jump out of local minima. The probability, P, of accepting a worse move is given

by (2.1)

 P = exp(-∆E/kT) (2.1)

Where ∆E is the positive change in the energy level (the difference between

the current evaluation and the evaluation of the neighbourhood

state)

 k is Boltzmann’s constant

 T is the current temperature of the system

It is usual to drop k, giving the revised acceptance criteria (2.2)

 P = exp(-∆E/T) (2.2)

The temperature is started at a high value and is slowly decreased. At each

temperature a number of neighbourhood states are considered. At high

Graham Kendall 66

temperatures the system is more likely to accept worse states than it is at lower

temperatures. In addition, states which have a larger energy (evaluation) change

have less chance of being accepted.

The main issue that arises in developing a simulated annealing algorithm is

defining a cooling schedule, {i, t, d, iter}, where

• i, is the initial temperature

• t, is the terminating temperature

• d, is a formula used to decrement the temperature

• iter, defines how many iterations to carry out at each temperature

Although, under certain mild conditions simulated annealing can be proven to

converge to the optimal solution it has been shown that this may require an

exponential number of steps which makes it infeasible in practise. (Aarts, 1997)

contains what is widely regarded as the best reference discussing the theoretical

issues surrounding simulated annealing.

It is usual to calculate the figures for the cooling schedule for a given problem

using empirical evidence from experimental runs of the algorithm. To find an

initial temperature Rayward-Smith et al (Rayward-Smith, 1996) suggests running

the algorithm, initially using a very high temperature, which is reduced quickly.

When the temperature reaches the point where between forty and sixty percent of

worse solutions are being accepted, this is used as the starting temperature for the

algorithm in future runs. A similar idea, suggested in (Dowsland, 1995a), is to

rapidly heat the system until a certain proportion of worse solutions are accepted

Graham Kendall 67

and then slow cooling can start. This can be seen to be similar to how physical

annealing works in that the material is heated until it is liquid and then cooling

begins.

Dowsland (Dowsland 1995a) offers many suggestions as to how the cooling

schedule can be determined as well as discussing other improvements. For

example, it is possible to speed up the algorithm by replacing the acceptance

function with one that estimates the exponential, thus removing the need to

perform the computationally expensive call to the exponential function.

As well as the references in the stock cutting literature review there are many

general references to Simulated Annealing. Most AI text books, for example,

(Rich, 1993 and Russell, 1995), describe the algorithm. Other books referred to

during the course of this work, include (Aarts, 1997) and (Press, 1996). The

algorithm shown below is taken from (Russell, 1995).

Function SIMULATED-ANNEALING(Problem, Schedule) returns a solution
state

Inputs : Problem, a problem
 Schedule, a mapping from time to temperature
Local Variables : Current, a node

 Next, a node
 T, a “temperature” controlling the probability of
downward steps

Current = MAKE-NODE(INITIAL-STATE[Problem])
For t = 1 to ∞ do

T = Schedule[t]
If T = 0 then return Current
Next = a randomly selected successor of Current
ΛE = VALUE[Next] – VALUE[Current]
if ΛE > 0 then Current = Next
else Current = Next only with probability exp(-ΛE/T)

The schedule parameter represents the cooling schedule described above.

Graham Kendall 68

Tabu Search (TS)
Although originally proposed in (Glover, 1977) it took a long time for tabu search

to become a popular technique for solving combinatorial optimisation problems.

For this reason the seminal papers for TS are normally considered to be (Glover,

1989 and 1990). A book by Fred Glover and Manuel Laguna (Glover, 1998) is

likely to be the main general point of reference for tabu search practitioners for the

foreseeable future.

TS can be likened to hill climbing with the additional property that it maintains a

memory of where it has been in the search space. It does not allow the search to

return to a state in its memory for a certain number of iterations. This forces the

search to explore states that it has not searched before in the hope that it will lead

to better quality solutions.

In addition, unlike hill climbing, tabu search considers its neighbourhood states (or

a subset of them) and moves to the best one (taking into account any tabu states),

even if it is worse than the current state. This allows it to escape local minima.

The memory of previous states is held in a tabu list. A state is tabu, and thus

cannot be re-visited, if it exists in the tabu list.

Glover and Laguna (Glover, 1998) addresses many implementation issues with

regard to tabu search, such as problem representation and directing the search.

The algorithm shown here is written using a similar style to that used in (Russell,

1995) so that it is consistent with the hill climbing and simulated annealing

algorithms, shown previously.

Graham Kendall 69

Function TABU_SEARCH(Problem) returns a solution state
Inputs : Problem, a problem
Local Variables : Current, a state

 Next, a state
 BestSolutionSeen, a state

 H, a history of visited states

Current = MAKE-NODE(INITIAL-STATE[Problem])
While not terminte

Next = a highest-valued successor of Current
If (not Move_Tabu(H,Next) or

Aspiration(Next)) then
 Current = Next
 Update BestSolutionSeen
 H = Recency(H + Current)
End-If

End-While
Return BestSolutionSeen

2.3.3 Evolutionary (or Population) Based Approaches

Unlike the neighbourhood methods discussed above, population based approaches

maintain a population of solutions.

Ant Algorithms
Ant algorithms are based on the real world phenomena that ants, despite being

almost blind, are able to find their way to a food source and back to their nest,

using the shortest route. Chapter 6 investigates this approach for packing

problems. As this is the first time ant algorithms have been applied to these

problems the basic algorithm is discussed in some detail below. In doing so, the

travelling salesman problem (TSP) is used as a model application as the approach

adopted in this thesis is based on the TSP model of Dorigo (Dorigo, 1996). This

work, tested on the Oliver30 data sets, out performed general purpose heuristics

Graham Kendall 70

(tabu search and simulated annealing) and is also competitive with specialised TSP

methods (2-opt and Lin-Kernigan (Lin, 1973)). However, in these cases the ant

algorithm required much longer run times.

In (Dorigo, 1996) the phenomena that ants are able to find their way to and from

food is discussed by initially considering ants that only have to walk in a straight

line. However, if an obstacle is placed in the way then the ants have to decide

which route to take around the obstacle. Initially, there is a 0.5 probability as to

which way they will turn when they come across the obstacle. If we assume that

one route around the obstacle is shorter than the alternative route then the ants

taking the shorter route will arrive at a point on the other side of the obstacle

before the ants which take the longer route.

If we now consider other ants coming in the opposite direction, when they come

across the same obstacle they are also faced with the same fifty-fifty decision.

However, as ants walk they deposit a pheromone trail. The ants that have already

taken the shorter route will have laid a trail on this route so ants arriving at the

obstacle from the other direction are more likely to follow that route as it has a

deposit of pheromone.

Over a period of time, the shortest route will have high levels of pheromone so that

all ants are more likely to follow this route. Dorigo (Dorigo, 1996) states that this

collective behaviour of ants forms an autocatalytic behaviour. That is, there is

positive feedback which reinforces that behaviour so that the more ants that follow

a particular route, the more desirable it becomes.

Graham Kendall 71

To convert this idea to a search mechanism for the Travelling Salesman Problem

(TSP) there are a number of factors to consider. These are outlined below and are

based on Dorigo’s seminal paper (Dorigo, 1996).

At the start of the algorithm one ant is placed in each city. Variations have also

been tested but Dorigo found that these gave inferior results. Therefore, the

number of ants, n, in the system is equal to the number of cities (which can also be

represented by n in this model) and that ant starts in a separate city.

Time, t, is discrete. t(0) marks the start of the algorithm. At t+1 every ant will have

moved to a new city and the parameters controlling the algorithm will have been

updated. At t+n each ant will have completed a tour.

Assuming that the TSP is being represented as a fully connected graph, each edge

has an intensity of trail on it. This represents the pheromone trail laid by the ants.

Let Ti,j(t) represent the intensity of trail edge (i,j) at time t.

When an ant decides which town to move to next, it does so with a probability that

is based on the distance to that city and the amount of trail intensity on the

connecting edge. The distance to the next town, is known as the visibility, nij, and

is defined as

 nij = 1/dij (2.3)

where, d, is the distance between cities i and j.

At each time unit evaporation takes place. This (which also models the real world)

is to stop the intensity trails building up unbounded. The amount of evaporation, p,

is a value between 0 and 1.

Graham Kendall 72

In order to stop ants visiting the same city in the same tour a data structure, Tabu,

is maintained. This stops ants visiting cities they have previously visited. Tabuk is

defined as the list for the kth ant and it holds the cities that have already been

visited.

After each ant tour the trail intensity on each edge is updated using the following

formula (2.4)

 Tij (t + n) = p . Tij(t) + ΔTij (2.4)

where

This represents the trail substance laid on edge (i, j) by the kth ant between time t

and t+n.

Q is a constant and Lk is the tour length of the kth ant.

Finally, we define the transition probability (2.6) that the kth ant will move from

city i to city j.

where α and β are control parameters that control the relative importance of trail

versus visibility.

otherwise

ntandttimebetween
touritsinjiedgeusesantkththeif

L
Q

kk
ijT)(

),(

0

+









=∆ (2.5)

otherwise

allowedjif
ntTallowedk

ntTt k

ikikk

ijijk

ijp ∈















∈
=
∑

0

][)]([
][)]([)(.

.
βα

βα

(2.6)

Graham Kendall 73

As well as the travelling salesman problem, ant algorithms have also been applied

to a number of other areas. Bullnheimer et. al. have applied the technique to

Vehicle Routing Problems (VRP) (Bullnheimer, 1999). They showed that the

positive results given by applying ant algorithms to the TSP could be repeated for

another problem type. They could not improve on published results but claim it is

a viable alternative when tackling VRP’s as, for practical purposes, deviations of

up to 5% are acceptable due to uncertainty about travel costs, service times etc.

make perfect planning impossible.

More recently Maniezzo and Colorni (Maniezzo, 1999) have applied ant

algorithms to the quadratic assignment problem (QAP). They run their algorithm

against test cases from the literature as well as a real world problem. They report

competitive results in all cases.

Scheduling (Colorni, 1994 and Forsyth, 1997), Graph Colouring (Costa, 1997),

Partitioning Problems (Kuntz, 1997) and Telecommunication Networks (Di Caro,

1998) have also been addressed by ant algorithms.

Additional introductions to ant algorithms can be found in (Dorigo, 1999, Dorigo

1999a and Bonabeau, 1999). Probably, the best resource for ant algorithm

literature is the web site maintained by Marco Dorigo

(http://iridia.ulb.ac.be/~mdorigo/ACO/ACO.html).

Recently, a new optimization algorithm based on the foraging behaviour of a

population of primitive ants has been suggested (Monmarché, 2000). This

approach is based on the way a particular species (Pachycondyla apicalis) search

for prey by partitioning a given surface into many hunting sites.

Graham Kendall 74

The author is not aware of any published work that applies ant algorithms to the

nesting problem except a presentation at Optimization 98, University of Coimbra,

Portugal (10-22 July 1998), which used an ant algorithm to place shapes.

Unfortunately the conference did not publish proceedings.

Genetic Algorithms
Genetic Algorithms (GA) were first proposed by (Fraser, 1957 and 1960) and

(Bremermann, 1958). These algorithms simulated genetic systems. Despite the age

of this early work it still has relevance today as it has recently been revisited by

Fogel (Fogel 2000b and Fogel 2000c). John Holland, his students and colleagues

at the University of Michigan in the 1960's and 1970's are also credited with

carrying out much of the pioneering work in GA’s. Holland's book of 1975

(Holland, 1992 - reprinted) is recognised as one of the seminal work’s for GA's.

Genetic Algorithms are computer programs that are based on the principle of

natural evolution. Holland's Adaptation in Natural and Artificial Systems (Holland,

1992 - reprinted) presented the GA as an abstraction of biological evolution.

A GA holds a population of solutions (often known as individuals or

chromosomes). The separate parts of an individual are known as genes and the

value that is stored in a gene is called an allele. The way in which each solution is

represented is largely down to the designer of the GA. Historically, bit strings have

been used but these are by no means the only representation that can be used, as

shown later in this thesis.

Graham Kendall 75

Each individual is assigned a fitness value which indicates the quality of the

solution the chromosome represents.

During the execution of a GA algorithm the population is continually replaced by

new populations. The new populations are created by applying operators

(crossover and mutation) to members of the existing population.

Crossover is seen as the most important operator. It takes two individuals (the

parents) and transfers genetic material from parents to produce new individuals

(children). An individual’s chance of being chosen as a parent is proportional to its

fitness. This is done so that the principle of natural selection is mimicked; that is

the fittest members of the population are allowed more opportunity to breed in the

hope that they will pass their good genetic material to the next population. If this

happens enough the population should gradually improve as fitter and fitter

individuals are created.

An outline algorithm is shown below

1. Initialise a population of chromosomes

2. Evaluate each chromosome (individual) in the population

2.1. Create new chromosomes by mating chromosomes in the current

population (using crossover and mutation)

2.2. Delete members of the existing population to make way for the new

members

2.3. Evaluate the new members and insert them into the population

Graham Kendall 76

3. Repeat stage 2 until some termination condition is reached (normally based on

time or number of populations produced)

4. Return the best chromosome as the solution.

In implementing a genetic algorithm there are a number of parameters to consider.

Population Size : How many individuals should be present at each

generation?

Generations : How many generations should be produced before the

algorithm terminates (other stopping criteria can also be used such as a

measure of convergence)?

Crossover Operator : How should the chromosomes be mated? N-point

crossover is often used (see any GA reference, below, for example

(Goldberg, 1989)). Alternatively, operators which give legal solutions to

problems such as the travelling salesman problem, are available. A

commonly used operator that falls into this category is the PMX (Partially

Matched Crossover) (Goldberg, 1989).

Crossover Probability : Chromosomes only mate with some

probability. De Jong’s PhD thesis of 1975 (De Jong, 1975) studied a series

of five problems and concluded that a high crossover rate should be used,

for example 0.6, and a low mutation probability, for example 0.05.

Evaluation method : The fitness associated with a chromosome can

simply be the same as the value returned from the evaluation function

(fitness is evaluation). However, this can lead to premature convergence so

Graham Kendall 77

a linear scaling (linear normalization) is often applied, based on the

evaluation value for a given chromosome.

Elitism : Using elitism ensures that the top n% of chromosomes,

based on their fitness, are carried forward to the next generation.

Introductions to GA’s can be found in (Beasley, 1993), (Coley, 1999), (Davis,

1987, 1991), (Forrest, 1993), (Goldberg, 1989), (Man, 1999), (Michalewicz, 1996,

2000), (Mitchell, 1996) and (Reeves, 1995).

Evolutionary Strategies
Evolutionary strategies (ES) are closely related to genetic algorithms. Originally

they used only mutation, only used a population of one individual and were used

to optimise real valued variables. More recently, ES’s have used a population size

greater then one, they have used crossover and have also been applied to discrete

variables (Bäck, 1991) and (Herdy, 1991). However, their main use is still in

finding values for real variables by a process of mutation, rather than crossover.

Work on evolutionary systems began with (Rechenberg, 1965, 1973) when they

were used to optimize real valued parameters for airfoils. These ideas were later

developed by Schwefel in his PhD thesis (Schwefel, 1975) and in a later paper

(Schwefel, 1977).

An individual in an ES is represented as a pair of real vectors, v = (x,σ).

Graham Kendall 78

The first vector, x, represents a point in the search space and consists of a number

of real valued variables. The second vector, σ, represents a vector of standard

deviations.

Mutation is performed by replacing x by

 xt+1 = xt + N(0, σ) (2.7)

where N(0, σ) is a random Gaussian number with a mean of zero and a standard

deviation of σ. This mimics the evolutionary process that small changes occur

more often than larger ones.

In the earliest ES’s (where only a single solution was maintained), the new

individual replaced its parent if (and only if) it had a higher fitness.

Even though this “single solution” scheme only maintains a single solution at any

one time, it is sometimes referred to as a “two-numbered evolution strategy.” This

is because, there is competition between two individuals (the parent and the

offspring) to see which one survives to become the new parent.

In addition, these early ES’s, maintained the same value for σ throughout the

duration of the algorithm.

σ stays constant throughout the run as it has been proven that the algorithm

converges to the optimal solution (Bäck, 1991). Although the global optimum can

be proven to be found with a probability of one, the theorem also states that it only

holds for a sufficiently long search time. The theorem says nothing about how long

Graham Kendall 79

that search time might be. To try and speed up convergence rate Rechenberg has

proposed the “1/5 success rule.” It can be stated as follows

The ratio, ϕ, of successful mutations to all mutations should be 1/5. Increase

the variance of the mutation operator if ϕ is greater than 1/5; otherwise,

decrease it.

The motivation behind this rule is that if many successful moves are being found

then larger steps should be attempted in order to try and improve the efficiency of

the search. If successful moves are not being found then the search should proceed

in smaller steps.

The 1/5 rule is applied as follows

if ϕ(k) < 1/5 then σ = σcd

if ϕ(k) > 1/5 then σ = σci

if ϕ(k) = 1/5 then σ = σ

The variable, k, which is a parameter to the algorithm, dictates how many

generations should elapse before the rule is applied. cd and ci determine the rate of

increase or decrease for σ. ci must be greater than one and cd must be less than one.

Schwefel (Schewel, 1981) used cd = 0.82 and ci = 1.22 (=1/0.82).

Graham Kendall 80

The problem with the 1/5 rule is that it may lead to premature convergence for

some problems. One answer to this is to increase the population size, which now

turns evolutionary strategies into a population based search mechanism. By

increasing the population size the following observations can be made.

1. The population size is now (obviously) > 1.

2. All members of the population have an equal probability of mating (compare

this to chromosomes in a genetic algorithm which mate in proportion to their

fitness).

3. The possibility of crossover can be introduced.

4. As there is more than one individual there is the opportunity to alter σ

independently for each member.

5. There are more options with regard to how the population can be controlled.

These are discussed below.

In evolutionary computation there are two variations with regard to how the new

generation is formed. The first, termed (µ + λ), uses µ parents and creates λ

offspring. Therefore, after mutation, there will be µ + λ members in the

population. All these solutions compete for survival, with the µ best selected as

parents for the next generation.

An alternative scheme, termed (µ, λ), works by the µ parents producing λ

offspring (where λ > µ). Only the λ compete for survival. Thus, the parents are

Graham Kendall 81

completely replaced at each new generation. Or, to put it another way, a single

solution only has a life span of a single generation.

The original work on evolution strategies (Schwefel, 1965) used a (1 + 1) strategy.

This took a single parent and produced a single offspring. Both these solutions

competed to survive to the next generation.

Good introductions to evolutionary strategies can be found in (Bäck, 1997),

(Fogel, 1998), (Fogel, 2000a), (Michalewicz, 1996) and (Michalewicz, 2000).

Memetic Algorithms
The Selfish Gene by Richard Dawkins (Dawkins, 1976) introduces the idea of a

meme. In 1989 Moscato (Moscato, 1989) coined the term memetic algorithms.

“Examples of memes are tunes, ideas, catch-phrases, clothes, fashions,

ways of making pots or of building arches. Just as genes propagate

themselves in the gene pool by leaping from body to body via sperm eggs,

so memes propagate themselves in the meme pool by leaping from brain to

brain via a process which, in the broad sense, can be called imitation.”

(Dawkins, 1976)

A meme can be considered to be a unit of information, for example an idea which

is passed from generation to generation. Unlike genetic material, which cannot be

altered by its recipient, a meme can be amended to suit the receiver.

The idea behind a memetic algorithm, with regard to optimisation problems, is to

combine evolutionary algorithms with a local search mechanism in the hope that

Graham Kendall 82

an individual in the population can be improved. An outline algorithm, based on

(Corne, 1999) is shown below.

InitialisePopulation, Pop

Foreach individual, i ∈ Pop do ← Local-Search-Engine(i)

Foreach individual, i ∈ Pop do ← Evaluate(i)

Repeat

for j = 1 to #recombinations do

SelectToRecombine a set Spar ⊆ Pop (|Spar| ≥ 2)

offspring ← Recombine(Spar)

offspring ← Local-Search-Engine(offspring)

add offspring to Pop

endfor

for j = 1 to #mutations do

SelectToMutate an individual i ∈ Pop

im ← Mutate(im)

im ← Local-Search-Engine(im)

Evaluate(im)

add im to Pop

endfor

until termination-condition = true

A good introduction to memetic algorithms can be found in (Corne, 1999) in

which Pablo Moscato introduces the topic and other practitioners discuss the area

in more depth.

Graham Kendall 83

2.3.4 Meta-heuristics

The literature and academic community often use the phrase meta-heuristic. As far

as the author is aware there is no definitive statement as to what this term actually

means.

If you look up the term meta in a dictionary (see, for example

www.dictionary.com) the term is defined as “Beyond; transcending; more

comprehensive”, suggesting that a meta-heuristic takes us beyond a heuristic

algorithm. An alternative, computer science, definition from

http://webopedia.internet.com/Computer_Science/meta.html gives the following

“In computer science, a common prefix that means "about". So, for example,

metadata is data that describes other data (data about data). A

metalanguage is a language used to describe other languages. A metafile is

a file that contains other files. The HTML META tag is used to describe the

contents of a web page.”

This would suggest that a meta-heuristic is somehow a heuristic about heuristics.

Of the two definitions given above, for the purposes of this thesis the first

definition is preferred. The algorithms that we use go beyond the usual heuristic

approaches.

Therefore, for this work the term meta-heuristic can be used to describe both

neighbourhood approaches and population based approaches.

Graham Kendall 84

“I have called this principle, by which each slight variation, if useful, is preserved,

by the term Natural Selection.” Origin of Species.

3. A Simplified Problem

3.1 Introduction
In this, and subsequent, chapters we consider various types of cutting and packing

problems and apply various search techniques to find good quality solutions.

In particular, this chapter looks at a simplified version of the problem in order to

give an initial comparison of three search algorithms. It is hoped that these initial

results will be similar, with regard as to how they compare relatively to one

another, when the same search algorithms are applied to more complex problems.

In chapter five, convex cutting and packing problems are addressed and in chapter

six two new algorithms (ant algorithms and memetic algorithms) are tested on the

same problems. Chapter eight compares the same search algorithms as used in

chapters five and six on non-convex problems. This incremental approach to the

problems and search algorithms is taken so that the results can gradually be built

up and more easily compared.

Chapter 3

Graham Kendall 85

Due to the fact that many types of search algorithms are being applied to different

problems, choice of representation was crucial in being able to use different search

algorithms on the same problem data. The representation chosen was a list of

shapes (rectangles in this chapter, convex polygons in chapters five and six and

non-convex polygons in chapter eight) which were packed based on their position

in the list. For example, the shape at the start of the list was packed first and the

shape at the end of the list was packed last. Using a list allowed the various search

algorithms to operate directly on that data structure. Using algorithms such as tabu

search, simulated annealing and hill climbing the neighbourhood function could be

implemented as a swap operator which simply swaps shapes, for example, at

random.

Using a genetic algorithm, the list represents a chromosome, which can use

recognised crossover and mutation operators.

Ant algorithms are also able to use the list representation. Each list represents the

order in which the ants “visit” the shapes, with a separate data structure being used

to maintain the pheromone levels between each shape.

Therefore, we chose this data structure as it provides a convenient representation

for all the search algorithms we employ during this research. However, it is

recognised that this is not the only representation that could be used. For example,

Otten (Otten, 1982) uses a tree representation (called a slicing tree structure).

Whilst we could have used a similar representation it would be more difficult to

define the various operators for all the searches and, in addition, Otten used this

structure for rectangular pieces and it has never been applied to more complex

Graham Kendall 86

shapes and certainly not non-convex polygons. Daza et. al. (Daza, 1995) also used

a tree representation (a binary search tree) but this suffers from the same

limitations as described above for (Otten, 1982).

Dietrich et. al. (Dietrich, 1991) represented the larger sheet, in the first instance, as

a single hole that allowed other pieces to be placed within it. Using various

heuristics (such as decreasing area first fit, increasing length first fit) shapes were

selected and placed into the holes. This had the effect of creating more holes (in

some cases holes were combined and enlarged) so that other pieces could be

selected and fitted into the newly created holes. Similar to the tree representation,

this approach was only applied to rectangular shapes. Feasibly, it could be applied

to other shapes but the various operators, specifically for genetic algorithms and

ant algorithms, would be difficult to define.

An approach, adopted by Bennell and Dowsland (Bennell, 1999), is to represent

the larger shape as a grid. A neighbourhood function can then be defined as

moving the smaller shapes a certain number of grid positions, and in a given

direction. The shape to be moved, the distance and direction it is moved and the

resolution of the grid are discussed within the paper, with experimental results

being presented. Bennel and Dowsland employ a variation on tabu search (simple

tabu thresholding) to search for good quality solutions and a similar representation

was considered for this work but it was not apparent how genetic algorithms and

ant algorithms could be mapped onto this representation.

Graham Kendall 87

The representation chosen for this work is the same representation as used by

Oliveira et. al. (Oliveira, 1998). In their work a series of polygons is packed

utilising the no fit polygon at each stage. As a similar approach is used in PhD

thesis (that is packing shapes one at a time and using the no fit polygon to decide

on the next placement), it seems appropriate to adopt a similar representation as

used in previous work.

However, it is recognised that that is not the only representation possible. Despite

those mentioned above, and the reasons for rejecting them, others are possible.

One of the approaches we are considering, in conjunction with a commercial

partner, is to use a bitmap representation and try to fit shapes into the holes on the

larger shape (holes being represented by the bits in the bitmap being set to, say,

one). At present, only heuristic based methods place the shapes but we hope to

extend the method so that we can employ meta-heuristic and evolutionary

algorithms. But we already recognise that it is a challenge to define the various

operators.

This chapter does not directly address the nesting problem. Instead, it takes a

simplified version and investigates three techniques (Tabu Search, Simulated

Annealing and Genetic Algorithms) to solve it. The aim of solving a simplified

version of the problem is to ascertain whether or not these techniques offer a

sensible approach for solving this type of problem. (Blazewick, 1993), (Jain,

1992), (Kröger, 1995), (Parada, 1998) have had success with these techniques but

the three methods have not been rigorously compared on the particular problem of

Graham Kendall 88

interest in this PhD project. If these approaches show promise on a simplified

version of the problem this would indicate that it is worthwhile investigating the

same techniques for more difficult problems.

3.2 The Problem
Presented with two rectangles (R1, R2) we can make the following observations.

By placing R1 and R2 in contact with each other we can place a bounding box,

Bbox, around them. The area of Bbox, Area(Bbox), depends on how the rectangles are

placed in relation to one another. The minimum for Area(Bbox) = Area(R1) +

Area(R2) (see figure 3.1). If the rectangles are placed such that the area of Bbox >

Area(R1) + Area(R2) the placement is sub-optimal (see figure 3.2). Finally, if the

rectangles are of different sizes in both the dimensions then Area(Bbox) ≠ Area(R1)

+ Area(R2) (see figure 3.3).

Fig. 3.1 - Placement of two rectangles which has a minimal bounding
box

Fig. 3.2 – Placement of two rectangles such that the area of the
bounding box is not minimised

Graham Kendall 89

Fig. 3.3 – Placement of two rectangles, R1 and R2, which has a

minimal bounding box, Bbox, but Area(Bbox) > Area(R1)+Area(R2)

Figure 3.1 shows two rectangles of size 3x3. The sum of their areas is 18, as is the

area of their bounding box. Figure 3.2 shows the same two rectangles but now

placed in relation to each other so as to give the bounding box an area of 24. The

two rectangles (9x9 and 1x10) in figure 3.3 are positioned in an optimal way so

that the area of the bounding box is minimized, but the area of the bounding box is

still greater than the area sum of the two rectangles. In fact, the area of this

bounding box will always be greater than the area sum of the rectangles, no matter

how they are placed in relation to one another. Our simplified version of the stock

cutting problem is to take pairs of rectangles from a given set and combine them

with the objective of minimising the sum of their bounding boxes.

3.3 Representation of the Problem
Let x and y be the width and height of a rectangle respectively, expressed as an

integer. Let Bottom define a point along the bottom of the rectangle where Bottom

can take value between 0 and x-1. Similarly, let Top define a point along the top of

the rectangle.

Graham Kendall 90

Left and Right, are used to define a point on the left and right of the rectangle.

These values are constrained between 0 and y-1.

Finally, one further variable is defined, Place, which dictates where one rectangle

is placed in relation to another. This variable is discussed in section 3.3.1. These

variables are summarised below.

x : The width of the rectangle

y : The height of the rectangle

Bottom : 0 >= Bottom <= x-1. Defines a point on the bottom of the

rectangle

Left : 0 >= Left <= y-1. Defines a point on the left of the rectangle

Right : 0 >= Right <= y-1. Defines a point on the right of the rectangle

Top : 0 >= Top <= x-1. Defines a point on the top of the rectangle

Place : A variable indicating if another rectangle should be placed on

top, or to the right, of this one.

3.3.1 Interpretation

Given the rectangles R1..R6, we can pair them as follows; R1 & R2, R3 & R4 and R5

& R6 (and in any other permutation). Given these pairings we can decide how any

two rectangles can be placed in relation to one another. Assume R1 and R2 have

the following values.

R1 = {x=3, y=3, Bottom=0, Left=2, Right=2, Top=1, Place=On Right}

R2 = {x=3, y=3, Bottom=1, Left=1, Right=0, Top=3, Place=On Top}

Graham Kendall 91

We can place these two rectangles in relation to one another using the following

reasoning. R2 (being the second rectangle of the pair) will be placed in relation to

R1. Using the Place variable of R1 we note that R2 should be placed to the right of

R1. We use the Right variable of R1 to define where R2 should joined. We also

need a point on R2 so that the join can be completed. This is given by the Left

variable of R2. We use the Left variable as it is the complement of Right. If we had

used the Top variable of R1 we would use the Bottom variable of R2. The joined

rectangle is shown in figure 3.2.

The filled circle, in figure 3.2, shows this interpretation.

3.4 Comparison of Algorithms
To compare the algorithms (simulated annealing, tabu search and genetic

algorithm) three rectangle pairing problems were considered. The aim was to

observe the quality of the solutions produced when the algorithms attempted to

minimise the sum of the bounding boxes of the rectangle pairs in the given set.

The first problem consisted of twelve rectangles (2 of 9x9, 2 of 8x8, 4 of 4x4 and

4 of 3x3). The optimum solution for this problem is 390. All the algorithms were

able to find this optimum. The second problem consisted of 50 rectangles where

the optimum was known to be 20000. A third problem consisted of 100 random

rectangles where the optimum is unknown. The results for the 50 and 100

rectangle problem are shown below (table 3.1), with comments following. All

results are averaged over ten runs.

Graham Kendall 92

 GA TS SA
 Best Avg Best Avg Best Avg
50 Rectangles 22053 22149 20024 20099 20047 20089
100 Rectangles 79586 80356 75269 75949 73845 74003

Table 3.1 - Pairing Rectangles using Meta-Heuristic (GA, TS, SA)
Algorithms

3.4.1 Crossover, Neighbour and Mutation

In testing the algorithms we used three types of crossover operator for the GA.

One was a generic order based crossover (Davis, 1987). The other two crossover

operators were developed specifically for this problem. One (named rectangle

crossover) ensured that promising rectangle pairs were carried forward to the next

generation. A promising rectangle pair is defined as a pair of rectangles, in a

chromosome, that satisfies MIN(Area(BBOX)(i, i+1) – (Area(Ri) + Area(Ri+1)). Using

the rectangle operator, the most promising pair in a parent is copied to one of the

children before the other positions in the child are filled. The other parent and

child are treated similarly. An extended version of this operator, the enhanced

rectangle operator, finds the most promising rectangle pair in each parent and

copies these rectangles to both children. In the event that this would lead to

duplication in the child normal rectangle crossover is used.

The neighbour for both SA and TS was a random swap of two rectangles (making

allowances for the tabu list in TS). Mutation, for all the algorithms, changed one of

the variables in a randomly selected rectangle to a random, allowed, value.

Graham Kendall 93

3.4.2 Genetic Algorithm (GA)

Initially we carried out GA runs by testing various parameter combinations. The

parameters we varied were the population size (50 and 100), the three types of

crossover operator, two types of evaluation (fitness is evaluation and linear

normalization) and elitism (0.05 or 0.00). The permutation of these parameters led

to 24 runs being necessary. Each run was carried out fifteen times using three

different starting populations (360 tests in all). Some parameters to the GA

algorithm remained constant. These were the crossover probability (0.6), the

mutation probability (0.05) and the number of generations (100).

The order based crossover did not yield good results. Using the problem specific

operators yielded better quality solutions. Linear normalization produced better

results than fitness is evaluation. As might be expected, a population size of 100

produced better results than a population size of 50. Better results were produced

when using elitism. The results shown above (table 3.1) used the best parameter

combinations we found. However, even with these combinations, TS and SA

outperform the GA.

3.4.3 Tabu Search (TS)

To produce the results shown above, TS was run with a list size of 50% of its

population size and a neighbourhood size equal to its population size (that is, when

looking for a better neighbour at each iteration it considered n neighbours). 5000

iterations were performed. To confirm that the TS list was helping find good

quality solutions we ran a test, for the 50 rectangle problem, with the list size set to

Graham Kendall 94

zero. This yielded a result of 20828. We also tried a list size of 48, which gave a

result of 20506. A smaller list size (10) produced an average result of 20632 and

increasing the neighbourhood size to 100 (with the list size still at 25) produced

similar results to a neighbourhood size of 50.

3.4.4 Simulated Annealing (SA)

To produce the results a starting temperature of 10 was used, a decrement of 0.001

and 100 iterations were carried out at each temperature.

3.5 Conclusions
All three meta-heuristic techniques were able to find the optimum solution to a

small problem. When presented with larger problems, tabu search and simulated

annealing produced good quality solutions whereas a genetic algorithm produced

lower quality solutions despite many tests during the small problem to try and

ascertain the best combination of parameters. In addition, the GA runs took longer

due to the overheads involved in processing a population of chromosomes, rather

than a single individual. In conclusion, for this problem the SA and TS algorithms

produce similar solutions and both outperform the GA.

Graham Kendall 95

“As many more individuals of each species are born than can possibly survive;

and as consequently, there is a frequently recurring struggle for existence, it
follows that any being, if it vary however slightly in any manner profitable to itself

under the complex and sometimes varying conditions of life, will have a better
chance of surviving and thus be naturally selected.” Origin of the Species

4. Evaluation of the Two Dimensional Bin
Packing Problem using the No Fit Polygon

4.1 Introduction
When employing meta-heuristic and evolutionary algorithms it is often the case

that the evaluation function is the most computationally expensive part of the

algorithm. The evaluation function employed in this work (see section 4.2)

calculates the no fit polygon (NFP) for two polygons and then calculates the

smallest convex hull for the two polygons. This process is repeated for each

polygon. As the manipulation of polygons is computationally expensive, the

process creates a bottleneck at this stage. However, many of the evaluations are

simply re-evaluating solutions that have already been evaluated. Before solving

problems using meta-heuristic and evolutionary algorithms some work was carried

out in an attempt to speed up the evaluation function.

In order to do this a cache was utilised which stores previous evaluations (the

cache was developed using the CMap class available with Microsoft Visual C++

Chapter 4

Graham Kendall 96

version 6.0). Increasing the size of the cache significantly increases the speed of

the algorithm. In addition the concept of a polygon type was also introduced which

allows much better use to be made of the cache.

It can also be shown that in some circumstances, it may not be beneficial to use a

cached evaluation. Therefore, a re-evaluation parameter is introduced which forces

a complete re-evaluation of a solution, even though it might be held in the cache.

In this chapter it is shown that this parameter can be set to a small value so that the

advantages of the cache are not lost.

The approaches adopted here are intuitive but are not often implemented.

However, techniques such as these, will become increasingly important as met-

heuristics and evolutionary algorithms are more widely used.

Other researchers have used various methods in order to reduce the computational

load of their evaluation function on their algorithm. In (Rana, 1996) a warehouse

scheduling problem is solved using a genetic algorithm. The evaluation function is

a list based simulation of orders progressing through the warehouse. An internal

(detailed) simulator is used to verify solutions. This takes about three minutes. An

external (coarse) simulator runs in about one tenth of a second and is used to

identify potential solutions. Ross et al (Ross, 1994) uses delta evaluation on the

timetabling problem. Instead of evaluating every timetable they show that, as only

small changes are being made between one timetable and the next, it is possible to

evaluate just the changes and update the previous cost function using the result of

that calculation.

Graham Kendall 97

In this chapter only convex polygons are considered but the same techniques are

used later in this thesis (chapter 8) when working with non-convex polygons.

4.2 No Fit Polygon
The No Fit Polygon (NFP) determines all the arrangements that two arbitrary

polygons may take so that the shapes do not overlap but so that they cannot be

moved closer together without intersecting. To show how the NFP is constructed

consider two polygons; P1 and P2. The aim is to find an arrangement such that the

two polygons touch but do not overlap. If this can be achieved then we know that

we cannot move the polygons closer together in order to obtain a tighter packing.

In order to find the various placements the procedure can be described as follows

(see figure 4.1). One of the polygons (P1) remains stationary. P2 moves around P1

and stays in contact with it but never intersects it. P1 and P2 retain their original

orientation. That is, they never rotate. As P2 moves around P1 one of its vertices

(the filled circle) traces a line.

Figure 4.1 – The No Fit Polygon

P1

P2

Graham Kendall 98

Figure 4.1 shows the starting (and finishing) positions of P1 and P2. The NFP is

shown as a dashed line. It is slightly enlarged so that it is visible. In fact, some of

the edges would be identical to P1 and P2. Once the NFP has been calculated for a

given pair of polygons the reference point (the filled circle) of P2 can be placed

anywhere on an edge of the NFP in the knowledge that it will touch, but not

intersect, P1. In order to implement a NFP algorithm it is not necessary to emulate

one polygon orbiting another. Cunningham-Green (Cunningham-Green, 1992)

presents the algorithm that is used as part of this work.

The no fit polygon is considered in more depth in chapter 7.

4.3. Evaluation

4.3.1 The Basic Method

In order to fill the bin we proceed as follows. The first polygon is chosen and this

becomes the stationery polygon (P1 in figure 4.1). The next polygon (P2 in figure

4.1) becomes the orbiting polygon. Using these two polygons the NFP is

constructed. The reference point of P2 is now placed on various points on the NFP.

For each position the convex hull for the two polygons is calculated. Once all

placements have been considered the convex hull that has the minimum area is

returned as the best packing of the two polygons. This larger polygon now

becomes the stationery polygon and the next polygon is used as the orbiting

polygon. This process is repeated until all polygons have been processed. As each

large polygon is created, its width is checked. If this exceeds the width of the bin,

then a new row within the bin is started. In this case, the polygon which forced the

Graham Kendall 99

width of the bin to be exceeded becomes the stationery polygon. That is, the large

polygon built thus far forms one row and the next row is constructed using a single

polygon as a starting point.

Figure 4.2 – Possible Placements

 Figure 4.3 – Same Polygons, Different Solutions

There are two problems that need to be addressed in order to make the evaluation

strategy feasible. The number of placements the reference point can take on the

NFP is infinite. In order to reduce the problem to manageable proportions, we only

place the reference point on the vertices of the NFP. The second problem is that

there could be more than one optimal placement for two given polygons. Consider

two rectangles of the same dimensions. There are four optimal placements, as

shown in figure 4.2. No matter which placement is chosen the four evaluations

return the same value as the convex hulls all have the same area. Therefore, it is

immaterial which one we choose. However, it may make a difference when later

P

P
P

Graham Kendall 100

polygons are added. Consider, for example, if the placement is chosen where one

polygon is placed on top of P. Depending on the characteristics of the next

polygon it could effect the quality of the solution that is being built. Figure 4.3,

illustrates this. It shows that by choosing one placement over another different

solutions can be obtained later on in the packing.

The cost function that measures a complete (or partial) solution is taken from

(Falkenauer, 1998). Rather than simply measuring the bin height (which is the

intuitive evaluation function), the cost function measures how efficiently the bin

has been packed. This gives a much better search space for the algorithm to

explore.

Section 5.2 of this work contains a fuller description of the evaluation function.

4.3.2 Caching of Evaluations

Manipulating polygons is computationally expensive and, due to the nature of

evolutionary algorithms, the evaluation function has to be called many times. It is

likely that the same evaluation will be performed many times. This makes this part

of the algorithm a serious bottleneck. In order not to evaluate previously seen

solutions again a cache has been implemented. Each polygon is assigned a unique

identifier. In this way a solution (complete or partial) can be recognised by

considering a concatenation of the identifiers (a key), which is used to access the

cache. The cache either returns a null value, meaning that the solution is not

present, or it returns the previous evaluation which means the evaluation function

does not have to be called. In addition a polygon data structure is held in the cache

so that this can be returned and paired with the next polygon. In fact, the cache can

Graham Kendall 101

hold more than one polygon for each hash key. Figure 4.2 shows four optimal

placements. These placements would all be held in the cache but only one

(randomly selected) is returned.

4.3.3 Polygon Types

Another potential bottleneck is evaluating polygon permutations that have already

been evaluated. Consider polygons with identifiers ABCDE and assume the

polygons DE are identical. After evaluating the permutation ABCDE, {AB, ABC,

ABCD, ABCDE} will be stored in the cache. Later in the algorithm ABCE might

need to be evaluated. This key will not be in the cache and the evaluation function

is called. In fact, there is no need to do this as polygons D and E have the same

dimensions and evaluating ABCD will yield the same result as ABCE. In order to

cater for this, the notion of a polygon type was introduced. This gives each

polygon a type identifier which acts as a pointer to the polygon description. This

can significantly reduce the size of the search space and allows for much more

effective use of the cache.

4.3.4 Forcing Re-evaluations

One problem in using a cache is that it might be holding an evaluation which is not

the optimal for a particular permutation of polygons. An example of this is shown

in figures 4.2 and 4.3. If the first two (smaller) polygons are evaluated, it will be

found they can be positioned in four ways (see figure 4.2). The placement chosen

is random, so assume one polygon is placed next to the other. When the third

polygon is evaluated, the best configuration that can be found is that shown on the

Graham Kendall 102

right of figure 4.3. It is the result from this evaluation that will be stored in the

cache and whenever these three polygons are evaluated, it will be this value that is

returned from the cache. We will never have access to the better solution (left hand

side of figure 4.3) where the first two polygons are placed on top of one another.

The problem is that once a configuration is stored in the cache, the only way we

can arrive at another placement is for the cache to exceed its limit and for the

(possibly) inferior solution to be discarded. However, there is no guarantee that

this will happen. In fact, the larger the cache size (in the hope of improved

performance) the less chance there is of items being discarded from the cache. In

an attempt to alleviate this problem a re-evaluation parameter is introduced. This is

set to a value between 0 and 1 and determines the probability of the solution being

re-evaluated, regardless of whether or not it is in the cache. A value of zero means

that the value in the cache, if it exists, should always be used. A value of one

means that the solution is always re-evaluated, effectively ignoring the cache.

Higher values of the re-evaluation parameter will slow the algorithm down as it is

not making as much use of the cache. However, re-evaluating solutions should

mean that better quality solutions are found as more of the search space is

explored.

Graham Kendall 103

4.4 Testing, Results and Comparisons

4.4.1 Test Data

Figure 4.4 – Test Data 3

Testing was carried out on three sets of data. The first test consisted of fourteen

pieces which were defined using three different polygon types. The second test

used the same pieces but this time the polygons were defined as (fourteen)

different types. The third test used the pieces shown in figure 4.4. This problem is

taken from a company that cuts polycarbonate pieces for the manufacture of

conservatories. This data is defined using different types.

4.4.2 Testing the Cache

The upper bound for the cache size was found by starting with a high value and

recording the maximum number of elements held in the cache at the completion of

the run.

Graham Kendall 104

Figure 4.5 – Cache benefits (Test Data 1 & 2)

Figure 4.6 – Cache Benefits (Test Data 3)

The cache size was then varied, in increments of 1000, between zero and the upper

bound. It can be seen (figure 4.5 and 4.6) that the cache size has a significant

effect on the running time of the algorithm. In addition, when using polygons of

the same type (figure 4.5, which shows the first two sets of test data) the program

not only runs faster but also requires a smaller cache (due to the reduced size of

the search space). The third test problem (figure 4.6) shows similar, confirmatory

results. It is interesting to note that with a cache size of zero, the algorithm is

slightly slower than when the cache is set to only hold a small number of elements.

We attribute this to the fact that there is an overhead in maintaining the cache, so

200

300

400

500

600

700

1 4 7 10 13 16 19

Cache Size (000's)

Se
co

nd
s

Same Types
Different Types

225

275

325

375

425

475
1 3 5 7 9 11 13 15 17

Cache Size (000's)

Se
co

nd
s

Graham Kendall 105

that when the cache size is set to a small value the overheads in maintaining the

cache are greater, in terms of time, than the benefits gained by using a cache.

However, this is not a major issue as it is always better to have the cache set to as

large a value as possible and a small value would never be used, only in this case

to show the effect of varying its size.

4.3 Re-evaluation Parameter

Figure 4.7 – Effect of Re-evaluation

The effect of increasing the re-evaluation parameter is to increase the run time of

the algorithm because cached data is not used as often. The worst case comes

when the re-evaluation parameter is set to 1.0 as this is the same as setting the

cache size to zero and means that every solution has to be evaluated. The three sets

of test data were tested using values between 0.0 and 1.0 for the re-evaluation

parameter, incrementing by 0.1 on each test. We might expect to see, with higher

values for the re-evaluation parameter, better quality solutions appearing. In fact,

this was not the case as can be seen from figure 4.7, which shows the results from

the third set of data but is representative of all three tests. It is difficult to draw any

1400.00
1500.00
1600.00
1700.00
1800.00
1900.00

0.
00

0.
10

0.
20

0.
30

0.
40

0.
50

0.
60

0.
70

0.
80

0.
90

1.
00

Reevaluation

C
os

t F
un

ct
io

n

Graham Kendall 106

concrete conclusions from this graph but it can be seen that when the re-evaluation

parameter is set to zero the result is a high cost function. From this observation it

would appear sensible to not set the parameter to zero but to a low value.

4.5 Conclusions
The evaluation function is a bottleneck in some systems, which is the case in this

research due to the computational geometry aspects of the algorithm. Three ways

have been presented which increase the speed of the algorithm. Although these

methods are intuitive, techniques such as these, to the authors knowledge, have

never been reported in the literature, especially with regards to the nesting problem

in conjunction with the no fit polygon. The first improvement stores previous

evaluations in a cache so that the evaluation function can be bypassed if the same

solution is seen again. By varying the cache size it has been shown that the speed

of the algorithm is significantly faster. The concept of polygon types has also been

introduced. Whilst most researchers will use this method of representing their data

we have demonstrated that this approach does lead to an improvement in run time,

especially when used in conjunction with the cache. Finally, a re-evaluation

parameter was used so that we can force a solution to be re-evaluated even if it is

stored in the cache. This is required as it is possible that the cache will hold an

inferior solution for a given permutation of polygons.

Without the techniques outlined above we do not believe that an evolutionary

approach to the nesting problem, using our evaluation method, would be feasible.

This work provides a sound foundation for the remainder of the research in this

thesis.

Graham Kendall 107

“Descent with modification must be the answer not catastrophic destruction

followed by fresh creation.” Descent of Man

5. Comparing Meta-Heuristics and
Evolutionary Algorithms when Applied to the

Convex Nesting Problem

5.1 Introduction
In this chapter a number of meta-heuristic and evolutionary algorithms are used to

search for good quality solutions to the nesting problem. These search methods

rely on a new method for packing polygons. The method utilises the no fit polygon

(see chapter 4, section 4.2).

This chapter also shows how the parameters for the various search strategies were

selected.

The reported results are encouraging and provide a set of comparative test results

for later work in this thesis.

The main aim of this chapter is to show that the proposed approach produces good

quality results for two problems. More problems could have been used but, due to

the convex nature of the problems, there is limited scope to develop this work.

Chapter 5

Graham Kendall 108

However, if it can be shown that the proposed method produces good quality

solutions then the same techniques can be applied to non-convex problems with

the hope of achieving even better results.

To produce a solution to the two dimensional nesting problem it is necessary to

place a number of shapes onto a larger shape. In doing so the shapes must not

overlap one another and must stay within the confines of the larger shape. The

usual objective is to minimise the waste of the larger shape. Only two dimensions,

height and width, are considered and the larger piece is sometimes considered to

be of infinite height so that only the width of the placements needs to be checked.

This is a realistic assumption for the real world as the larger shapes are sometimes

rolls of material which can be considered as being of infinite length for the

purposes of the placement procedure.

In this chapter a number of assumptions are made. The height of the bin (the larger

piece) is considered infinite, although it remains the aim of the evaluation function

to minimise this height. Only one bin is used (that is, there is no concept of filling

a bin and having to start another). Only guillotine cuts are allowed (that is, a cut

must be made from one edge to the other).

5.2 Evaluation Method
Falkenauer (Falkenauer, 1998), although not specifically addressing the nesting

problem, considered grouping problems, using genetic algorithms (GA’s). One of

the problems addressed is bin packing. The nesting problem can be considered to

be a bin packing problem where the cost associated with each piece is equal to its

area.

Graham Kendall 109

The cost function used by Falkenauer is

Maximize

Where N is the number of bins used

 Fi is the sum of the sizes of objects in bin i

 C is the bin capacity

 And k is a constant, k >1

This cost function measures the average ‘bin efficiency’ to the kth power.

Falkenauer achieved good results with k=2. The research presented in this chapter

has used both this cost function (suitably amended and described below) as well as

a cost function that simply minimises the bin height.

Our cost function is based on that used in (Falkenauer, 1998). It can be stated as

follows

Minimise

Where UsedRowArea is the total area of the polygons placed in that row

TotalRowArea is the total area of the bin occupied by that row

k is a factor simply to scale the result (we used 100 but 1 could be used)

n is the number of rows in the bin

k
CFf iNiBPP ∑ ==)/(...1

N

(5.1)

∑ −
n

nkeaTotalRowAraUsedRowAre
1

2 /)*)))/(1((((5.2)

Graham Kendall 110

In essence, we are trying to minimise the area used by each row. This evaluation

function is preferable to the more obvious method of simply measuring the bin

height as, using the bin height, many solutions will map to the same evaluation

value. This makes it much more difficult to effectively explore the search space.

The method used to evaluate a solution, given a permutation of polygons, is the

method described in the previous chapter (section 4.3).

5.3 Test Data
Two test problems were used in this part of the research. The packing shown in

figure 5.1 is from (Christofides, 1977), see appendix B and C for the problem

definition. The reason that this data was chosen is because it consists of convex

polygons and the optimum is known. The only change made is to multiply the

measurements in the original paper by a factor of two. This assists us when

displaying results.

Our algorithms will not be able to find the optimum. The first two rows (A, B, C

and D, E, F) can be constructed without problems. However, to find the optimum

for the third row, the polygons would need to be presented in the order of G, H, I,

J, K, L and M. The optimal solution could be built until the last polygon (M) came

to be placed. At this time, due to the convex nature of the large polygon that had

been built, the final polygon will not be placed in the position shown. In fact, the

final polygon would be placed on a new row. Under these circumstances the total

bin height would be 188 (as opposed to the optimal height of 140).

Graham Kendall 111

Therefore, using the permutation ABCDEFGHIJKLM produces a bin height of

188. We will never achieve a bin height of 140, due to the convex nature of the

problem. However, bin heights below 180 indicate good quality, convex solutions

which were maybe not immediately obvious.

The second problem (figure 5.2) is taken from the real world. The objective is to

cut polycarbonate shapes from larger stock sheets. In reality, the company

receiving the orders has to cut many shapes from many stocks sheets whilst

minimising the waste. The solution shown (figure 5.2) represents one stock sheet

on a given day. However, it is a worthwhile exercise to see how our algorithm

packs these shapes. Similar to the first problem, it is constrained by the convex

properties of the algorithm. For example, the bottom four shapes cannot be packed

in the way they are shown as once three of the shapes have been packed, the fourth

shape cannot be placed in the position shown. The same is true for the four shapes

above (excluding the rectangle).

Graham Kendall 112

 Figure 5.1 – Test Data 1

 Figure 5.2 – Test Data 2

24x16
A

60x14
E

28x16
C

28x16
B

60x14
D 20x28

F

62x26
K

22x26
H

18x70
J

18x48
M

42x44
I

18x48
L

22x26
G

Graham Kendall 113

The height of the stock sheet is 23940 units. Its width is 6240 units. Due to the

convex properties of the algorithm it is not possible to achieve this solution but our

main concern is to see if using evolutionary and meta-heuristics algorithms

coupled with the no fit polygon does produce good quality solutions.

All the results are averaged over ten runs. The number of evaluations performed

were equivalent in all cases (SA, TS and GA). This leads to runs of approximately

the same time (about 300 seconds on a Cyrix 166 processor) so that the results are

compared fairly.

5.4 Parameter Selection for Search Methods
Selecting the most suitable neighbourhood operators and parameters for a meta-

heuristic or evolutionary algorithm is a difficult task. There is little theoretical

work published in this area and it is still more of an art than a science.

5.4.1 Simulated Annealing

To find suitable values for the simulated annealing cooling schedule the ideas

outlined in section 2.3.2 of this thesis were used.

Several neighbourhood functions have been implemented to allow us to explore

the search space

Collect : Randomly selects a polygon and then scans through the remaining

polygons and moves all polygons of the same type so that they are next to each

Graham Kendall 114

other. The idea behind this function is that polygons of the same type will fit well

together when packed.

NextDoor : Picks a polygon at random and swaps it with its next door

neighbour. The motivation behind this function is to make small changes in the

neighborhood in the hope that the search space will be systematically explored,

leading to a good quality solution.

Random : Selects two polygons at random and swaps them.

For both problems a number of experiments were conducted, in the first instance

to show that simulated annealing performs better than hill climbing. Therefore, the

following experiments were run.

• A hill climbing algorithm.

• A simulated annealing algorithm using a linear cooling schedule of {i, 0,

NewTemperature = OldTemperature – n, iter}

• A simulated annealing algorithm using a geometric cooling schedule of {i, 0,

NewTemperature = OldTemperature * 0.9, iter}

• The neighbourhood functions described above were tested.

• The cost function described in 5.2 was used, along with a cost function that

simply attempts to minimise the bin height. Where the cost function from 5.2

is used, the bin height is still shown in the results as it is an important measure

of the quality of the solution.

Graham Kendall 115

Initially, the Random and NextDoor neighbourhood functions were tested against

one another. The first set of test data and the modified Falkenauer cost function

were used and the following results were obtained (table 5.1).

Function Evaluation Bin Height
Random 655.21 188.10
NextDoor 772.76 193.00

Table 5.1 – Random vs NextDoor Neighbourhood

Based on this result the Random neighbourhood function was used in preference to

the NextDoor function.

A further test, comparing hill climbing against simulated annealing, was also run.

A very slow linear cooling schedule, {990, 0, temp = temp –15, 250}, and a hill

climbing algorithm were run for the same number of iterations (16750) (and thus

the same amount of time). This initial test was run on the second set of test data

using the modified cost function of Falkenauer. The results were as follows.

Method Evaluation Bin Height
Simulated Annealing 1385.06 30312.40
Hill Climbing 1489.74 31605.60

Table 5.2 – Hill Climbing vs Simulated Annealing

This gave an initial indication that simulated annealing out performs hill climbing,

although further results are presented below.

Following these tests the separate problems were considered. Table 5.3 shows the

results when the first set of test data was used. As well as comparing hill climbing

Graham Kendall 116

against simulated annealing, comparisons are also being made against a linear and

geometric cooling schedule, the two evaluation functions and two of the

neighbourhood functions.

Search
Algorithm

Neighbour
Function

Cost Function Cooling Schedule Eval Bin
Height

Time
(Secs)

SA Random Modified
Falkenauer

{40,0,t=t–1,50} 643.95 188.40 297

SA Random Bin Height {40,0,t=t–1,50} 191.60 298
SA Random Modified

Falkenauer
{40,0,t=t* 0.9,50} 705.70 189.20 643

HC Random Modified
Falkenauer

 752.64 196.40 300

SA Collect Modified

Falkenauer
{40,0,t=t–1,50} 397.01 170.80 220

SA Collect Bin Height {40,0,t=t–1,50} 169.07 221
SA Collect Modified

Falkenauer
{40,0,t=t* 0.9,50} 390.05 168.13 431

HC Collect Modified
Falkenauer

 457.93 173.07 223

Table 5.3 – Hill Climbing vs Simulated Annealing over a variety of
parameters

From these results the following observations can be made

• In a similar manner to the earlier tests, simulated annealing performs better

than hill climbing.

• Using a geometric cooling schedule does lead to slightly better solutions but

this is at the expense of run times that are about twice as long.

• The modified falkenauer cost function produces better solutions than using the

bin height cost function although the difference is not as much as had been

expected.

Graham Kendall 117

• The most significant result is that using the collect neighbourhood function

produces better quality solutions than the random neighbourhood function,

with reduced run times.

In conclusion we can say that the best quality results use the collect

neighbourhood function and use simulated annealing with a cost function based on

Falkenaur’s. In addition, a linear cooling schedule can be used in order to produce

faster results than a geometric cooling schedule.

Figure 5.3 shows three of the best solutions found. The first figure shows a bin

height of 158. The other two figures have a bin height of 162.

Figure 5.3 – Best Solutions Found (SA)

For the second set of test data it was not possible to use the collect neighbourhood

function as all the polygons have different dimensions (some may look the same

but they are, in fact, all different). Therefore, the random operator was used. The

results produced are shown in table 5.4.

The best quality solutions were found using simulated annealing with a geometric

cooling schedule but at the expense of a run time almost four times that of the

Graham Kendall 118

other methods. All simulated annealing algorithms again performed better than hill

climbing but this time using the bin height cost function performed better than the

modified falkenauer cost function.

Search
Algorithm

Neighbour
Function

Cost
Function

Cooling Schedule Eval Bin
Height

Time
(Secs)

SA Random Modified
Falkenauer

{1000,0,t=t–25,50} 1661.77 33052.20 314

SA Random Bin Height {1000,0,t=t–25,50} 31799.20 320
SA Random Modified

Falkenauer
{1000,0,t=t*0.9,50} 1520.58 30999.60 1101

HC Random Modified
Falkenauer

 1683.53 33532.80 330

Table 5.4 – Results using Test Data 2

5.4.2 Tabu Search

In Tabu Search (TS) the neighbourhood function has been implemented as a swap

of two random polygons to give a new permutation. Experiments were conducted

with various neighbourhood sizes and a value of twenty gave good results.

The data stored in the tabu list can have an effect on the search. We tested two

different methods. Initially just the polygon identifier was stored, which

effectively stopped that polygon being moved again until it was removed from the

tabu list. This did not perform very well as it restricts the search too much. This is

borne out by the fact that the tabu list can, at maximum, store number_of_polygons

entries, which constrains the search too much.

Another option is to hold the complete solution in the tabu list. It was found that

this increased the run time of the algorithm (due to checking if a move is tabu) but

we could achieve equally good results by making moves tabu based on the first n

Graham Kendall 119

polygons in a solution. We achieved the results presented below with n=3. That is,

if the first three polygons are the same then a move to that state is tabu.

The results achieved on both sets of test data are shown in table 5.5.

Test Data 1
 Tabu List

Size
Evaluation Bin Height

 0 368.03 171.40
 25 342.69 169.00
 50 323.77 165.80
 75 386.68 172.20
 100 386.91 171.00
Test Data 2
 0 1089.89 28228.50
 25 1101.31 28362.60
 50 1006.75 27566.40
 75 1066.30 28142.40
 100 1200.09 28856.40

Table 5.5 – Tabu Search Test Results

5.4.3 Genetic Algorithms

For this research the PMX crossover operator (Goldberg, 1989) has been

employed. Other operators were tested but it was found that PMX gave the best

results. This is not surprising as PMX is designed for ordering problems. As this

problem relies on the ordering of the polygons it falls into this category.

The mutation operator is applied to a single chromosome. It is applied to each

child with some (low) probability and aims to stop the population converging to a

single solution by adding diversity to the population. We have tested two types of

mutation which we call heavy and light mutation. Heavy mutation is applied to a

child solution. A gene is picked at random and is swapped with another randomly

selected gene, from the same chromosome. This is done as many times as there are

Graham Kendall 120

genes in the chromosome. Light mutation carries out the same random swap but

only does a single exchange.

As an initial test for the GA the crossover probability was set to 0.0 and the

mutation probability to 1.00. This effectively turns the GA into a random search

and the result can be used to check that the GA was actually directing the search.

Two normalization methods were tested. Evaluation is Fitness makes the fitness of

each chromosome the same as the value returned from the evaluation function.

Linear Normalization adjusts the fitness of each individual so that the fitness is

related to its evaluation but the fitness values are linear throughout the population.

Using linear evaluation with roulette wheel selection ensures that the fitter

members of the population do not dominate, leading to premature convergence.

Better results were achieved with linear normalization.

The two types of mutation described above were tested. Various values for the

crossover and mutation probability were tried. It was found that values of 0.8 and

0.1 gave the best results. A dynamic mutation probability was also tested, varying

the mutation value between 0.0 and 0.5 during the course of the run. This was

found to produce similar results, but no better, than a static value of 0.1.

The results achieved for the genetic algorithm are shown in table 5.6.

Graham Kendall 121

Test Data 1

 Normalization
Method

Crossover
Probability

Mutation
Probability

Mutation
Type

Eval Bin Height

 Eval is Fitness 0.8 0.1 Heavy 684.41 192.60
 Eval is Fitness 0.8 0.1 Light 700.10 190.40
 Linear 0.8 0.1 Heavy 610.43 185.20
 Linear 0.8 0.1 Light 516.41 179.00
Test Data 2
 N/A 0.0 1.0 Heavy 1655.78 32972.40
 Eval is Fitness 0.8 0.1 Heavy 1727.51 32695.50
 Eval is Fitness 0.8 0.1 Light 1607.38 32799.30
 Linear 0.8 0.1 Heavy 1528.06 31353.00
 Linear 0.8 0.1 Light 1377.99 30478.50

Table 5.6 – Genetic Algorithm Test Results

5.5 Testing, Results and Comparisons
5.5.2 Results

From the above results, we can make the following observations.

Of the three methods (SA, TS, GA), GA performed the worst, although a linear

normalization function and light mutation produces the best results on both sets of

test data.

Tabu search produced better results than simulated annealing for both sets of test

data.

The size of the tabu list does not need to be large. Once the list gets too large the

quality of the solution starts to deteriorate. We believe this is because the search

becomes too constrained. Intuitively, the size of the tabu list should be less than

the number of iterations otherwise the search can never visit previously visited

states. These results back up that view.

Two of the better solutions we found when using tabu search against test data 1 are

presented in figure 5.4. The nesting on the left has a bin height of 158. The right

Graham Kendall 122

hand figure has a bin height of 162. Figure 5.5 is a sample solution, using tabu

search on test data 2. This nesting has a bin height of 26430

Figure 5.4 – Sample Solutions (Test Data 1)

 Figure 5.5 – Sample Solution (Test Data 2)

A summary of all the results are shown in table 5.7.

 Test Data 1 Test Data 2
Tabu Search 323.77 1006.75
Simulated Annealing 397.01 1661.77
Hill Climbing 457.93 1683.53
Genetic Algorithm 516.41 1528.06

Table 5.7 – Summary of Results

Graham Kendall 123

5.6 Conclusions
In this chapter, several search algorithms have been tested in order to produce

good quality solutions to a nesting problem. The problems use convex shapes and,

in addition, any polygons that are created during the algorithm are also convex as

it is transformed using a convex hull algorithm.

At this stage of the work we are still working with convex shapes as we are still

trying to ascertain if the search methods being used are effective. It was thought

beneficial to use convex polygons in the first instance as the algorithm for the no

fit polygon is well known for these polygons and it is relatively efficient. In

chapters 7 and 8 of this thesis non-convex problems are considered.

 GA TS SA
 Best Avg Best Avg Best Avg
50 Rectangles 22053 22149 20024 20099 20047 20089
100 Rectangles 79586 80356 75269 75949 73845 74003

Table 5.8 – Results from Simplified Problem (copy of table 3.1)

In chapter 3 (the results of which are re-produced in table 5.8), it was noted that

tabu search and simulated annealing performed similarly with respect to the

quality of solutions that were produced. It was noticeable that genetic algorithms

did not perform well. The results in table 5.7 confirm these earlier findings in that

genetic algorithms, again, failed to perform as well as tabu search and simulated

annealing. In fact, genetic algorithms failed to do better than hill climbing on one

of the problems. From this, I do not think that we can conclude that genetic

Graham Kendall 124

algorithms are not an effective search technique but, I feel, it highlights the

problems in trying to find effective parameters for a given search technique. In

chapter 3 (see section 3.4.2) we carried out 24 genetic algorithm tests, trying to

find a good combination of parameters and, even then, only a small subset of the

total number of permutation of parameters were tested. I believe this highlights

one of the greatest problems facing designers of meta-heuristic and evolutionary

algorithms today; that is finding a suitable parameter set for a given problem (or

even a particular instance of a problem).

This is further demonstrated in that for these problems tabu search is able to out

perform simulated annealing (see table 5.7). The problem with simulated

annealing, like genetic algortithms, is that a suitable cooling schedule has to be

selected. As mentioned previously this is still an art more than a science.

Tabu search benefits from the fact that there are very few parameters and, this

works suggests that the parameter values are not too critical to the success of the

algorithm in finding good quality solutions.

In the next chapter a new search technique is explored (ant algorithms). It will be

interesting to see how this algorithm compares to those studied so far as it has a

number of parameters that have to be set. In fact, like chapter 3 and genetic

algorithms, we will be forced to carry out a number of experiments to find suitable

values for those parameters.

Graham Kendall 125

“Ants pass on food to one another by ‘kissing’. During the kiss, they also pass on
messages which tell them what job to do” Small World: Ants

6. Applying Ant and Memetic Algorithms with
the No Fit Polygon to the Nesting Problem

6.1 Introduction
In this chapter ant algorithms are investigated and the results compared against the

results from chapter 5. In addition, memetic algorithms are also compared against

the results from the previous chapter and also those acquired using ant algorithms.

The evaluation method used for the work in this chapter is exactly the same as that

from the previous chapter, as are the two sets of test data.

Ant algorithms have already been introduced in chapter 2 (section 2.3). Therefore,

this chapter starts by considering how ant algorithms can be adapted so that they

can be used to solve the nesting problem using the approach adopted for other

search algorithms, and described in the previous chapter.

6.2 Ant Algorithms and the Nesting Problem
Using the Travelling Salesman Problem (TSP) ant system as a model (see chapter

2, section 2.2.3), an ant system has been developed for the nesting problem using

Chapter 6

Graham Kendall 126

the no fit polygon and the evaluation method described in the previous chapter

(section 5.2). Each polygon can be viewed as a city in the TSP and these are fully

connected so that there is an edge between each polygon and every other one. An

ant is placed at each city (polygon) and using the trail and visibility values

(formulae 2.6, from chapter 2) the ant decides which polygon should be visited

(placed) next. Once an ant has placed all the polygons the edge trail values are

updated. The edge trail values are calculated using the value returned from

evaluating the nesting. This is equivalent to using the tour length in the TSP (Lk in

formula 2.5, from chapter 2).

Using the method described above we can use very similar formulae to those

described in chapter 2 (formulae 2.3 and 2.4), with some minor amendments.

Visibility is now defined as how the polygon, just placed, fits with the piece about

to be placed. For example, two rectangles of the same dimensions would fit

together with no waste so the visibility would be high. Two irregular shapes, when

placed together, may result in high wastage. This would result in a low visibility

value. In order to calculate the visibility, nij (where i is the polygon just placed and

and j is the polygon just about to be placed), the combined area of the two pieces is

divided by the best placement of the two shapes (using the NFP). That is

 nij = TotalAreaij / BestPlacementij (5.1)

(Note, in order to maintain consistency in the literature we are using similar

notation to Dorigo and thus we use nij, rather than, say visibij).

Graham Kendall 127

This returns a value between 0 and 1. In order to improve the speed of the

algorithm all the visibility values are calculated at the start of the algorithm and

held in a cache. The transition probability is defined as the probability of a

polygon being placed next taking into account the polygons placed so far and the

visibility of the next polygon. The same formula as 2.6 from chapter 2, can be used

to calculate the transition probability.

6.3 Memetic Algorithms
A memetic algorithm can be considered to be a population based approach that

incorporates a local search element. Each time a member of the population

changes (after crossover or mutation in the case of a genetic algorithm and after a

tour in the case of the ant algorithm) a local search is applied. We have used both

genetic algorithms and ant algorithms as the main search mechanism and have

tried other search methods (such as tabu search, hill climbing etc.) as a local search

operator. It was found that a simple hill climbing search produces the best results.

Other search operators produced inferior results and took longer to run. With tabu

search, for example, the overheads in maintaining the tabu list, combined with the

additional problems introduced in having to select suitable parameters (list size,

neighbourhood size etc.), meant that the results were inferior to using hill

climbing.

Graham Kendall 128

6.4 Testing and Results
6.4.1 Ant Algorithm Parameters

Initially we attempted to find suitable values for the parameters that control the ant

algorithm. In order to find suitable values we carried out several hundred runs

simply setting the parameter values at random. We used these results, along with

the best parameters found by (Dorigo, 1996), to conduct more selective testing.

Dorigo reported that the value of Q (the constant in formula 2.3) had little effect

on the algorithm. We experimented with various values, {1, 10, 100, 1000}, and

reached a similar conclusion. Therefore in the remainder of our tests Q = 100. In

order to find a good value for the evaporation parameter, p, it was set to the values

{0.1, 0.5, 0.9}, using a trail importance, α = 1 and a visibility importance, β, of {0,

1, 2, …, 30}. These tests were carried out on test data 1. The results from these

tests are shown in figure 6.1.

Figure 6.1 – Test Data 1, α = 1, p = {0.1, 0.5, 0.9}, β = {0, 1, …, 30}

0

100

200

300

400

500

600

700

800

900

0 3 6 9 12 15 18 21 24 27 30
Visibility

E
va

lu
at

io
n

p = 0.1
p = 0.5
p = 0.9

Graham Kendall 129

Figure 6.2 – Test Data 1, α = 5, p = 0.5, β = {0, 1, …, 20}

All tests in figure 6.1 show the highest evaluation when β = 0. This is expected as

when β = 0 the search is effectively transformed into randomised greedy search

with multiple starting points. All three runs also show, in the early stages, a

downward trend as the visibility parameter increases. With p = 0.1 the evaluation

values are generally higher than when p is 0.5 or 0.9. The algorithm performs

better when p = 0.5 rather than when p = 0.9, at least in the early stages (until β =

19). In the latter stages, when the visibility is high, the graph has either flattened or

is showing an upward trend for all values of p. Again, this would be expected as

having too high a visibility starts returning the algorithm to a greedy search. This

is due to the effect of the intensity trail becoming diminished. Taking p = 0.5 as a

good value agrees with the results in (Dorigo, 1996) in which it was reported that

this was the best value found for p. In (Dorigo, 1996) the best value for α was

found to be 1 (which is the value used above). In order to see if our algorithm

0

200

400

600

800

1000

1200

1400

0 2 4 6 8 10 12 14 16 18 20

Visibility

E
va

lu
at

io
n

p = 0.5

Graham Kendall 130

agrees with this a test was carried that set p = 0.5, α = 5 and β = {0, 1, …, 20}.

Figure 6.2 shows that this set of parameters produces worse results than when α =

1. None of the tests produce an evaluation below 600, which was consistently done

when α = 1 (figure 6.1)

Figure 6.3 – Test Data 2, α = 1, p = {0.1, 0.5}, β = {0, 1, …, 30}

Having established a good parameter set we used test data 2 to confirm these

values. Figure 6.3 shows two runs that compare the effect of p (evaporation) on

test data 2. In fact the two runs mimic each other closely but it is interesting to

note that the lowest evaluation for p = 0.5 is when visibility is around 20. This

matches the result from the first set of test data. This test appears to confirm that p

= 0.5 is a good choice and we used this in the remaining tests.

1100

1200

1300

1400

1500

1600

1700

1800

1900

0 3 6 9 12 15 18 21 24 27 30
Visibility

E
va

lu
at

io
n

p = 0.1
p = 0.5

Graham Kendall 131

Figure 6.4 – Test Data 2, α = {1, 5}, p = 0.5, β = {0, 1, …, 30}

Figure 6.4 shows the effect of trail importance, α = {1, 5} using test data 2. It

shows that a higher value of α leads to inferior solutions. Again, this confirms the

results from the first set of test data. In summary, the best results were achieved on

both sets of test data when α = 1, p = 0.5, β = 20.

6.4.2 Results

In the previous chapter, results were presented for the various search algorithms

when applied to the above problems. Table 6.1 shows modified results using the

same test data and the same search algorithms. These modified tests were carried

out for the following reasons.

• Some of the results below have had the parameters amended from the previous

work in order to improve the results even further.

• By necessity, the previous work was carried out over several months and on

different computers. Although we tried to take this into account during this

0

500

1000

1500

2000

2500

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Visibility

E
va

lu
at

io
n

Trail Importance = 1
Trail Importance = 5

Graham Kendall 132

time it was felt beneficial to run all the algorithms on the same computer in

order to guarantee that the results could be fairly compared, when presented

together.

• Running the algorithms on the same computer also gave the opportunity to

ensure that the algorithms all ran for a similar amount of time. This is not

always easy due to the stochastic element of the algorithms, but this was

generally achieved.

It is worth noting that the algorithms performed similarly, relative to one another,

for both sets of test data (only simulated annealing and hill climbing differ). It is

also interesting, and encouraging, that the ant algorithm out performs the other

population based approach (genetic algorithm).

 Test Data 1 Test Data 2
Tabu Search 326.97 1056.96
Ant Algorithm 371.67 1188.60
Simulated Annealing 513.33 1269.63
Hill Climbing 506.47 1364.77
Genetic Algorithm 615.57 1412.82

Table 6.1 – Summary of Results
The parameters used for each algorithm are shown in table 6.2.

Algorithm Test Data 1 Test Data 2
Tabu Search Iterations = 400, List Size = 100,

Neighbourhood Size = 20
Same as test data 1

Ant Algorithm Iterations = 615, Trail = 1, Visibility
= 20, Evaporation = 0.5, Q = 100

Same as test data 1

Simulated Annealing Start = 200, Stop – 0, Decrement =
0.5, Iterations = 66

Start = 1000, Stop – 0, Decrement =
10, Iterations = 80

Hill Climbing Iterations = 8000, Neighbourhood
Size = 1

Iterations = 400, Neighbourhood
Size = 20

Genetic Algorithm Population Size = 30, Iterations =
640

Same as test data 1

Table 6.2 – Algorithm Parameters

Graham Kendall 133

Table 6.3 and 6.4 shows the results from the memetic algorithm experiments. A

number of runs were carried out, in order to find the best combination of

parameters.

Main Search
Method

Main Search Parameters

Hill Climbing Parameters

Eval

AA Iterations = 70 Iterations = 3, Neighbourhood Size = 3 283.07
GA Pop Size = 50, Generations = 40 Iterations = 1, Neighbourhood Size = 5 293.65
AA Iterations = 25 Iterations = 5, Neighbourhood Size = 5 309.81
GA Pop Size = 20, Generations = 10 Iterations = 10, Neighbourhood Size = 5 358.35
AA Iterations = 13 Iterations = 17, Neighbourhood Size = 3 389.24
GA Pop Size = 50, Generations = 40 Iterations = 5, Neighbourhood Size = 1 397.27
GA Pop Size = 20, Generations = 20 Iterations = 5, Neighbourhood Size = 5 407.18
AA Iterations = 13 Iterations = 10, Neighbourhood Size = 5 407.32
GA Pop Size = 30, Generations = 20 Iterations = 15, Neighbourhood Size = 1 449.73
GA Pop Size = 20, Generations = 10 Iterations = 50, Neighbourhood Size = 1 482.31
GA Pop Size = 20, Generations = 20 Iterations = 25, Neighbourhood Size = 1 487.09

Table 6.3 - Memetic Algorithm for Test Data 1

Main Search
Method

Main Search Parameters

Hill Climbing Parameters

Eval

GA Pop Size = 20, Generations = 20 Iterations = 5, Neighbourhood Size = 5 890.51
GA Pop Size = 20, Generations = 10 Iterations = 10, Neighbourhood Size = 5 981.95
GA Pop Size = 50, Generations = 40 Iterations = 1, Neighbourhood Size = 5 994.46
AA Iterations = 13 Iterations = 10, Neighbourhood Size = 5 1014.83
AA Iterations = 70 Iterations = 3, Neighbourhood Size = 3 1116.65
AA Iterations = 13 Iterations = 17, Neighbourhood Size = 3 1157.31
AA Iterations = 25 Iterations = 5, Neighbourhood Size = 5 1158.31
GA Pop Size = 50, Generations = 40 Iterations = 5, Neighbourhood Size = 1 1178.24
GA Pop Size = 20, Generations = 20 Iterations = 25, Neighbourhood Size = 1 1196.74
GA Pop Size = 30, Generations = 20 Iterations = 15, Neighbourhood Size = 1 1221.18
GA Pop Size = 20, Generations = 10 Iterations = 50, Neighbourhood Size = 1 1369.72

Table 6.4 - Memetic Algorithm for Test Data 2

Graham Kendall 134

Although the parameters that lead to the best results are not identical for both sets

of test data, it is the case that using a neighbourhood size of one, within the local

search, does lead to inferior results. This suggests that the local search hill climber

should be some form of steepest ascent.

6.5 Conclusions and Discussion
This is the first time that ant algorithms have been applied to the nesting problem

and the results are encouraging. Ant algorithms out perform genetic algorithms

and provide a viable alternative to simulated annealing, although more work is

required for it to compete with tabu search.

By comparing the results from table 6.3 and table 6.4 with table 6.1 it can be seen

that the memetic algorithm, for both sets of test data, produced better results than

had been achieved using the other algorithms in isolation. This might be surprising

as we are combining two search methods (genetic algorithms and hill climbing)

that, on their own, do not produce good results. Yet, when they are combined, the

results are superior to any single search method. Looking more closely at the

results in tables 6.3 and 6.4 shows that, although using a genetic algorithm as the

main search method dominates the top of table 6.4 it is ant algorithms that appears

at the top of table 6.3. This suggests that, to a certain extent, it is not important

which evolutionary search method is used. It is the combination of a population

based approach combined with a local search that is leading to good quality

solutions.

Graham Kendall 135

This observation is further enhanced by the fact that the local search method (hill

climbing) does not perform well on its own but when it is allowed to take a given

solution to a local optimum it greatly assists the search process.

In the next chapter an algorithm is developed to allow the no fit polygon for non-

convex polygons to be calculated. In chapter 8 we are then able to compare the

search algorithms using non-convex polygons and judge if the observations we

have made so far still hold true.

Graham Kendall 136

“There is no royal road to geometry.” Euclid(said to Ptolemy I), quoted in
Proclus, Commentary on Euclid

7. Determining the No Fit Polygon for Non-
Convex Polygons and Combining Non-Convex

Polygons

7.1 Introduction
The No Fit Polygon (NFP) is a method to find all the possible arrangements of one

polygon, in relation to another, so that the two polygons touch but do not intersect.

Once the NFP has been calculated for the given polygons, a reference point from

one of the polygons can be placed on any edge or vertex of the NFP in the

knowledge that the polygon will touch but not intersect the other polygon. The

NFP can be applied to areas such as robot motion planning (where it is often

referred to as the Configuration Space Obstacle (CSO)). It can also be applied to

cutting and packing problems as has been shown in the previous chapters for

convex polygons.

It is relatively easy to determine the NFP for convex polygons (see 7.2), using the

algorithm presented in (Cunninghame-Green, 1992).

Chapter 7

Graham Kendall 137

However, the Cunninghame-Green algorithm is only applicable to convex

polygons and the construction of algorithms that determine no fit polygons for

non-convex polygons is still very much an active research area. For example,

(Bennell, 2001) has recently presented a revised algorithm based on the concept of

Minkowski sums. Although the methods to determine the NFP are well known the

implementation is delicate due to the number of degenerate cases that can occur.

In this chapter, an algorithm is developed that enables us to calculate the NFP for

non-convex polygons. The work is based on previous work which uses D-

Functions to define a set of primitive operations. We develop the use of D-

Functions so that vertex intersection can be reported correctly and we also develop

the no fit polygon algorithm so that it caters for degenerate cases. The algorithm

has been tested on a variety of cases and, so far, it has been found to be robust.

Finally, we show, using D-Functions again, how two polygons can be combined to

form a single polygon.

7.2 The No Fit Polygon – In Outline
The No Fit Polygon (NFP) determines all arrangements that two arbitrary

polygons may assume such that the shapes touch but so that they cannot be moved

closer together without intersection. The example below shows how to calculate

the NFP for two polygons.

Consider the two polygons in figure 7.1. The aim is to find all arrangements such

that the two polygons touch but do not intersect. If this can be achieved then we

know that we cannot move the polygons closer together in order to obtain a tighter

Graham Kendall 138

packing. A description of how to calculate the NFP for convex polygons was

shown in section 4.2.

In order to implement an NFP algorithm for convex polygons it is not necessary to

have one polygon orbiting another. The algorithm in (Cunninghame-Green, 1992)

works on the assumption that (for convex polygons only) the NFP has its number

of edges equal to the number of edges of P1 and P2. In addition, the edges of the

NFP are simply copies of the edges of P1 and P2, suitably ordered. To build the

NFP it is a matter of taking the edges of P1 and P2, sorting them and building the

NFP using the ordered edges. This algorithm is also presented in (Cunninghame-

Green, 1989), although here it is presented as a Configuration Space Obstacle

(CSO).

Calculating the NFP for non-convex polygons is more difficult. The idea is the

same in that one polygon orbits another, tracing a reference point. However, due to

the conditions that can arise, the algorithm is more complex and has to deal with a

number of degenerate cases. A full description of these issues and their resolution

is given later in the chapter. For now, we simply show an example of an NFP for

non-convex polygons and describe one of the cases that have to be dealt with,

which does not arise in convex polygons. Consider the two polygons shown in

figure 7.1a

Graham Kendall 139

 a b c d e

Figure 7.1 – Calculating the NFP for Non-Convex Polygons

The top polygon is to be the stationery polygon and the bottom polygon will orbit

it, tracing its reference point (the filled circle) as it does so. Figure 7.1a shows the

initial position. Figure 7.1b shows the state after the orbiting polygon has made its

first move. Figure 7.1c shows the state after the next move. Notice that the orbiting

polygon cannot slide the full distance else it would pierce the stationery polygon.

Therefore, it has to stop prematurely and change direction (7.1d). If the orbiting

polygon is allowed to continue the NFP polygon is constructed as shown in figure

7.1e. Notice that the NFP edges are no longer simply copies of the edges from the

two polygons that formed the NFP. In addition, it is no longer the case that the

number of edges are equal to sum of the number of the edges from the original

polygons. Additional problems will be described as the algorithm is presented.

7.3 D-Functions
In order to build higher level operations that we can apply to polygons it is

beneficial to define low level primitives. For example, it is useful to be able to

detect if points are co-linear, if lines intersect or if lines overlap. The literature

provides many ways to implement such primitives. For example, in (O’Rourke,

Graham Kendall 140

1998) a LeftOn predicate is defined which can be used to decide if a given point is

to the left of a directed line. This predicate can be developed to decide if the point

is to the right of the line or if the point is co-linear with the line. O’Rourke

develops the LeftOn primitive further so that line segment intersection can be

detected. An alternative set of primitives is defined in (Mahadevan, 1984). These

give a larger range of primitives which can be directly applied to the NFP

algorithm and so, are employed in this work.

D-Functions are defined in (Mahadevan, 1984) but we repeat the main information

here as they perform a central role in the remainder of the algorithm.

Figure 7.2 – Distance of Point from a Line

Given a vector, AB, and a point, P, the distance, d, from AB to P (see figure 7.2) is

calculated as follows

α

))(())((PABAPABA XXYYYYXXd −−−−−
= (7.1)

d

P

B

A

Graham Kendall 141

where

XN and YN are the x and y co-ordinates for point N and α is the length of AB, and is

defined as

22)()(BABA YYXX −+−=α

 (7.2)

Given a vector, AB, and point, P, a D-Function can be defined as DABP = sign[dα]

or

 DABP = sign[(XA - XB) (YA - YP) – (YA - YB) (XA - XP)] (7.3)

where sign is used to return a value of +1, -1 or 0, depending on whether the result

is positive, negative or equal to zero.

Using D-Functions we can determine the position of P in relation to AB as follows

(figure 7.3)

Graham Kendall 142

If DABP = 0 then P is either on vector AB or on an extended line segment of AB (or

BA).

If DABP > 0 then P is to the left of AB.

If DABP < 0 then P is to the right of AB.

Figure 7.3 – Using D-Functions to determine the relationship between
AB and P

D-Functions can be further developed to define the relationship between two lines.

Note, that the definitions given here differ slightly from those in (Mahadevan,

1984). These are the minimum conditions that must hold. Mahadevan presents the

P’ B

A
DABP < 0 (P to the right of AB)

P

DABP > 0 (P to the left of AB)

P

P’

B

A

P

P’
B

A DABP = 0 (P on AB)

Graham Kendall 143

conditions in such a way that they mirror the algorithm given in his thesis. Figures

7.4a through to 7.4i show these conditions graphically and also describes them

using D-Functions.

AB intersects UV if
U is to the left (right) of AB (DABU ≠ 0)
V is to the right (left) of AB (DABV ≠ 0)
A is to the right (left) of UV (DUVA ≠ 0)
B is to the left (right) of UV (DUVB ≠ 0)
A and B must be on opposite sides of UV (DUVA ≠ DUVB)

Figure 7.4a – AB intersects UV

B touches UV if
B must be linear with UV (DUVB = 0)
U cannot be linear with AB (else U would be touching B) (DABU ≠ 0)
V cannot be linear with AB (else V would be touching B) (DABV ≠ 0)
U and V must be on opposite sides of AB (DABV ≠ DABU)

Figure 7.4b – B touches UV

A touches UV if
A must be linear with UV (DUVA = 0)
U cannot be linear with AB (else U would be touching A) (DABU ≠
0)
V cannot be linear with AB (else V would be touching A) (DABV ≠
0)
U and V must be on opposite sides of AB (DABV ≠ DABU)

Figure 7.4c – A touches UV

A

U

B

V

A

U

B

V

A

U

B

V

Graham Kendall 144

U touches AB if
U must be linear with AB (DABU = 0)
A cannot be linear with UV (else A would be touching U) (DUVA
≠ 0)
B cannot be linear with UV (else B would be touching U) (DUVB ≠
0)
A and B must be on opposite sides of UV (DUVA ≠ DUVB)

Figure 7.4d – U touches AB

V touches AB if
V must be linear with AB (DABV = 0)
A cannot be linear with UV (else A would be touching V) (DUVA ≠ 0)
B cannot be linear with UV (else B would be touching V) (DUVB ≠ 0)
A and B must be on opposite sides of UV (DUVA ≠ DUVB)

Figure 7.4e – V touches AB

B and V touch if
V must be linear with AB (DABV = 0)
B must be linear with UV (DUVB = 0)
U must not be linear with AB (DABU ≠ 0)

Figure 7.4f – B and V touch

A

U
B

V

A

U
B

V

A

U

B

V

Graham Kendall 145

A and V touch if
V must be linear with AB (DABV = 0)
A must be linear with UV (DUVA = 0)
U must not be linear with AB (DABU ≠ 0)

Figure 7.4g – A and V touch

B and U touch if
U must be linear with AB (DABU = 0)
B must be linear with UV (DUVB = 0)
V must not be linear with AB (DABV ≠ 0)

Figure 7.4h – B and U touch

A and U touch if
U must be linear with AB (DABU = 0)
A must be linear with UV (DUVA = 0)
V must not be linear with AB (DABV ≠ 0)

Figure 7.4i – A and U touch

It is also useful to be able to detect if AB and UV overlap. This is a special

condition where AB and UV are co-linear (DABU = 0 and DABV = 0). When this

A

U

B

V

A

U
B

V

A
U

B

V

Graham Kendall 146

conditions exists it indicates that either AB/UV do not intersect, AB/UV are

touching (but still co-linear) or AB, UV overlap. These conditions are shown

below (see figures 7.4j to 7.4l).

AB and UV do not overlap or intersect but are co-
linear

Figure 7.4j – AB and UV do not overlap or intersect but are co-linear

AB and UV touch and are co-linear

Figure 7.4k – AB and UV touch and are co-linear

AB and UV overlap

Figure 7.4l – AB and UV overlap

A

U

B
V

A

U

B V

A

U

B V

Graham Kendall 147

Any other conditions, other than those described above mean that that AB, UV do

not intersect.

The algorithms that implement D-Functions for the conditions shown in figure 7.4

are shown in (Mahadevan, 1984).

7.4 Checking for Intersection
When constructing the no fit polygon it is necessary to determine whether two

polygons intersect (for reasons explained below). The usual description as to how

this can be achieved is to check every edge on one polygon against every edge on

the other polygon and, if any edges intersect, it means that the polygons intersect.

This can be seen in figure 7.5a.

 a b c

Figure 7.5 – Checking for Intersection

Mahadevan does not offer any additional advice in this area as the algorithm

simply states “check for intersection.” However, implementing a simple ‘check

line’ approach, does not work in all cases. Consider figure 7.5b. These polygons

P1
3

2

0

1

2

1

0

P2

Graham Kendall 148

obviously intersect yet none of their edges intersect as all the intersections are

through vertices. It has been suggested that vertex intersections should be treated

in the same way as edge intersections. Whilst this would resolve the problem in

figure 7.5b, in that the polygons would be reported as intersecting, it would now

incorrectly report that the polygons in figure 7.5c intersect, when in fact they do

not (this depends on the definition of intersection – for our purposes, touching is

not an intersection). Therefore, there is a requirement that reports intersection

correctly, ideally using D-Functions so that the primitives already developed can

be used.

Analysis of the nature of intersections leads to the following observations.

It is assumed that the vertices are ordered counter-clockwise and that the first

vertex (zero) is the bottom right hand vertex. These indices are shown in figure

7.5a but have been omitted from some of the other figures for reasons of clarity.

In figure 7.5a, when checking edge(1,2) of P1 against edge(0,1) of P2 then

intersection will be returned by the D-Function.

 a b c

Figure 7.6 – Nature of Intersections

P2
P1

0

2

3

1

2

Graham Kendall 149

Consider figure 7.6a, which is a simplified version of figure 7.5b. Assume that we

are checking edge(1,2) of P1 against the edges of P2. When we compare edge(1,2)

of P1 against edge(2,3) of P2 the D-Function will return “VtouchesAB” (assuming

P1 takes on the edges AB and P2 takes on the edges UV). Simply using edge

intersection as a means for determining polygon intersection, would return a result

indicating that the polygons do not intersect. However, if the situation is analysed

further it can be seen that vertex 3 of P2 is touching AB. The preceding, previous,

vertex (2) is to the right of AB and the edge following it (0), next, is to the left. As

the previous and next vertices are on different sides of line AB it indicates that the

polygons intersect. If we apply this same principle to figure 7.5c the previous and

next points will be on the same side of the line indicating that the polygons do not

intersect; which is indeed the case.

A further condition that can arise is where one (or both) of the points (either

previous or next) is linear with the point that intersects AB. This situation will

arise with the two shapes shown in figure 7.6b. If, for example, the rectangle is

placed on top of the protruding part of the other polygon (figure 7.6c) then all

intersections will be through vertices but when we apply D-functions to this

configuration they will report linear conditions. Therefore, simply checking if

previous and next are on opposite sides of the line is not enough to capture all

intersecting cases. Further analysis leads to the following conditions, which check

for intersection (see table 7.1).

Graham Kendall 150

previous Next
Right Right NO Intersection
Right Left Intersection

Right Linear NO Intersection
Left Right Intersection

Left Left NO Intersection
Left Linear Intersection

Linear Right NO Intersection
Linear Left Intersection

Linear Linear NO Intersection

Table 7.1 – Detecting Intersections

This table can be realised into an implementation using the following algorithm.

p1, p2 are polygons, represented by vertices in ccw order
p1v, p2v is the number of vertices in p1 and p2
D_fn_Analysis is a function that returns the relationship of two lines using D-
Functions
All arithmetic on polygon vertices is assumed to be modular

For i = 0 until i = p2v-1
 For j = 0 until j = p1v-1
 ContactType = D_fn_Analysis(p2[i], p2.[i + 1], p1.[j], p1.[j+1]]
 switch(ContactType)
 case intersect
 return interection

 case UtouchesAB
 BeforeIdx = j-1
 AfterIdx = j+1
 If VtxI(p2.[i], p2.[i+1], p1.[BeforeIdx], p1.[AfterIdx])
 return intersection

 case VtouchesAB
 BeforeIdx = j
 AfterIdx = j+2
 If VtxI(p2.[i], p2.[i+1], p2.[BeforeIdx], p2.[AfterIdx]
 return intersection

 case AtouchesUV
 BeforeIdx = i-1
 AfterIdx = i+1
 If VtxI(p1.[j], p1.[j+1], p2.[BeforeIdx], p2.[AfterIdx])
 return intersection

 case BtouchesUV
 BeforeIdx = i
 AfterIdx = i+2
 If VtxI(p1.[j], p1.[j+1], p2.[BeforeIdx], p2.[AfterIdx])
 return intersection
 j = j+1
i = i+1
return no_interesct

Graham Kendall 151

The function VtxI (Vertex Intersection) is passed four points as parameters. The

first two parameters represent a line. The third and fourth points are the previous

and next points. They need to be checked against the line and whether the

polygons intersect is dictated by referring to table 7.1.

7.5 The No Fit Polygon – Modified Algorithm
7.5.1 Introduction

In 1984 Mahadevan (Mahadevan, 1984) described a method that calculates the no

fit polygon (NFP) for two non-convex polygons. In implementing the algorithm

some degenerate cases were found. In this section Mahadevan’s method will be

described, followed by a description of the degenerate cases and how they have

been overcome.

Section 7.2 of this work described the orbiting principle that forms the basis of

Mahadevan’s algorithm. That is, one polygon orbits another, and at each position

the reference point is stored and these points eventually make up the vertices of the

NFP.

The starting position is given by taking the largest y-coordinate of the orbiting

polygon and the smallest y-coordinate of the stationery polygon. The polygons are

aligned on these vertices. In this position the polygons are guaranteed not to

intersect.

7.5.2 Sliding Edge and Sliding Vertex

In order to move the orbiting polygon to the next position a vertex (the sliding

vertex) must slide along an edge (the sliding edge). The sliding edge can be on

either the stationery polygon or the orbiting polygon. Similarly, the sliding vertex

Graham Kendall 152

can be on either polygon. However, the sliding edge and sliding vertex cannot be

on the same polygon. The sliding edge and sliding vertex can be determined using

D-Functions as follows.

In each of the figures in figure 7.7, vertex B is on the stationery polygon, S. Vertex

E is on the orbiting polygon, O. B and E are in contact with one another.

Figure 7.7 – Determining Sliding Edge and Sliding Vertex

• If F is to the left of BC (DABC > 0) then the sliding edge is EF and the sliding

vertex is B (see figure 7.7a)

F

D

E

C A

B

S

O

7.9a

F
D

E

C A

B

S

O

7.9b

F D

E

C A

B

S

O

7.9c

Graham Kendall 153

• If F is to the right of BC (DABC < 0) then the sliding edge is BC and the sliding

vertex is E (see figure 7.7b)

• If F is linear with BC (DABC = 0) then the sliding edge is EF and the sliding

vertex is B (see figure 7.7c)

7.5.3 Determination of Sliding Distance

When using the orbiting method on convex polygons it is always possible to move

the orbiting polygon the full extent of the sliding edge. When the polygons are

non-convex, this may not be possible (see figure 7.1b and 7.1c). Therefore, before

moving the orbiting polygon, a check must be made as to how far the polygon can

be moved. This is done by extending every vertex on the orbiting polygon, in the

direction of motion, by the length of the sliding edge. The extended sliding edge is

checked to see if it intersects any edge on the stationery polygon.

 a b

Figure 7.8 – Projecting Vertices

In figure 7.8a the sliding vertex, SV, is on the stationery polygon, S, and the

sliding edge, PQ, is on the orbiting polygon, O. The orbiting polygon should move

I

Q

P

O

SV

S Q

P

O

SV

S

Graham Kendall 154

the full distance of PQ but when P is extended it intersects S at I. Therefore, the

orbiting polygon can only be moved by the distance PI. Under these circumstances

the new sliding edge is the edge that was intersected and the new sliding vertex is

the vertex that intersected S (in this case P). Alternatively, the new sliding edge

and sliding vertex can be determined using D-Functions, as described above.

Each vertex on S must also be extended in the opposite direction of motion by the

distance of the sliding edge in order to check it does not intersect O (see figure

7.8b).

If no intersections are found then the orbiting polygon can be moved the full

distance of the sliding edge.

Equations 7.4 and 7.5 give a method to extend a point in a given direction. This

can be used to extend point R, by a distance of PQ, in the direction of PQ, where

N.x and N.y are the x and y co-ordinates for point N.

 Extend.x = R.x + (Q.x – P.x) (7.4)

 Extend.y = R.y + (Q.y – P.y) (7.5)

7.5.4 Multiple Points of Contact

In figure 7.8 it is relatively easy to determine the sliding edge and vertex as there

is only one point of contact between the two polygons. However, it is possible to

have multiple points of contact (see figure 7.9).

Graham Kendall 155

 a b c

Figure 7.9 – Multiple Points of Contact

Figure 7.9a shows two points of contact, each of which are candidates for being a

sliding edge and sliding vertex. Figures 7.9b and 7.9c show numerous points of

contact (the larger shape in figure 7.9b is a T shape, which has been rotated in

figure 7.9c). Mahadevan mentions the possibilities of multiple contact points but

gives no method for determining them. Our algorithm checks each edge of one

polygon against each edge on the other polygon. Using D-Functions it is possible

to determine when a contact is found and thus identify the potential sliding edge

and vertex.

Once a sliding edge/vertex has been identified the orbiting polygon can be moved,

using the checks described above to ensure that a vertex on one polygon does not

pierce the edge of the other polygon. However, it is possible, not to detect an

intersection before the orbiting polygon has moved but moving the polygon still

leads to an intersection (an example is shown below). Due to this a data structure

is maintained so a search for valid sliding edge and vertex can be continued,

should the current candidates lead to an invalid (intersecting) move. This data

structure simply holds the vertex index of the stationery and orbiting polygon so

Graham Kendall 156

that the search can be continued from that point. The data structure is reset after

each valid move so that the search starts from the zero’th vertex on each polygon.

7.5.5 Check for Intersection After Potential Move

Once the orbiting polygon has been moved it is necessary to check if the two

polygons intersect. This is needed as the projection of the vertices described above

does not capture all cases where intersection will occur. This is due to the fact that

only the vertices have been extended but intersection could occur on any edge. The

example given in (Mahadevan, 1984) is shown in figure 7.10. In figure 7.10a the

sliding edge has been identified as PQ and the sliding vertex as A. The direction of

travel is shown by the arrow. If every vertex on the orbiting polygon, O, is

extended by length PQ in the direction of travel, no intersection is detected.

Similarly, if every vertex on S is extended by length PQ in the opposite direction

of travel, no intersection is detected. Therefore the move is made by moving P so

that it aligns with A (figure 7.10b). It is now obvious that the polygons intersect.

By continuing the search for a sliding edge and vertex, using the configuration of

7.10a, another point of contact would identify QR as the sliding edge and B as the

sliding vertex. This move will not result in intersection and thus the move can be

made permanent. At this point the search for a sliding edge and vertex will be reset

so that the next sliding edge/sliding vertex search will start afresh (that is, start

searching at the zero’th vertices).

Graham Kendall 157

 a b

Figure 7.10 – Polygons may intersect after extending vertices

7.5.6 Additions to the Algorithm

Apart from the additions to the intersection procedure (section 7.4), the algorithms

described above are the same as that described by Mahadevan (Mahadevan, 1984).

However, there are some degenerate cases where the algorithm does not work. Our

work has corrected these areas so that the algorithm is more robust.

Checking for Cycles

Consider figure 7.11a, which is part way through the NFP algorithm. Depending

on the order in which the next contacts are determined the next position could

either be figure 7.11b or figure 7.11c.

B
R

A

Q

P

S

R Q

P

O

Graham Kendall 158

 a b c

Figure 7.11 – Possibility of algorithm not terminating

Arriving at figure 7.11b presents no problem in that the orbiting polygon, O, can

continue its journey around the stationery polygon, S. However, by moving

immediately to the configuration of figure 7.11b the more compact packing of

figure 7.11c will be missed. Therefore, depending on the eventual use to which the

no fit polygon will be put it may be more beneficial to ensure that every contact is

explored so that tighter packings are not passed over. Now consider figure 7.11c.

This results in a tighter packing of the two polygons but presents two additional

problems. Firstly, when O tries to move again, the only viable option is to move

back to the configuration shown in figure 7.11a. From here the next move could be

back to the configuration of figure 7.11c. In order to stop the algorithm entering an

infinite loop there needs to be a mechanism to identify these situations and recover

from them.

In the modified algorithm this is achieved by using a stack that stores valid

positions. Each time a valid placement is found an item is pushed onto the stack.

Each stack item contains three elements.

S

S S

Graham Kendall 159

1. The current vertex index of the stationery polygon that is being processed as

part of the next contact algorithm

2. The current vertex index, plus 1, of the orbiting polygon that is being

processed as part of the next contact algorithm.

3. The polygon description of the orbiting polygon that reflects its position,

before it was moved based on the sliding edge and vertex that are now stored

(1 and 2, above).

If an item is popped off the stack the vertex indices are passed to the next contact

algorithm. These are used as starting points for establishing the next contact

between the orbiting and stationary polygons. By adding one to the orbiting

polygon index before pushing it onto the stack it effectively moves the checking

procedure on one stage from the position that existed when the item was pushed

onto the stack. The polygon is pushed onto the stack so that the current position is

stored and can be restored.

Another check the algorithm needs to make is to ensure that repeated positions are

not revisited. For example, the original algorithm could find itself in the

configuration shown in figure 7.11c. The next valid configuration will be that

shown in fig 7.11a. However, this position will already have been seen, therefore,

it is regarded as an invalid position.

When the position in figure 7.11c is reached the algorithm will search for the next

valid position. It will arrive at the position shown in figure 7.11a and discover, by

peeking at the polygon at the top of the stack and comparing it against the current

Graham Kendall 160

position, that this position has already been seen. Therefore, it will ignore this

move and continue to look for another valid position. Not being able to find one it

will pop the top item from the stack and will set the orbiting polygon to the

polygon just popped (i.e. the position shown in figure 7.11a). The next contact

vertices will be set to those that were stored on the stack. These will have been the

indices in effect when the position in fig 7.11a was originally reached, except the

orbiting index will have been incremented by one. The result is that the algorithm

will continue and find the position shown in fig 7.11b.

Valid Polygons

A secondary problem is that the vertices returned from the algorithm are not

guaranteed to generate a polygon when they are navigated in a counter clockwise

order.

 a b

Figure 7.12 – Algorithm does not have to produce a valid polygon

Graham Kendall 161

Figure 7.12a shows the no fit polygon that is produced by the two polygons in

figure 7.11, under the assumption that the algorithm progresses from figure 7.11a

to figure 7.11b and does not find the configuration shown in figure 7.11c. If the

configuration in figure 7.11c is reached this results in an additional point on the no

fit polygon, as shown in figure 7.12b. It is no longer possible to draw a polygon, at

least not a simple polygon, as an edge would need to be drawn from the right hand

point in figure 7.12b to the left hand point in this figure. Once the algorithm

backtracked, an edge would then be drawn in the opposite direction before the no

fit polygon was completed as shown in figure 7.12a.

A potential solution is to not store the left hand point in figure 7.12b. This is easily

achieved by removing the point from the NFP polygon at the time there is a need

to remove an item from the stack. However, this gives a potential problem in that

the packing shown in figure 7.11c is effectively lost. In the application that is

developed in this thesis we want to find the tightest possible packings. Therefore it

is beneficial not to discard any potential solutions due to backtracking. Due to the

nature of our problem we are only interested in the vertices of the NFP. Therefore,

our NFP algorithm only needs to return a list of vertices never has to construct a

polygon.

Different applications will obviously have different requirements. Therefore, the

way in which the algorithm is implemented by other researchers is dependent upon

the particular use of the resultant NFP, but we have highlighted several aspects

which need to be considered.

Graham Kendall 162

Finally, as the NFP is built it is possible for three (or more) points on the NFP to

be co-linear. Whilst this does not affect the properties of the resultant polygon it

can lead to inefficiencies as the number of vertices on the NFP is greater than it

needs to be to represent the same polygon. Therefore, we have introduced a check

into our algorithm that checks for co-linear points as the NFP is built. This check

is easily performed using D-Functions.

Sliding Distance

In section 7.5.3 a discussion was given as to how to determine the sliding distance

for a given orbiting polygon. The amount that the polygon is allowed to slide is

determined by recognising edge intersections. However, consider figure 7.13.

 a b c

Figure 7.13 – Determining Sliding Distance when there is No Edge
Intersection

In figure 7.13a, the sliding vertex will be identified as vertex A+1. The sliding

edge will be the vertex leading towards U. Therefore, the direction of travel is

A A+1

A-1

U

V

Graham Kendall 163

shown by the arrow leading from A. Vertex projections (as discussed in 7.5.3) will

detect no edge intersections, therefore the polygon will be moved the full length of

the sliding edge (7.13b). The usual check for intersection will now be carried out

and it will be found that the polygons intersect. Therefore, the state will revert to

that shown in 7.13a. The algorithm now tries to determine a new sliding edge and

vertex. Not finding any suitable candidates the algorithm will either cycle or

terminate.

The problem is due to the fact that the projection of vertex A (7.13a) is not able to

detect that it can only move as far as V. The only indication that there is a potential

problem is when the vertex A is extended (call this edge A, B) and, using D-

functions, it is found that “VtouchesAB”. However, the situation is complicated in

that a configuration such as that shown in 7.13c could also arise. Extending the

same edge as before, D-functions will return “VtouchesAB” but, in this instance

the polygon can move the full distance. In fact, it is desirable if we want the

concavity to be explored.

Therefore, it is necessary to identify some condition that allows the configurations

of 7.13a and 7.13c to be differentiated.

Similar analysis to that carried out for checking for intersection through vertices

(section 7.4) leads to the following observations.

Let the orbiting vertex being extended be called AB.

Call the vertices before and after A, A-1 and A+1 respectively.

The stationery polygon has vertices U and V. At a given point in the NFP

algorithm, the D-functions will return “VtouchesAB” (see figure 7.13a).

Graham Kendall 164

7.14a shows a simplified version of 7.13a, at the point when the D-functions return

VtouchesAB. Figure 7.14b is the state of 7.13c when VtouchesAB.

 a b

Figure 7.14 – Simplification of Figure 7.13 for D-function Analysis

Looking at figure 7.14 it is apparent that if U is linear with AB (which implies it is

also linear with V), then A can slide the full distance as neither A,A-1 or A,A+1

will intersect UV.

If U is not linear with AB then two other conditions need to be checked to

ascertain if A can slide the full distance. If U (in relation to AB) and A-1 (again in

relation to AB) have different values, this indicates that A can slide the full

distance without A,A-1 or A,A+1 intersecting UV. To put it another way, if A-1

and U are on opposite sides of AB, then A can slide the full distance. In addition

the same must hold for U (in relation to AB) and A+1 (in relation to AB).

Of course, D-Functions can be used to check these conditions and this can be

expressed as follows.

A

B

A-1

A+1

U

V U V

A

B

A-1

A+1

Graham Kendall 165

IF (D_fn(A, B, U) ≠ D_fn(A, B, A-1)) AND (D_fn(A, B, U) ≠ D_fn(A, B, A+1))

THEN

Move Full Distance

ELSE

Move as far as V

These observations can be captured in the following table. The final column gives

a statement which captures whether A can be moved the full distance or if A can

only be moved as far as V. The two highlighted rows shows the conditions in force

for figure 7.13a (higher row) and figure 7.13c (lower row).

Graham Kendall 166

Relationship

with AB
Conditions to Check Move Full Distance or Not

U A-1 A+1 U linear
AB?

U & A-1
different?

U & A+1
different?

(U is linear) ∨ ((U & A-1
different) ∧ (U & A+1

different))
left left left FALSE FALSE FALSE Move to V
left left right FALSE FALSE TRUE Move to V
left left linear FALSE FALSE TRUE Move to V
left right left FALSE TRUE FALSE Move to V
left right right FALSE TRUE TRUE Move Full Distance
left right linear FALSE TRUE TRUE Move Full Distance
left linear left FALSE TRUE FALSE Move to V
left linear right FALSE TRUE TRUE Move Full Distance
left linear linear FALSE TRUE TRUE Move Full Distance
right left left FALSE TRUE TRUE Move Full Distance
right left right FALSE TRUE FALSE Move to V
right left linear FALSE TRUE TRUE Move Full Distance
right right left FALSE FALSE TRUE Move to V
right right right FALSE FALSE FALSE Move to V
right right linear FALSE FALSE TRUE Move to V
right linear left FALSE TRUE TRUE Move Full Distance
right linear right FALSE TRUE FALSE Move to V
right linear linear FALSE TRUE TRUE Move Full Distance
linear left left TRUE TRUE TRUE Move Full Distance
linear left right TRUE TRUE TRUE Move Full Distance
linear left linear TRUE TRUE FALSE Move Full Distance
linear right left TRUE TRUE TRUE Move Full Distance
linear right right TRUE TRUE TRUE Move Full Distance
linear right linear TRUE TRUE FALSE Move Full Distance
linear linear left TRUE FALSE TRUE Move Full Distance
linear linear right TRUE FALSE TRUE Move Full Distance
linear linear linear TRUE FALSE FALSE Move Full Distance

Table 7.2 – Detecting if Orbiting Polygon Can Move the Full Distance

7.6 Combining Polygons
Once the NFP has been determined for two given polygons, similar to the non-

convex algorithm, the best placement needs to be found that minimises the area for

the two polygons when they are placed together. This is achieved by placing the

reference point of the orbiting polygon on each vertex of the NFP and returning

the placement which returns the best fit. To decide which is the best fit, similar to

Graham Kendall 167

the non-convex case, the convex hull is calculated. The convex hull is used as a

measure, rather than combining the polygons, as combined polygons will be

identical, with regards to their area, and thus there will be no way of deciding

between one placement and another. If there is more than one placement that

returns the same minimum area, one placement is used at random, although all the

placements are stored in the cache for future use. This part of the algorithm is

exactly the same as for the non-convex case that was explored earlier in this thesis.

Once the best placement has been found the two polygons are combined to form

one polygon which is used as the next stationery polygon.

Combining two polygons is an operation which is seemingly simple but the

implementation is delicate. Initially, the basic idea will be described, followed by

the implementation issues that had to be overcome before the algorithm could be

realised.

 a b

Figure 7.15 – Combining Two Polygons

Figure 7.15a and figure 7.15b show a simple case of combining two polygons.

There are libraries of algorithms that allow these types of operation to be done

(e.g. LEDA and CGAL) but this work is implemented using our own algorithms

which draw heavily on D-Functions.

Graham Kendall 168

The basic idea behind the algorithm is to identify a vertex on one of the polygons

which is guaranteed to be on the combined polygon. In the case of figures 7.15a

and 7.15b this could be the vertex identified by the filled circle. The algorithm

proceeds to move around this polygon, at each stage, checking (using D-Functions)

if there is any contact with the other polygon. If there is a contact then a decision is

made whether to switch to the touching polygon, and continue to move around that

one. Before describing the combine algorithm some support algorithms must be

defined.

Given an edge, AB, from polygon, P1, it is possible to establish the relationship of

AB with another polygon P2. Each edge on P2 is checked against AB to check this

relationship. As each edge of P2 is processed it is called UV. Once the relationship

between the P1 and P2 has been established the algorithm can return an index

which represents U and the type of contact between the two polygons.

Graham Kendall 169

 a b

 c d

Figure 7.16 – Polygon Relationships to Consider

Figure 7.16 shows several configurations that demonstrate some of the cases that

have to be considered. In figure 7.16a, AB is the edge from P1 and UV, on P2, is

being considered. D-Functions will return that “BtouchesUV”. As there are no

other contacts with AB the function will return the index of U and a contact type

of “BtouchesUV”. However, one other check is required, as shown in figure 7.16b.

Two of the vertices of P2 lie on one of the edges, UV, that is currently being

checked. When P1 is checked against P2 it will return a contact type of

“BtouchesUV”. However, in this case, the contact type is not valid as it is not valid

to switch from AB on P1 to UV on P2. This is a simple check to make. When a

contact type of “BtouchesUV” is returned if V is to the left of AB, then it is not

valid to swap polygons. This is easily checked with D-Functions.

V

A B

U

P2
P1

A

B

0 P2 P1 P1
B

A

P2

0

V

A
B

U

P2

P1

Graham Kendall 170

In figure 7.16c, there are two occurrences of “UtouchesAB” (there are also

occurrences of “VtouchesAB” but these can be ignored). The next stage will be to

move onto P2, so that the combined polygon can continue to be formed. However,

a decision needs to be made as to which edge on P2 is employed. In this case it is

the edge that is closest to A on AB. Therefore, in this case, the function can return

a contact type of “UtouchesAB” and U as the index nearest A.

In figure 7.16d, the situation is similar to figure 7.16c in that there are two

occurrences of “UtouchesAB” but they cannot be differentiated by their distance

from A as they are effectively the same point. In this case, the edge to be used

should be the one that forms the smallest angle with AB.

We now have the necessary conditions to return the relationship between P1 and

P2. The function, which we have called CombineReln, returns an index which

represents U and the type of contact found and is a key component in the main

combine algorithm. The combine algorithm can be shown formally as follows.

Variable types
Integer Crnt_Vertex : Vertex index being processed
Integer Uidx : Vertex index for the “other” polygon
Polygon Crnt_P : Polygon which is currently being considered
Polygon Other_P : The “other” polygon
Point A : Current vertex on Crnt_P
Point B : Vertex_A +1

1. Crnt_Vertex ← Vertex guaranteed to be on resultant polygon
2. Crnt_P ← Polygon on which Start_vertex is placed
3.
4. A ← Crnt_P[Crnt_Vertex]
5. B ← Crnt_P[Crnt_Vertex +1]
6. DO

Graham Kendall 171

7. CombineReln(A, B) RETURNS Uidx & Contact
8. SWITCH(Contact)
9. CASE : BtouchesUV
10. IF(D_fn(A, B, Crnt_P[Crnt_Vertex +2] = right
11. Crnt_Vertex ← Crnt_Vertex +1
12. BuildNewPolygon(Crnt_P[Crnt_Vertex])
13. A ← Crnt P[Crnt_Vertex]
14. B ← Crnt_P[Crnt_Vertex +1]
15. ELSE
16. BuildNewPolygon(Crnt_P[Crnt_Vertex +1])
17. A ← Crnt_P[Crnt_Vertex +1]
18. B ← Other_P[Uidx +1]
19. Crnt_Vertex = Uidx
20. SwapPolygons()
21. ENDIF
22. CASE : UtouchesAB
23. IF(D_fn(A, B, Other_P[Uidx +1] = left
24. Crnt_Vertex ← Crnt_Vertex +1
25. BuildNewPolygon(Crnt_P[Crnt_Vertex])
26. A ← Crnt P[Crnt_Vertex]
27. B ← Crnt_P[Crnt_Vertex +1]
28. ELSE
29. BuildNewPolygon(Other_P[Uidx])
30. A ← Other_P[Uidx]
31. B ← Other_P[Uidx +1]
32. Crnt_Vertex = Uidx
33. SwapPolygons()
34. ENDIF
35. CASE : BandUtouch
36. IF(theta(A, B, Crnt_Vertex, newA)
37. SwapPolygons()
38. ENDIF
39. BuildNewPolygon(B)
40. Crnt_Vertex = newA
41. A ← Crnt P[Crnt_Vertex]
42. B ← Crnt_P[Crnt_Vertex +1]
43. CASE : AandUtouch OR nointersect
44. Crnt_Vertex ← Crnt_Vertex +1
45. BuildNewPolygon(Crnt_P[Crnt_Vertex])
46. A ← Crnt P[Crnt_Vertex]
47. B ← Crnt_P[Crnt_Vertex +1]
48. END_SWITCH
49. UNTIL finished processing polygons

There are a number of support routines.

• D_fn(…) is the D-Function primitive (see figure 7.3).

• BuildNewPolygon(…) takes a vertex as a parameter and adds this vertex to the

polygon being built (that is, the combined polygon).

Graham Kendall 172

• SwapPolygons(…) controls the process of swapping between one polygon and

the other, when the necessary condition arises.

• theta(…) is used to determine, which edge, from those available should be

moved to next. This operation is discussed further below.

• CombineReln(…) has been discussed above.

Using CombineReln, the relationship between P1 and P2 is established. Each of the

contact types of interest is discussed below. These discussions should be read in

conjunction with the algorithm shown above. Notice, the complications for the

combine algorithm come from the fact that as polygons are combined self

intersecting polygons can be formed (see 7.16b, 7.16c and 7.16d). If this were not

the case, the combine algorithm would be considerably simpler to implement.

BtouchesUV

 a b

Figure 7.17 – Whether to swap polygons or not when “BtouchesUV”

A B

U

V

A B

U

V

Graham Kendall 173

Given the configuration is figure 7.17a, if “BtouchesUV” the vertex following B is

to the right of AB. This indicates that navigation should continue on the same

polygon. Given the configuration shown in 7.17b, navigation should change to the

other polygon.

UtouchesAB

If “UtouchesAB” is returned, given the configuration shown in figure 7.18a, then

the vertex following U (that is V) is to the left of AB. This indicates that

navigation should continue on the same polygon. Given the configuration shown

in 7.18b, navigation should change to the other polygon as V is to the right of AB.

 a b

Figure 7.18 – Whether to swap polygons or not when “UtouchesAB”

A

B

U V
A

B
U

V

Graham Kendall 174

BandUtouch

If B and U touch, it is necessary to check if a polygon switch should take place by

checking the angles of various edges with edge AB. In doing this, the angle of B,

B+1 is calculated and this is compared with the angle of every edge from the other

polygon. The edge which forms the smallest angle is the next edge on the polygon

being formed. This is the operation carried out by the theta function. It returns a

boolean stating if a swap should take place. It also returns an index for the new A

vertex.

In figure 7.19a, the smallest angle with AB is B,B+1. Therefore, no polygon swap

will take place and the new A index will be the current B index.

Later, the situation will be as shown in figure 7.19b. In this case, the smallest

angle is found to be with the other polygon. This indicates that a polygon swap

should take place. Also notice, that the new AB edge will not be the UV edge.

Instead, it is the dashed edge. This is the reason why all edges have to be checked

on the other polygon. Whereas, only one edge has to be checked on the current

polygon as if navigation is to continue around the current polygon, is has to be on

edge B,B+1.

Graham Kendall 175

 a b

Figure 7.19 – Whether to swap polygons or not when AandUtouch

NoIntersect and AandUtouch

If either of these conditions arise it indicates that naviagtion around the current

polygon should be continued.

7.7 Summary
We have presented an algorithm to produce a no fit polygon using non-convex

polygons. We believe this algorithm is more robust than the algorithm it is based

on (Mahadevan, 1984) as it deals with more degenerate cases. Our algorithm

allows polygon intersections to be more accurately reported. This method of

intersection uses D-Functions which are already integral to the NFP algorithm.

The revised algorithm also deals with cases where the algorithm has to backtrack,

in order to stop it entering an infinite loop.

Depending on the polygons, certain configurations may be passed over. However,

it is quite simple to ensure that the algorithm considers all possible moves before

deciding where the orbiting polygon should move to. It may also be the case that

the backtracking has to remove a vertex from the NFP that is being constructed. In

A B
U

V

A

B U

V

Graham Kendall 176

our implementation we prefer not to do this. Instead, we return an array of vertices

because this is all our application requires.

In addition, this chapter has presented an algorithm to combine two polygons that

relies heavily on D-Functions. Whilst this area is not new (see LEDA

(http://www.mpi-sb.mpg.de/LEDA/leda.html), for example), the author has found

no literature that uses D-Function to perform this operation. In the context of this

work, it is beneficial to use D-Functions as they are already used for the NFP

algorithm, they are well understood and it means we can make use of primitive

functions which we already have available.

The algorithm is complicated by the fact that after several combine operations

have been carried out, it is possible to have polygons that is self-intersecting. The

algorithm presented here is able to deal with these cases.

Graham Kendall 177

“The most extensive computation known has been conducted over the last
billion years on a planet-wide scale: it is the evolution of life. The power of
this computation is illustrated by the complexity and beauty of its crowning
achievement, the human brain.” David Rogers, Weather Prediction Using a

Genetic Memory

8. Comparing Meta-Heuristics and
Evolutionary Algorithms when Applied to the

Non-Convex Nesting Problem

8.1 Introduction
Previous chapters of this thesis (chapters 5 and 6) have shown that, using

evolutionary and meta-heuristic approaches can give good quality solutions to the

nesting problem. In those chapters only convex pieces were used as these are

easier to manipulate and it was beneficial to show that the methods employed did

produce better quality solutions than straight forward approaches such as hill

climbing.

In chapter 7, a no fit polygon algorithm was developed that allowed manipulation

of non-convex polygons. Having this algorithm available allows us to continue the

investigation using non-convex shapes. Intuitively, we would expect even better

solutions to be produced. To ascertain if this is the case we, initially, test the non-

Chapter 8

Graham Kendall 178

convex algorithms against the two test problems we have used thus far and then

data from the literature is tested.

8.2 Comparison of Test Problems with Convex Results

In chapter 6, ant algorithms and memetic algorithms were used as a search

mechanism for two test problems. The best results were obtained using a memetic

algorithm and are summarised in table 8.1.

Test Data Best Evaluation
1 283.07
2 890.51

Table 8.1 – Best Results for Test Data 1 & 2 using Convex Algorithm

These results were obtained using experiments that carried out 8000 evaluations.

On a Pentium PII (laptop) with 16MB main memory this took about ten minutes.

Identical runs were carried out using the non-convex no fit polygon algorithm and

the number of evaluations were adjusted so that the algorithms ran for about the

same amount of time. To achieve this the searches were only allowed to carry out

300 evaluations. All the same searches were conducted and the results are shown

in table 8.2 and table 8.3. All results are averaged over 10 runs. The results are

sorted in ascending order of evaluation.

Graham Kendall 179

Search Type Parameters Evaluation Row Height Standard
Deviation (Eval)

Memetic
Algorithm

GA Popsize = 6,
Generations = 8,

Hill Climbing Iters
= 2, N/H Size = 4

129.77 156.00 22.39

Simulated
Annealing

Schedule = {40, 0,
4, 30)

129.87 156.50 36.44

Tabu Search Iters=30, List Size
= 20, N/H Size =

10

132.09 157.00 57.50

Hill Climbing Iters = 30, N/H
Size = 10

134.78 157.00 71.71

Memetic
Algorithm

GA Popsize = 10,
Generations = 10,
Hill Climbing Iters
= 3, N/H Size = 1

147.24 158.00 41.04

Simulated
Annealing

Schedule = {200,
0, 20, 30)

156.83 158.00 51.03

Tabu Search Iters=30, List Size
= 10, N/H Size =

10

168.80 158.80 52.31

Hill Climbing Iters = 300, N/H
Size = 1

171.49 160.20 44.84

Ant Algorithm Ants=13, Iters=12,
Trail=1,

Visibility=20,
Evaporation=0.5,

Q=100

174.54 159.60 72.15

Simulated
Annealing

Schedule = {60, 0,
4, 20}

179.02 159.40 73.61

Memetic
Algorithms

Ants = 13, AA
Iters = 6, Hill

Climbing Iters = 4,
NH Size = 1

185.54 162.40 59.75

Genetic Algorithm Pop Size = 18,
Generations = 30

191.80 160.60 81.16

Table 8.2 – Results for Test Data 1 using Non-Convex No Fit Polygon
Algorithm

Graham Kendall 180

Search Type Parameters Evaluation Row Height Standard
Deviation (Eval)

Memetic
Algorithm

GA Popsize = 6,
Generations = 8,

Hill Climbing Iters
= 2, N/H Size = 4

857.80 26663.00 146.27

Tabu Search Iters=30, List Size
= 20, N/H Size =

10

871.67 26867.63 197.90

Memetic
Algorithm

GA Popsize = 10,
Generations = 10,
Hill Climbing Iters
= 3, N/H Size = 1

872.03 26987.12 129.90

Memetic
Algorithms

Ants = 13, AA
Iters = 6, Hill

Climbing Iters = 4,
NH Size = 1

925.12 27185.91 136.49

Ant Algorithm Ants=13, Iters=12,
Trail=1,

Visibility=20,
Evaporation=0.5,

Q=100

933.15 27268.53 128.75

Simulated
Annealing

Schedule = {2000,
0, 200, 30}

944.15 27367.30 99.07

Tabu Search Iters=30, List Size
= 10, N/H Size =

10

964.77 27533.27 152.52

Hill Climbing Iters = 30, N/H
Size = 10

994.82 26874.97 152.34

Simulated
Annealing

Schedule = {1000,
0, 100, 30}

1000.79 27675.30 170.94

Simulated
Annealing

Schedule = {1000,
0, 200, 60}

1003.50 27740.35 113.76

Genetic Algorithm Pop Size = 18,
Generations = 30

1026.82 27935.78 190.51

Hill Climbing Iters = 300, N/H
Size = 1

1030.82 27896.10 221.15

Table 8.3 – Results for Test Data 2 using Non-Convex No Fit Polygon
Algorithm

Not surprisingly, better results are achieved using the non-convex algorithm than

with the convex algorithm. This was to be expected as pieces are able to fit into

gaps that are not available when only working with convex shapes.

Graham Kendall 181

In addition, both sets of results support the findings from earlier chapters i.e. in

that a memetic algorithm (based on a genetic algorithm) gives better quality results

than a single algorithm used in isolation. It is also interesting to note, especially for

test data 1, that the standard deviation of the evaluation function shows that the

memetic algorithm produces good quality results on a more consistent basis than

some of the other search algorithms.

8.3 Approximating the No Fit Polygon
Utilising the no fit polygon does lead to good quality solutions for the problems

that have been addressed above. However, the NFP algorithm is computationally

expensive. It would be beneficial if the NFP could be approximated, without loss

of solution quality. One way to achieve this is to take each vertex of the orbiting

polygon and place it on each vertex of the stationery polygon. At each placement,

the polygons are tested for intersection. If they intersect, the algorithm continues,

to check more vertices. If no intersection is detected, the polygons are combined

and the convex hull calculated. The combined polygons with the minimum convex

hull area is returned as the best placement.

Graham Kendall 182

This algorithm can be shown more formally as follows.

S ← Stationery Polygon
O ← Orbiting Polygon
sv ← Random Vertex on Stationery Polygon
start ← sv
ov ← Random Vertex on Orbiting Polygon

do {

Align ov on sv

 if no intersection
 C ← Combine(O, S)
 if ConvexHull(C) is smallest so far
 P ← C
 end if

 end if

 sv = sv +1 [using modulus arithmetic]
} while(start ≠ sv)

return P

Notice that the starting vertices are chosen randomly. This is to ensure that if two

placements (for the two given polygons) have more than one convex hull which

has the minimum area then each has a chance of being selected. If placements

always started at, say, the zero’th vertex then the algorithm would always return

the same placement, which may not be the best placement later in the nesting

procedure (see section 4.3).

If we wish to use the cache it is necessary to store all the minimum placements in

the cache and return one of the placements at random. This approximated no fit

polygon algorithm will now operate in the same way as described in chapter 4.

Graham Kendall 183

Another possible performance improvement is to stop the evaluation of a

particular permutation of polygons, once the evaluation exceeds the current

minimum. Intuitively this seems like a good idea as if the polygons being

evaluated exceeds the minimum evaluation found thus far, it is pointless

continuing as the current evaluation cannot improve on the best nesting found so

far. However, some of the search algorithms require a full evaluation to be carried

out due to the way they operate.

Simulated annealing needs to carry out a full evaluation as it needs the change in

evaluation so that it can use this value in the acceptance function in deciding

whether to move to the solution under consideration. Ant algorithms need to carry

out a full evaluation so that each ant can decide how much pheromone to deposit

on each edge. Finally, a genetic algorithm also requires a full evaluation as the

parent chromosomes are selected for breeding based on the fitness. In order to

assign a fitness value a full evaluation has to be carried out.

Experiments were run to test the two ideas presented above. Four initial

experiments were run, combining all the possible combinations. They can be

summarised as follows.

1. Use the no fit polygon algorithm and do not stop evaluations when the

minimum is exceeded.

2. Use the no fit polygon algorithm but stop evaluations when the minimum is

exceeded.

Graham Kendall 184

3. Use the approximated no fit polygon algorithm and do not stop evaluations

when the minimum is exceeded.

4. Use the approximated no fit polygon algorithm but stop evaluations when the

minimum is exceeded.

The test data was taken from (Hopper, 2000a), using the first set of test data in

category 1. This data comprises 16 rectangles which are to be nested in a bin of

width 20.

The results obtained are shown in table 8.4, with the results being averaged over

ten runs. The test numbers refer to the numbers given above for the four proposed

tests, with the description being given for ease of reference.

Test Number Test Type Evaluation Time (seconds)
1 Normal NFP/Complete Eval. 128.52 2495
2 Normal NFP/Partial Eval. 131.10 1872
3 Approx. NFP/Complete Eval. 178.90 614
4 Approx. NFP/Partial Eval. 180.75 475

Table 8.4 – Approximating the NFP and Using Partial Evaluation

At first sight the results are not encouraging. Using test 1 as a baseline, this uses

the NFP algorithm that has been developed earlier in this thesis (chapter 7) and

carries out complete evaluations. When partial evaluations are used, with the NFP

algorithm developed in chapter 7 (test 2), the results show that the algorithm runs

faster with no significant difference in solution quality. However, if the

Graham Kendall 185

approximated NFP algorithm is used (test 3 and 4), there is a significant speed

improvement but also a reduction in solution quality. This is due to the fact that

the normal NFP algorithm allows vertices of the orbiting polygon to rest on edges

on the stationery polygon. Using the approximation algorithm means that at least

one vertex of the orbiting polygon must be aligned with a vertex of the stationery

polygon.

Therefore, at first sight, it would seem advisable to implement partial evaluation

but to continue to use the slower, but better quality, NFP algorithm developed in

chapter 7. However, further investigation shows that this may not have to be the

case.

The tests were run using tabu search. Thirty iterations were done, using a list size

of ten and a neighbourhood size of ten. Using the approximate no fit polygon and

partial evaluation the algorithm speed can be improved from 2495 seconds to 475

seconds, an improvement of over 500%, but it leads to a solution quality that is

approximately 40% worse.

However, there could be a trade off between these two extremes. It may be

possible to run the algorithm for longer, using the faster methods, achieve good

quality solutions but still save on the execution time of the algorithm.

Table 8.5 shows the results of these experiments

Graham Kendall 186

No. Iterations, List
Size, N/H Size

Test Type Evaluation Time (seconds)

1 30,10,10 Normal NFP/Complete Eval. 128.52 2495
2 30, 10, 10 Approx. NFP/Partial Eval. 180.75 475
3 60, 10, 10 Approx. NFP/ Partial Eval. 110.83 970
4 75, 30, 20 Approx. NFP/ Partial Eval. 105.32 2287

Table 8.5 – Using an Approximation of the NFP to Reduce Run Times

The first two rows of table 8.5 are the best and worst results from table 8.4, to

allow easier comparison. Row three doubles the number of iterations from the

original tests. The result is an improvement of solution quality but in significantly

less time than using the original NFP algorithm with complete evaluation (row 1).

Adjusting the tabu search parameters so that the algorithm, using the approximate

no fit polygon and partial evaluation, runs for a similar amount of time as tabu

search in row 1 then a better quality solution can be obtained yet with a lower

execution time (see row 4).

Based on these results it seems sensible to use the partial evaluation as this

improves the execution time of the algorithm, with no loss of solution quality.

It also seems appropriate to use the approximated no fit polygon algorithm. Over

the same number of evaluations, the original no fit polygon does lead to better

quality solutions. However, the approximated no fit polygon allows more of the

search space to be explored and ultimately leads to better quality solutions in

shorter execution times.

Therefore, the work in the remainder of this chapter uses both the approximated no

fit polygon and partial evaluation.

Graham Kendall 187

8.4 Hopper & Turton Datasets
The TSP (travelling salesman problem) community have access to a set of test

problems (see, for example http://www.crpc.rice.edu/softlib/tsplib/) that are

available to the community to allow researchers to use a common set of problems

to test new algorithms. The cutting and packing field is limited in this respect,

although it is encouraging to see that Hopper and Turton (Hopper, 2000c) are

trying to address this problem. In addition, Hopper and Turton (Hopper, 2000a) do

present several datasets (appendix D and E) which are investigated here.

8.4.1 Comparison over 7000 iterations

As an initial test of the Hopper and Turton datasets, several of the search methods

were selected and these were tested against the category 1 and 2 datasets in

(Hopper, 2000a) and reproduced in appendix D and E of this thesis.

The algorithms selected were hill climbing, HC, (to provide a base case), a genetic

algorithm, GA, (to provide a population based approach) and tabu search, TS, and

a memetic algorithm, MA, as these had proved to be the most effective searches

found so far.

The category 1 and 2 data from (Hopper, 2000a) provides six sets of data,

EH001..EH006. Each data set was run against each algorithm. In addition, the runs

for each data set/algorithm were run twice, once allowing the shapes to rotate

through 90°, the other run allowing no rotation. The results was averaged over ten

runs. Therefore, there are 480 separate runs (8 algorithms (HC, TS, GA, MA, each

Graham Kendall 188

one run with and without rotation)), 6 data sets with all results being averaged over

10 runs).

For the hill climbing algorithm 7000 iterations were made, with a neighbourhood

size of one. When allowing rotation the rotation probability, rp, was set to 0.5.

This was used to decide if the current iteration should swap two polygons or rotate

a random polygon. The value of rp was set to 0.5 on the basis that for any given

problem there is no knowledge as to what is the best orientation of any given

polygon. Therefore, it seemed reasonable to have an equal chance of swapping or

rotating polygons.

For the genetic algorithm the population size was set to twenty and the number of

iterations set to 350. This makes a total number of iterations of 7000. However,

this is slightly misleading as in a genetic algorithm crossover is only made with

some probability. Therefore, it could be argued that the number of iterations is less

than for some of the other algorithms. Indeed, in general, the GA took less time to

run. This is something addressed more fully in section 8.5, where the algorithms

are compared using time rather than the number of iterations.

The other parameters for the GA were set to the best parameters found so far (see

section 5.4.3 of this thesis). When rotation was not allowed, mutation simply

swapped two randomly chosen polygons. When rotation was allowed the mutation

operator rotated a random polygon.

Graham Kendall 189

For tabu search, 350 iterations were carried out with a neighbourhood size of 20.

This resulted in 7000 iterations. However, the tabu list size was set to 50. Due to

this, the algorithm took longer than, say, hill climbing due to the overheads in

checking and maintaining the tabu list. Again, this issue will be addressed in

section 8.5.

The memetic algorithm is a genetic algorithm with a hill climbing local search

operator. In order to find a suitable mix of a global search strategy (GA) and a

local search strategy (HC), several test runs were carried out which varied the

parameters of the two algorithms, but maintained the overall number of iterations

at about 7000. The results of these tests are shown in table 8.6

Parameters Avg. Eval.
GA : PopSize = 10, Gens = 20 , HC : Iters = 7, NH Size = 5 112.07
GA : PopSize = 20, Gens = 20 , HC : Iters = 5, NH Size = 4 128.89
GA : PopSize = 20, Gens = 20 , HC : Iters = 20, NH Size = 1 149.76
GA : PopSize = 20, Gens = 20 , HC : Iters = 20, NH Size = 1 157.64
GA : PopSize = 8, Gens = 16 , HC : Iters = 15, NH Size = 4 166.11
GA : PopSize = 8, Gens = 16 , HC : Iters = 60, NH Size = 1 186.46

Table 8.6 – Searching for a Good Set of Parameters for the Memetic
Algorithm

This was an arbitrary set of tests run on the second set of test data from category 1,

therefore, one additional test was carried out to provide some form of justification

for using the parameters in the top row of table 8.6. Using the first set of test data

from category 1, two more tests were run. The results are shown in table 8.7

Graham Kendall 190

Parameters Avg. Eval.
GA : PopSize = 10, Gens = 20 , HC : Iters = 7, NH Size = 5 47.53
GA : PopSize = 20, Gens = 20 , HC : Iters = 5, NH Size = 4 85.15

Table 8.7 – Confirming the test results from table 8.6

These results indicate that the parameters shown to be the best from table 8.6 are a

reasonable selection. They will be used for the tests carried out below.

When running the memetic algorithm, the rotation (or not) decision is the same as

for the individual algorithms, that is the mutation operator, if applied rotates a

randomly selected polygon through 90°.

The results from the tests, for category 1 data, using the four search algorithms

described above are shown in table 8.8. The notation for the problem is as follows

Ehnnn is the problem type within the category where problems EH001, EH002

and EH003 are the three problems from category 1 (16 or 17 polygons) and

EH004, EH005 and EH006 are the three problems from category 2 (25 polygons).

HC, GA, TS, MA describe the search algorithm being used (Hill Climbing,

Genetic Algorithm, Tabu Search and Memetic Algorithm) If ‘(R)’ appears at the

end of the problem description it indicates that rotation is allowed.

For example, “EH003 TS (R)” is the third problem from category one. Tabu

search is the search method being used and rotation is allowed.

“EH005 MA” indicates the second problem from category 2, a memetic algorithm

is being used a the search mechanism and no rotation is allowed.

Graham Kendall 191

This notation is used throughout this chapter to describe the various problem

types.

Problem Avg. Eval.
EH001 HC 82.64
EH001 GA 111.83
EH001 TS 64.10
EH001 MA 47.53

EH001 (R) HC 141.83
EH001 (R) GA 188.87
EH001 (R) TS 127.98
EH001 (R) MA 123.27

EH002 HC 143.98
EH002 GA 156.71
EH002 TS 125.06
EH002 MA 112.07

EH002 (R) HC 136.42
EH002 (R) GA 134.09
EH002 (R) TS 128.03
EH002 (R) MA 115.20

EH003 HC 153.57
EH003 GA 152.45
EH003 TS 99.18
EH003 MA 97.93

EH003 (R) HC 160.39
EH003 (R) GA 193.87
EH003 (R) TS 122.65
EH003 (R) MA 116.58

Table 8.8 – Testing Hopper & Turton Data, Category 1

A graphical representation of these results is shown in figure 8.1.

Graham Kendall 192

Figure 8.1 – Graphical Representation of Table 8.8

Graham Kendall 193

Each group of four bars in figure 8.1 represents one particular problem type. By

looking at figure 8.1 or table 8.8 several observations can be made.

Firstly, memetic algorithms perform better in all cases. This is encouraging as it

agrees with the results obtained previously in this thesis. Secondly, tabu search

performs better than both genetic algorithms and hill climbing. Again, this is in

agreement with previous results in this thesis.

It is disappointing to note that the genetic algorithm was frequently out performed

by the hill climbing algorithm. This is both disappointing and unexpected. This is

not necessarily due to the fact that a genetic algorithm is a poor search strategy.

Instead it is a further indication that this algorithm is sensitive to the parameter

values, as has already been indicated by the work presented in section 3.4.2 to find

good value for GA parameters and in the conclusions drawn in section 5.6 of this

thesis.

The same testing was carried out on the category 2 data of Hopper and Turton. The

results are shown in table 8.9 and figure 8.2.

Graham Kendall 194

Problem Avg. Eval.
EH004 HC 277.78
EH004 GA 261.53
EH004 TS 221.44
EH005 MA 220.76

EH004 (R) HC 277.78
EH004 (R) GA 268.76
EH004 (R) TS 244.91
EH005 (R) MA 174.00

EH005 HC 180.22
EH005 GA 221.28
EH005 TS 129.58
EH005 MA 149.90

EH005 (R) HC 240.27
EH005 (R) GA 185.60
EH005 (R) TS 166.28
EH005 (R) MA 196.58

EH006 HC 274.44
EH006 GA 130.89
EH006 TS 83.36
EH006 MA 63.45

EH006 (R) HC 222.03
EH006 (R) GA 240.92
EH006 (R) TS 194.16
EH006 (R) MA 180.01

Table 8.9 – Testing Hopper & Turton Data, Category 2

Graham Kendall 195

Figure 8.2 – Graphical Representation of Table 8.9

Graham Kendall 196

Again, tabu search and the memetic algorithm performed better than the other

search algorithms. In fact, the memetic algorithm produced the best quality

solutions in all but two of the problems (EH005 and EH005 (R)).

8.4.2 Comparison over fixed time interval

In the experiments of 8.4.1 the number of iterations was fixed. This, it could be

argued, leads to an unfair comparison as each algorithm runs for a different

amount of time. In fact, this is the case, for a number of reasons. A genetic

algorithm (GA), for example, only has to call the evaluation function if the

probability of crossover or mutation is exceeded. If not, then no action is required.

If the GA does not call the evaluation function, is this regarded as an iteration or

not? There are arguments for and against. Assuming the evaluation function is not

called, it should not be ignored as an iteration. The GA is designed with this

principle in mind. The same parent survives to the next generation, which could, in

itself, be a good thing. However, it could also be argued that an iteration should

only be counted if the evaluation function is called. This argument has some

substance but there is still an overhead to the algorithm (e.g. calling the random

number generator) which unjustly penalises the algorithm.

Another factor which gives support for not measuring the algorithms using the

number of iterations is that the cache can have a significant effect as to whether

the evaluation function should be called. If many items are found in the cache,

then more iterations will be carried out.

Graham Kendall 197

Given these arguments a better comparison would be to allow the algorithms to

execute for a specified time before terminating. For the results we show below

each algorithm was allowed to run for 300 seconds. This figure was chosen as it is

a good compromise between allowing the algorithms to find a good solution but

not allowing it to run for so long, so that a real world user would find the search

time unacceptable. These tests were run on an AMD 650 and, as before, all results

are averaged over ten runs.

The parameters for the algorithms were the same as for those in 8.4.1. In addition,

simulated annealing, ant algorithms and a memetic algorithm with an ant

algorithm as the primary search mechanism were also tested.

The parameters for the ant algorithm were the same as those used in chapter 6 (see

section 6.4.1). For the ant based memetic algorithm, the same ant algorithm

parameters were used and the same hill climbing parameters were used as for the

genetic based memetic algorithm.

The simulated annealing cooling schedule was a little more difficult to determine.

The problem arises as, ideally, you need the algorithm to terminate just as it

reaches its 300 second limit. If, for example, the cooling schedule was only half

way through completion, we would expect a sub-optimal solution as the algorithm

had not yet started to converge. To ascertain a starting temperature 500 iterations

of the algorithm were run with an extremely high temperature (so that the

majority, if not all, the solutions were accepted – in effect a random search). Over

the 500 iterations the average change in any increase in the evaluation function

was calculated. This was used to set the starting temperature so that, given the

Graham Kendall 198

average increase in the evaluation function, approximately 60% of worse solutions

would be accepted. This is based on the advice of Dowsland (Dowsland, 1995a)

and Rayward-Smith (Rayward-Smith, 1996). The cooling schedule was then set so

that it would terminate when the temperature was as near to zero as possible. This

resulted in the following cooling schedules.

Category Test Data 1
Starting Temperature = 500
Final Temperature = 0
Iterations at Each Temperature = 500
Temperature Decrement = 20

Category Test Data 2
Starting Temperature = 600
Final Temperature = 0
Iterations at Each Temperature = 250
Temperature Decrement = 25

The reason that the different categories of problem require a different number of

iterations is due to the fact that category 2 problems contain more shapes than

category 1 problems, so more time is spent in the evaluation function.

The algorithms are run against each set of data twice, once fixing the orientation of

the shapes and once allowing rotation. Only the ant algorithm does not allow the

shapes to rotate. This is due to the fact that rotation is performed by a mutation

operator and the ant algorithm, as implemented, has no such operator. The ant

based memetic algorithm does allow rotation as this can be performed through the

mutation operator within the local search (hill climbing) operator.

Graham Kendall 199

The results for category 1 data are shown in table 8.10 and figures 8.3 and 8.4. The

problem type represents the six problems in category 1 as defined by Hopper and

Turton. The search methods are AA (ant algorithm), GA (Genetic Algorithm), HC

(Hill Climbing), MA(AA) (ant based memetic algorithm, MA(GA) (genetic based

memetic algorithm), SA (simulated annealing) and TS (tabu search). Eval. is the

averaged evaluation over 10 runs of the algorithm. The results are sorted in

ascending order of the evaluation function with each problem type.

Problem
Type

Search
Method

Eval.

 Problem
Type

Search
Method

Eval.

EH001 MA (GA) 68.26 EH001 (R) MA (GA) 143.11
 TS 77.81 MA (AA) 146.69
 MA (AA) 106.32 TS 158.54
 HC 108.72 GA 165.11
 SA 111.63 SA 167.21
 GA 121.73 HC 171.95
 AA 140.92 AA N/A

EH002 MA (GA) 166.46 EH002 (R) TS 184.08
 TS 171.75 MA (GA) 188.47
 GA 179.64 HC 202.85
 HC 192.56 MA (AA) 215.32
 AA 263.55 GA 216.64
 MA (AA) 271.40 SA 255.36
 SA 388.13 AA N/A

EH003 MA (GA) 106.44 EH003 (R) MA (AA) 159.26
 TS 108.14 MA (GA) 160.01
 GA 131.89 TS 166.28
 SA 154.65 HC 177.11
 AA 161.89 GA 218.06
 MA (AA) 172.11 SA 218.55
 HC 179.45 AA N/A

Table 8.10 – Testing Hopper & Turton Data, Category 1 for 300

seconds

Graham Kendall 200

Figure 8.3 – Category 1 Problems – EH001/002/003 No Rotation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

MA (GA) TS MA (AA) HC SA GA AA

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

MA (GA) TS GA HC AA MA (AA) SA

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

MA (GA) TS GA SA AA MA (AA) HC

Graham Kendall 201

Figure 8.4 – Category 1 Problems – EH001/002/003 Rotation

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

160.00

180.00

200.00

MA (GA) (R) MA (AA) (R) TS (R) GA (R) SA (R) HC (R)

0.00

50.00

100.00

150.00

200.00

250.00

300.00

TS (R) MA (GA) (R) HC (R) MA (AA) (R) GA (R) SA (R)

0.00

50.00

100.00

150.00

200.00

250.00

MA (AA) (R) MA (GA) (R) TS (R) HC (R) GA (R) SA (R)

Graham Kendall 202

Figure 8.2 and 8.3 presents the same data as table 8.10 but in a graphical format. It

shows that in the majority of cases either the genetic based memetic algorithm or

tabu search found the best quality solutions. In fact, with only two exceptions the

genetic based memetic algorithm and tabu search were the search strategies which

found the two best quality solutions.

An ant based memetic algorithm found the second best solution in EH001 (R), but

with the genetic based memetic algorithm and tabu search still performing well.

For EH003 (R) (bottom of figure 8.4) The ant based memetic algorithm found the

best quality solution, but with the genetic based ant algorithm and tabu search

having similar evaluation values.

Apart from the ant based memetic algorithm performing well in EH001 (R) and

EH003 (R), it did not perform particularly well for the other problems. In fact, the

other search algorithms also performed poorly across all the problems.

Table 8.10 and figures 8.5 and 8.6 show the test results from the second category

of test data. Similar conclusions can be drawn from these results in that the genetic

based memetic algorithm and the tabu search, without exception, produce the best

quality solutions. It is difficult to draw conclusions from the results for the other

search algorithms. It is disappointing to note that ant algorithms always seem to

perform badly, as does simulated annealing. The remainder sometimes perform

badly and other times perform reasonably well. Yet, none of the search methods

can beat the genetic based memetic ant algorithm or tabu search.

Graham Kendall 203

Problem
Type

Search
Method

Eval. Problem
Type

Search
Method

Eval.

EH004 TS 215.38 EH004 (R) TS 194.16
 MA (GA) 236.44 MA (GA) 222.03
 GA 276.42 MA (AA) 373.19
 SA 305.07 HC 413.40
 HC 311.44 GA 449.89
 MA (AA) 323.48 SA 571.42
 AA 389.60 AA N/A

EH005 MA (GA) 143.88 EH005 (R) MA (GA) 219.03
 TS 161.04 TS 244.37
 GA 264.11 GA 376.44
 SA 278.29 HC 377.04
 MA (AA) 283.74 MA (AA) 379.70
 AA 314.74 SA 554.22
 HC 377.04 AA N/A

EH006 TS 108.31 EH006 (R) TS 196.72
 MA (GA) 123.05 MA (GA) 243.07
 MA (AA) 206.73 MA (AA) 342.36
 GA 255.92 HC 381.28
 HC 261.90 GA 460.12
 SA 281.92 SA 535.06
 AA 352.63 AA N/A

Table 8.10 – Testing Hopper & Turton Data, Category 2 data for 300
seconds

Graham Kendall 204

Figure 8.5 – Category 2 Problems – EH004/005/006 No Rotation

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

TS MA (GA) GA SA HC MA (AA) AA

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

MA (GA) TS GA SA MA (AA) AA HC

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

TS MA (GA) MA (AA) GA HC SA AA

Graham Kendall 205

Figure 8.6 – Category 2 Problems – EH004/005/006 Rotation

0.00

100.00

200.00

300.00

400.00

500.00

600.00

TS (R) MA (GA) (R) MA (AA) (R) HC (R) GA (R) SA (R)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

MA (GA) (R) TS (R) GA (R) HC (R) MA (AA) (R) SA (R)

0.00

100.00

200.00

300.00

400.00

500.00

600.00

TS (R) MA (GA) (R) MA (AA) (R) HC (R) GA (R) SA (R)

Graham Kendall 206

In Hopper and Turton (Hopper, 2000a) the results from various search algorithms,

both heuristic and meta-heuristic are presented. The figures are shown as the best

solution expressed as a percentage above the optimal solution. These figures are

re-produced in table 8.11. The top part of the table shows the results for a purely

heuristic approach where BL is a bottom left heuristic and BLF is also a bottom

left heuristic but with the ability to fill holes. DH and DW assumes the shapes

have been pre-sorted by height and width respectively.

The middle part of the table shows the results from the hybridisation of the bottom

left heuristic with various meta-heuristic search algorithms (genetic algorithm

(GA), naïve evolution (NE), simulated annealing (SA), hill climbing (HC) and

random search(RS)).

The final part of the table shows the results from using the bottom left with fill

heuristic with the same meta-heuristic search algorithms.

Graham Kendall 207

 Category 1
%

Category 2
%

BL 25 39
BL-DH 17 68
BL-DW 18 31
BLF 14 20
BLF-DH 11 42
BLF-DW 11 12

GA+BL 6 10
NE+BL 6 8
SA+BL 4 7
HC+BL 9 18
RS+BL 6 14

GA+BLF 4 7
NE+BLF 5 7
SA+BLF 4 6
HC+BLF 7 10
RS+BLF 5 8

Table 8.11 – Results from (Hopper, 2000a), Expressed as % Over
Optimal

Table 8.12 shows the best results we achieved for category 1 problems.

 % Over Optimal
EH001 0
EH002 10
EH003 0
EH001 (R) 5
EH002 (R) 5
EH003 (R) 10
Average 5.00

Table 8.12 – Best Solutions from the work conducted during this thesis
for category 1 problems

Graham Kendall 208

It can be seen that we are competitive with the results from table 8.11. Two of our

optimal results are presented in figure 8.7.

Figure 8.7 – Optimal Solutions for problems EH001 and EH003

For the larger problem (25 rectangles) our solutions average 11% over optimal

(see table 8.13). Again, this is competitive with the solutions shown by Hopper.

 % Over Optimal
EH004 13
EH005 7
EH006 7
EH004 (R) 13
EH005 (R) 13
EH006 (R) 13
Average 11.00

Table 8.13 – Best Solutions from the work conducted during this thesis
for category 2 problems

8.5 Blazewicz, 1993 Data
Oliveira (Oliveira, 1998) presents a new algorithm (TOPOS) for nesting problems.

One of the test problems they consider comes from (Blazewicz, 1993). This

problem has 28 shapes of seven different types. The shapes are to be packed into a

Graham Kendall 209

bin of width 15. The aim, as usual, is to minimise the bin height. The data is

shown in appendix E.

The algorithm used by Oliveira (TOPOS) utilises the no fit polygon. It also has a

local search/heuristic algorithm and various measures (waste, overlap and

distance) that are used in the evaluation function. In addition they have some pre-

processing procedures that sorts the shapes in various ways (e.g. decreasing length,

decreasing area, decreasing concavity etc.).

Due to the domain knowledge, heuristics and pre-processing built into their system

we cannot hope to compete with their solution (which has a bin height of 28.9,

which improves on the previous best by 3.5%). In addition, the authors of this

paper have conducted many experiments (126 variants of the algorithm) to help

find this solution and state that there are still open questions which could make the

algorithm produce even better results.

It is interesting to see how our algorithm performs on this problem, using one of

the best search strategies found so far. We decided to use tabu search as this has

minimal parameters and the values for those parameters have shown not to be too

sensitive to the problem instance. The parameters were set to the same values we

have used throughout this chapter (list size = 50, neighbourhood size = 20).

Rotation, via the mutation operator was allowed with a probability of 0.5. The

algorithm was allowed to run for 300 seconds.

Graham Kendall 210

Two of the best solutions are shown in figure 8.8. These both have bin heights of

38. Although this is much greater than the Oliviera solution it is encouraging to

note that tabu search finds solutions that look reasonable. Even more encouraging

is the fact tabu search can be applied with little regard for the parameter values. If

we tried to use some of the other algorithms it would take many test runs to

ascertain the values for the parameters. Even then there would be no guarantee that

the optimum set of parameters had been found.

Figure 8.8 – Two Solutions from Blazewicz, 1993 Data

Although, tabu search did does not compete with the solution found by Oliviera

the authors are encouraged that a relatively simply search strategy can produce a

reasonable solution, using no domain knowledge or pre-processing.

Graham Kendall 211

8.6 Summary and Discussion
This chapter of the thesis has shown that the ideas we have presented throughout

this thesis produce competitive results when applied to test data from the literature.

Using the no fit polygon would lead to excessive execution times. However, we

have shown that it is possible to approximate the no fit polygon without loss of

solution quality, In fact, better solutions can be found as more of the search space

can be explored.

Although not tackled in this thesis the majority of packing problems are likely to

benefit from some form of pre-processing. Taking the problem shown in section

8.5, there are seven different shapes. Obviously, if some of these shapes are

packed prior to employing the search strategy, then there will be less shapes to

pack. For example, rectangles (and squares) with a common dimension could be

pre-packed. Similarly, triangles with identical dimensions can be tightly packed if

one of them is first rotated through 180°. The author believes that pre-processing

of shapes will lead to even better quality solutions and in shorter times. However,

deciding which shapes to pack together, and to what extent the shapes should be

pre-packed, is a difficult problem in itself but the author would like to make this

one of the streams of the future research that is planned (see section 9.3).

Graham Kendall 212

9. Conclusions and Discussion

9.1 Contribution

This thesis has contributed in four main areas which are summarised in the

following four sections.

9.1.1 Speeding up Evaluations

When using meta-heuristic and evolutionary search strategies, the evaluation

function is called at each iteration of the algorithm. If the evaluation function is

computationally expensive (which is often the case) it can lead to a bottleneck in

the algorithm. In this thesis, we have shown methods that speed up the algorithm.

The proposed enhancements are both intuitive and may have been implemented in

other work, but they have not (to the author’s knowledge) been reported in the

literature.

Our algorithm is speeded up by using a cache to store previously seen, partial and

complete, solutions. If, when a solution is being evaluated, it is found in the cache

then the evaluation function is not called. Instead, the value from the cache is

retrieved and used. In chapter 4 of this thesis we have shown that by varying the

size of the cache (and thus the number of solutions that can be stored) the

execution time of the algorithm can be varied. However, due to the nature of the

problem under consideration, there are circumstances where a partial solution

stored in the cache will lead to a sub-optimal solution later in the search. Examples

of this occurring are given in chapter 4.

Graham Kendall 213

To resolve this problem a re-evaluation parameter has been introduced. This

parameter takes a value between zero and one, which is used to calculate a

probability of using the data stored in the cache, if it exists. If this parameter is set

to zero the cached data will always be used. If the parameter is set to one it is

equivalent to setting the cache size to zero as the cached data will never be

accessed. The higher the value of this parameter the less use of the cache will be

made. However, if the value is too low then a potentially sub-optimal solution

could be retrieved from the cache, which could lead to a reduction in the quality of

the solutions found.

The results in chapter 4 show that the re-evaluation parameter can be set to a low

value (0.1), without affecting solution quality.

These techniques, in the opinion of the author, are an important aspect in

developing meta-heuristics and evolutionary algorithms. As well as being reported

in this thesis, this work was also presented at the CIE 26 (Burke, 1999d) and we

hope that this will persuade other researchers to use and report on these

techniques.

9.1.2 Development of the No Fit Polygon Algorithm for Non-Convex Polygons

A large part of this thesis has been the investigation and development of the no fit

polygon (NFP). The NFP for convex shapes is simple to understand and the

algorithm is well known (Cunninghame-Green, 1992). However, the non-convex

case, although simple to understand, is difficult to implement. In chapter 7 of this

thesis the work of Mahadevan (Mahadevan, 1984) is developed so that the NFP

Graham Kendall 214

polygon algorithm presented in his PhD thesis is more robust in that it deals with

more degenerate cases. In resolving these degenerate cases, algorithms have been

presented which, for example, deal with intersection when it occurs through

vertices rather than through edges. All the enhancements made during for this

thesis have made use of D-functions. These are primitive operations which allow

the algorithm designer to build many more complex operations.

The changes made to the NFP algorithm appear robust and allowed us (in chapter

8) to work with non-convex pieces.

It is well known that there are two algorithms for calculating the NFP for non-

convex polygons. The approach used in this thesis is based on the orbiting

principle. Another approach uses the concept of minkowski sums.

During the course of this work it was discovered that another researcher, Julia

Bennell et. al. (Bennell, 2001) was also working on a new NFP algorithm based on

minkowski sums.

Although (in one sense) it is beneficial to have researchers working independently

on a given problem, for this research, it would have been helpful to have access to

a no fit polygon algorithm at that start of this research. In many ways, it is

unfortunate that both Bennell and Kendall were unaware of each others work until

both pieces were almost completed.

9.1.3 Applying Ant Algorithms to the Stock Cutting Problem

In 1996, Dorigo et. al. (Dorigo, 1996) applied a new type of algorithm to the

travelling salesman problem (TSP). The so called ant algorithms have since been

Graham Kendall 215

applied to various problems including vehicle routing and the quadratic

assignment problem.

This thesis (for the first time) has investigated ant algorithms for the nesting

problem. Using Dorigo’s ant system as a model the nesting problem is described

as a set of polygons that are nested in the order presented. The ants, in deciding the

order in which to visit the polygons use a measure as to how well the polygons fit

together as a visibility measure. Apart from this one change the algorithm is based

on the standard ant algorithm approach presented in Dorigo’s seminal paper.

The experiments conducted in this thesis found the same values for the control

variables for the algorithm as those found by Dorigo in his 1996 work. It is these

values that were used in the remainder of this thesis.

As well as implementing ant algorithms, we have also applied a local search

operator to each permutation of polygons found by the ants in the hope that

moving to a local optimum each time will lead to better quality results overall.

This gives rise to a type of memetic algorithm (i.e. an evolutionary algorithm with

a local search operator).

Initial results from this thesis show that ant algorithms, whilst not competing with

tabu search or a genetic based memetic algorithm, are competitive with a genetic

algorithm, which is another population based approach. Later results are not so

conclusive and the memetic based ant algorithm does not show promising results,

something that is commented upon below (see 9.2).

Graham Kendall 216

9.1.4 Search Strategies

In completing this work we have attempted to investigate and develop the latest

meta-heuristic algorithms to ascertain which ones produce the best quality

solutions. To allow this it was necessary to choose a representation that all the

search algorithms were able to use. The choice of representation was discussed at

the start of chapter three of this work. It is recognised that other representations are

available but the author still feels that the list based method that was used was the

most suitable for this work.

One of the major problems in implementing these algorithms is choosing suitable

values for the various control parameters for the given algorithm. A large amount

of time was spent trying to find suitable parameters for some of the algorithms (see

chapters 3 and 6). However, this aspect of implementing meta-heuristic algorithms

is an up and coming research area and, at present, the best we can do is to make

educated guesses at the parameters and run a number of experiments to see how

they perform. The author believes that he has acquired suitable parameters for the

problems presented in this thesis, but these values may not perform well across a

wide range of problems.

9.2 Discussion
This work has applied a range of meta-heuristic algorithms to a series of stock

cutting problems. The obvious conclusion from the results is that a genetic based

memetic algorithm and tabu search are the search strategies of choice for this

problem domain. However, it would be a mistake to draw this conclusion. The

Graham Kendall 217

conclusion that should be drawn is that it is still extremely difficult to derive

parameters for algorithms so that those algorithms work well across a whole range

of problems. Take, for example, ant algorithms. When they were applied to a

problem in chapter 6 they appeared to show a certain degree of promise. However,

a large part of chapter 6 was devoted to finding suitable parameters for the

algorithm and, eventually, the algorithm was able to compete favourably with

another population based approach, a genetic algorithm.

Chapter 8 was approached with a certain degree of optimism for ant algorithms but

they simply failed to perform, using the parameter values that had pain stakingly

been found in chapter 6. The author has no doubts that he could have searched for

a set of suitable parameters once again that would have made ant algorithms an

effective search strategy. That is, until another problem instance was presented.

Simulated annealing and genetic algorithms have similar problems in that the

number of parameters that need addressing is not only critical to the successful

operation of the algorithm, but the values must change with each problem instance.

Hill climbing suffers from the obvious downside in that it gets stuck in local

optima.

Tabu search stands alone as the only algorithm that is capable of escaping from

local optima and has the benefit of having very few parameters that have to be

adjusted (only the list size and the neighbourhood size). It is also noticeable that

the parameter values supplied to tabu search do not seem too critical to the

successful running of the algorithm. Throughout this thesis, tabu search has used

Graham Kendall 218

the same parameter set. Despite being used to solve different instances of stock

cutting problems the algorithm has always performed well.

It is a little surprising that a genetic based memetic algorithm performs as well as

it does, whereas a genetic algorithm and hill climbing do not perform well in

isolation. The success of the memetic algorithm is probably due to the fact that the

genetic aspect of the algorithm is providing a broad search across the search

landscape and the hill climbing operator allows any one area to be explored more

fully. Therefore, the algorithm is able to explore large areas of the landscape with

the GA and then exploit those areas with the hill climbing operator.

Why, then, does an ant based memetic algorithm not perform as well as the genetic

based memetic algorithm? If you consider the interaction between the two search

processes that comprise a memetic algorithm it may provide an insight as to why

the ant based version fails to live up to initial expectations. The genetic based

version uses information contained in the chromosome itself (i.e. the ordering of

the genes) to produce a new generation. The local search operator has the task of

improving this permutation, which is passed back to the genetic algorithm as a

(potentially) fitter chromosome than existed before.

An ant algorithm works very differently. The knowledge as to whether the current

solution is a good one is contained, not only in the ordering of the polygons, but

also in the pheromone levels that are held independently and not passed to the

local search operator. When the solution is passed back to the ant algorithm by the

Graham Kendall 219

local search operator, it may represent a good solution, but the pheromone levels

will not have been updated to reflect this. Therefore, although the ordering is now

better the ant cannot exploit this information as it still uses the pheromone levels

from before the local search was executed.

For the ant based memetic algorithm there is no feedback between the ant

algorithm and the local search operator. For the genetic based version this

feedback happens automatically due to the fact that both search strategies operate

directly on the chromosome. With the ant version there is additional information,

by way of pheromone trails, which the local search operator has no knowledge

about.

In summary, this work has shown that tabu search appears to be an effective

search strategy for stock cutting problems. However, it does not mean that the

other algorithms should be discounted. Rather, future work needs to concentrate

on setting suitable parameter values. This is discussed further below, in section

9.3.

9.3 Future Work
9.3.1 Commercial Exploitation

As a result of this work the author has been able to secure two funded awards to

allow this research programme to be taken forward.

A teaching company scheme started on the 1st October 2000 and will run for three

years. The aim of this project is to exploit stock cutting research and incorporate

these ideas into a commercial package. The company, Esprit Automation Ltd.,

Graham Kendall 220

already sells a nesting package but realise that to maintain their competitive

advantage they must produce more efficient nestings, in less time.

A teaching company associate will be employed by the University of Nottingham

for three years and will work at our partner company, Esprit Automation Ltd. The

TCS is being funded by both the DTI (Department of Trade and Industry) and

Esprit Automation Ltd. The total funding amounts to £126,268.

The author has also secured a CASE for New Academics award. This, again

funded by the EPSRC and Esprit Automation Ltd., will allow the work in this

thesis to be further developed by a three year PhD studentship. This funding

amounts to £42,120. One of the conditions of a CNA award is that the student

spends at least three months every year working at the sponsoring company. It is

fortunate that the TCS and CNA award are being funded by the same company so

the TCS associate and the CNA student will be able to work closely together.

This work has highlighted that particular search strategies work well for certain

instances of a problem. However, we are unable to state that a genetic based

memetic algorithm and tabu search will work well across all problems, even if the

problems were restricted to the domain of stock cutting. In fact, the “no free lunch

theorem” (Wolpert, 1997) proves that no one search technique can perform better

than any other search technique across all problem domains. Therefore, the

Graham Kendall 221

ultimate goal is to be able to find suitable search strategies for the problem domain

and problem instance under consideration at that time.

This has recently been recognised in the academic community and the research

group to which the author is associated has recently secured an EPSRC grant to

look at the concept of hyper-heuristics. The author is a co-investigator on this

grant.

This research takes the concept of a heuristic to a higher level, in that heuristics are

developed which search for other heuristics. Although this is currently “blue sky”

research it is hoped that given a particular problem instance the hyper-heuristic

will identify the most suitable search strategy to explore the search space for that

problem. If the problem changes (even if that is only a small change, for example,

reducing the amount of search time available), the hyper-heuristic should be able

to adapt to this situation and apply a different search strategy.

As part of this research project, it is hoped to apply the idea of hyper-heuristics to

the stock cutting problem. As such, the CNA student will become involved in this

project which will ultimately lead to the TCS associate becoming involved. This

could lead to the idea of a hyper-heuristic being incorporated into commercial

stock cutting software within the next three years.

Graham Kendall 222

References
1. Aarts, E., Lenstra, J.K., 1997. Local Search in Combinatorial

Optimization. John Wiley & Sons Ltd.

2. Adamowicz, M., Albano, A. 1972. A Two-Stage solution of the cutting-
stock problem. Information Processing, Vol. 71, pp 1086-1091.

3. Adamowicz, M., Albano, A. 1976a. A Solution of the Rectangular
Cutting-Stock Problem. IEEE Trans. Syst., Man and Cybernetics, SMC-6,
pp 302-310

4. Adamowicz, M., Albano, A. 1976b. Nesting Two-Dimensional Shapes in
Rectangular Modules. Computer Aided Design, Vol 8, pp 27-33

5. Akinc, U. 1983. An Algorithm for the Knapsack Problem. IIE Trans., Vol
15, pp 31-36

6. Albano, A., Sappupo, G. 1980a. Optimal Allocation of Two-Dimensional
Irregular Shapes Using Heuristic Search Methods. IEEE Trans. Syst.,
Man and Cybernetics, SMC-10, pp 242-248

7. Albano, A., Orsini, R. 1980b. A Heuristic Solution of the Rectangular
Cutting Stock Problem. The Computer Journal, Vol 23, pp 338-343

8. Albano, A., Osrini, O. 1978. A Tree Based Search Approach to the M-
Partition and Knapsack Problems. The Computer Journal, Vol 23, pp 256-
161

9. Albano, A. 1977. A Method to Improve Two-Dimensional Layout.
Computer Aided Design, Vol 9, pp 48-52

10. Arbel, A. 1993. Large Scale Optimisation Methods Applied to the Cutting
Stock Problem of Irregular Shapes. International Journal of Production
Research, Vol 31, Iss 2, pp 483-500

11. Art, R.C. 1966. An Approach to the Two-Dimensional Irregular Cutting
Stock Problem. Technical Report 36.008, IBM Cambridge Centre.

12. Bäck, T., Hoffmeister, F. and Schwefel, H-P. (1991). A Survey of
Evolution Strategies. Proceedings of the Fourth Conference on Genetic
Algorithms (eds Belew, R. and Booker, L.), Morgan Kaufmann
Publishers, San Mateo, CA, pp 2-9.

13. Bäck, T., Fogel, D. B. and Michalewicz. 1997. Handbook of Evolutionary
Computation. Oxford University Press. ISBN 0 7503 0392 1

14. Baker, B.S., Coffmann, E.G., Rivest, R.L. 1980a. Orthogonal Packing In
Two Dimensions. SIAM J. Computing, Vol 9, pp 846-855

15. Baker, B.S., Brown, D.J., Katseff, H.P. 1980b. A 5/4 Algorithm for Two-
Dimensional Packing. Journal of Algorithms, Vol.2, No.4, pp 348-368

Graham Kendall 223

16. Baker, B.S., Brown, D.J., Katseff, H.P. 1982. Lower Bounds for the Two-
Dimensional Packing Algorithm. Acta Informatica, Vol.18, pp 207-225

17. Baker, B.S., Schwarsz, J.S., 1983. Shelf Algorithms for Two-
Dimensional Packing Problems. SIAM J. Computing, Vol 12, pp 508-525

18. Barnett, S., Kynch, G.J. 1967. Exact Solution of a Simple Stock Problem.
Operations Research, Vol 15, 1051-1056

19. Bartholdi, J.J., Vate, J.H, Zhang, J. 1989. Expected Performance of the
Shelf Heuristic for Two Dimensional Packing. Operations Research
Letters ORSA Journal, Vol 8, pp 11-16

20. Beasley, J.E. 1985a. An Exact Two-Dimensional Non-Guillotine Cutting
Tree Search Procedure. Operations Research, Vol 33, pp 49-64

21. Beasley, J.E. 1985b. Algorithms for Unconstrained Two-Dimensional
Guillotine Cutting. Journal of the Operational Research Society, Vol 36,
pp 297-306

22. Beasley, D., Bull, D.R. and Martin, R.R. 1993. An Overview of Genetic
Algorithms: Part 1, Fundamentals. University Computing. Vol 15, No. 2,
pp 58-69

23. Bengtsson, B-E. 1982. Packing Rectangular Pieces – A Heuristic
Approach. The Computer Journal, Vol 25, pp 353-357

24. Bennell, J., Dowsland, K. A. 1999. A Tabu Thresholding Implementation
for the Irregular Stock Cutting Problem. Int. J. Prod. Res, Vol. 37, No. 8,
pp 4259-4275

25. Bennell J.A., Dowsland K.A, and Dowsland W.B. 2001. The irregular
cutting stock problem - a new procedure for deriving the no-fit polygon,
Computers and Operations Research 28 pp 271-287

26. Berkey, J.O., Wang, P.Y. 1985 Two-Dimensional Finite Bin-Packing
Algorithms. Journal of the Operational Society, Vol 38, pp 423-429

27. Berkey, J.O., Wang, P.Y. 1987. Two_Dimensional Finite Bin-Packing
Algorithms. Journal of the Operational Research Society, Vol 38, No. 5,
pp 423-429

28. Blazewicz, J., Hawryluk, P., Walkowiak, R. 1993. Using Tabu Search
Approach for Solving the Two-Dimensional Irregular Cutting Problem.
Tabu Search (eds. Glover, F., Laguna, M., Taillard, E., Werra, D.), Vol.
41 of Annals of Operations Research, Baltzer, J. C. AG.

29. Bonabeau, E., Dorigo, M. and Theraulaz, G. 1999. Swarm Intelligence :
From Natural to Artificial Systems. Oxford University Press. ISBN 9
780195 131598

30. Bounsaythip, C., Maouche, S. 1996. A Genetic Approach to the Nesting
Problem. Proceedings of the Second Nordic Workshop of Genetic
Algorithms, 19-23 Aug, pp 89-104

Graham Kendall 224

31. Bremermann, H.J. 1958. The Evolution of Intelligence. The Nervous
System as a Model of its Environment. Technical Report No. 1, Contract
No. 477(17), Dept. of Mathematics, Univ. of Washington, Seattle.

32. Brooks, R.L., Smith, C.A.B., Stone, A.H., Tutte, W.T. 1940. The
Dissection of Rectangles into Squares. Duke Math. J. Vol 7, pp 312-340

33. Brown, A.R. 1971. Optimum Packing and Depletion: The Computer in
Space and Resource Usage Problems, New York, London

34. Bullnheimer B., R.F. Hartl and C. Strauss (1999). An Improved Ant
system Algorithm for the Vehicle Routing Problem. The Sixth Viennese
workshop on Optimal Control, Dynamic Games, Nonlinear Dynamics and
Adaptive Systems, Vienna (Austria), May 21-23, 1997, to appear in:
Annals of Operations Research (Dawid, Feichtinger and Hartl (eds.):
Nonlinear Economic Dynamics and Control, 1999.

35. Burke, K. E. and Kendall, G. (1998). Comparison of Meta-Heuristic
Algorithms for Clustering Rectangles", Computers and Industrial
Engineering, Vol. 37, Iss. 1-2, pp 383-386 (Proccedings of the 24th
International Conference on Computers and Industrial Engineering,
Brunel University, September, 1998)

36. Burke, K. E. and Kendall, G. (1999a) Applying Evolutionary Algorithms
and the No Fit Polygon to the Nesting Problem, Proceedings of IC-AI'99 :
The 1999 International Conference on Artificial Intelligence, Las Vegas,
Nevada, USA, 28 June - 1 July 1999, pp 51-57

37. Burke, K. E. and Kendall, G. (1999b) Applying Simulated Annealing and
the No Fit Polygon to the Nesting Problem, Proceedings of WMC '99 :
World Manufacturing Congress, Durham, UK, 27-30 September, 1999,
pp 70-76

38. Burke, K. E. and Kendall, G. (1999c) Applying Ant Algorithms and the
No Fit Polygon to the Nesting Problem, Proceeings of 12th Australian
Joint Conference on Artificial Intelligence, Sydney, Australia, 6-10
December 1999, Lecture Notes in Artifcial Intelligence (1747), Foo, N.
(Ed), pp 453-464

39. Burke, K. E. and Kendall, G. (1999d). Evaluation of Two Dimensional
Bin Packing Problem using the No Fit Polygon, Proceedings of the 26th
International Conference on Computers and Industrial Engineering,
Melbourne, Australia, 15-17 December 1999, pp 286-291

40. Cagan, J. 1994. Shape Annealing to the Constrained Geometric Knapsack
Problem. Computer-Aided Design, Vol 26, Iss 10, pp 763-770

41. Canny, J. 1987. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA

42. Chambers, M.L., Dyson, R.G. 1976. The Cutting Stock Problem in the
Flat Glass Industry – Selection of Stock Sizes. Operational Research
Quarterly, Vol 27, pp 949-957

Graham Kendall 225

43. Chand, D.R., Kapur, S.S. 1970. An algorithm for convex polytopes.
JACM vol. 17, iss. 1, pp 78-86

44. Chazelle, B. 1983. The Bottom-Left Bin-Packing Heuristic : An Efficient
Algorithm. IEEE Trans. Computers, C32, pp 697-707

45. Christofides, N., Whitlock, C. 1977. An Algorithm for Two_Dimensional
Cutting Problems. Operations Research, Vol 25, pp30-44

46. Chung, F., Garey, M., Johnson, D. 1982. On Packing Two-Dimensional
Bins. SIAM Journal on Algebraic and Discrete Methods, Vol 3, pp 66-76

47. Coffman, E, Shor, P. 1993. Packing in Two Dimensions : Asymptotic
Average-Case Analysis of Algorithms. Algorithmica, Vol 9, pp 253-277

48. Coffman, E, Shor, P. 1990. Average-Case Analysis of Cutting and
Packing in Two Dimensions. European Journal of Operations Research,
Vol 44, pp 134-144

49. Coffman, Jr, E.G., Lueker, G.S., Rinnooy, A.H.G. 1988. Asympototic
Methods in the Probabilistic Analysis of Sequencing and Packing
Heuristics. Management Science, Vol 34, pp 266-290

50. Coffman, Jr, E.G., Garey, M.R., Johnson, D.S. 1984a. Approximation
Algorithms for Bin-Packing – An Updated Survey. Approximation
Algorithms for Computer System Design, Wien, pp 49-106

51. Coffman, E. Gilbert, E. 1984b. Dynamic, First-Fit Packings in Two or
more Dimensions. Information and Control, Vol 61, pp 1-14

52. Coffman, Jr, E.G., Garey, M.R., Johnson, D.S., Tarjan, R.E. 1980.
Performance Bounds for Level-Oriented Two-Dimensional Packing
Algorithms. SIAM J. Comput., Vol 9, pp 808-826

53. Cohen, G.D. 1966. Comments on a Paper by M.L. Wolfson: Selecting the
Best Lengths to Stock. Operations Research, Vol 14, p 341.

54. Coley, D.A. 1999. An Introduction to Genetic Algorithms for Scientists
and Engineers. World Scientific Publishing Co. Pte. Ltd. ISBN 981-02-
3602-6

55. Colorni A., M. Dorigo, V. Maniezzo and M. Trubian (1994). Ant system
for Job-shop Scheduling. JORBEL - Belgian Journal of Operations
Research, Statistics and Computer Science, 34(1):39-53.

56. Corne, D, Dorigo, M and Glover, F. (eds) 1999. New Ideas in
Optimization. McGraw-Hill Publishing Company.

57. Costa D. and A. Hertz (1997). Ants Can Colour Graphs. Journal of the
Operational Research Society, 48, 295-305.

58. Coverdale, I.L., Wharton, F. 1976. An Improved Heuristic Procedure for
a Nonlinear Cutting Stock Problem. Management Science, Vol 23, 78-86

59. Cunninghame-Green, R. 1989. Geometry, Shoemaking and the Milk Tray
Problem. New Scientist, 12, August 1989, 1677, pp 50-53.

Graham Kendall 226

60. Cunninghame-Green, R., Davis, L.S. 1992. Cut Out Waste! O.R. Insight,
Vol 5, iss 3, pp 4-7

61. Dagli, C.H., Poshyanonda, P. 1997. New Approaches to Nesting
Rectangular Patterns. Journal of Intelligent Manufacturing, Vol 8, Iss 3,
pp 177-190

62. Dagli, C.H., Tatoglu, M.Y. 1987. An Approach to two-dimensional
Cutting Stock Problem. International Journal of Production Research, Vol
25, pp175-190

63. Daniels, K. 1995. Containment Algorithms for Nonconvex Polygons with
Applications to Layout. PhD Thesis, Center for Research in Computing
Technology, Harvard University, Cambridge, Massachusetts.

64. Dantzig, G.B. 1951. Maximization of a Linear Function of Variables
Subject to Linear Inequalities. Activity Analysis of Production
Allocation. T.C. Koopmans, ed. Cowles Commission Monograph, 13.
Wiley, New York, pp339-347

65. Davis, L.D. ed. 1987 Genetic Algorithms and Simulated Annealing.
Pitman, London

66. Davis, L.D., ed. 1991. Handbook of Genetic Algorithms. Van Nostrand
Reinhold

67. Dawkins, R. 1976. The Selfish Gene, Oxford University Press

68. Daza, V.D., Muñoz, R., Gómes de Alvarenga, A. 1995. A Hybrid Genetic
Algorithm for the Two-Dimensional Guillotine Cutting Problem.
Evolutionary Algorithms in Management Applications, Springer-Verlag.,
(Bietahn, J., Nissen, V., eds), pp 183-196

69. De Jong, K. A. 1975. An Analysis of the Behaviour of a Class of Genetic
Adaptive Systems (Doctoral Dissertation, University of Michigan).
Dissertation Abstracts International 36(10), 5140B (University
Microfilms No 76-9381)

70. Di Caro G. & Dorigo M. (1998). AntNet: Distributed Stigmergetic
Control for Communications Networks. Journal of Artificial Intelligence
Research (JAIR), 9:317-365.

71. Dietrich, R.D., Yakowitz, S.J. 1991. A Rule Based Approach to the Trim-
Loss Problem. International Journal of Production Research, Vol 29, No.
2, pp 410-415

72. Dori, D., Ben-Bassat, M. 1984. Efficient Nesting of Congruent Convex
Figures. Comm. ACM, Vol 27, pp 228-235

73. Dorigo, M., Vittorio, M., Alberto, C. 1996. Ant System: Optimization by
a Colony of Cooperating Agents. IEEE Transactions on Systems, Man
and Cybernetics – Part B : Cybernetics, Vol. 26, No.1, February 1996, pp
29-41

http://www.jair.org/�
http://www.jair.org/�

Graham Kendall 227

74. Dorigo M. and G. Di Caro (1999). The Ant Colony Optimization Meta-
Heuristic. In D. Corne, M. Dorigo and F. Glover, editors, New Ideas in
Optimization, McGraw-Hill.

75. Dorigo M., G. Di Caro & L. M. Gambardella (1999a). Ant Algorithms for
Discrete Optimization. Artificial Life, 5(2), in press.

76. Dowsland, W.B. 1985. Two and Three Dimensional Packing Problems
and Solution Methods. New Zealand Journal of Operational Research,
Vol 13, pp 1-18

77. Dowsland W.B. 1991. Three-Dimensional Packing Problems and
Solution Methods. International Journal of Production Research, 13, 1-18

78. Dowsland, K.A., Dowsland, W.B. 1992. Packing Problems. European
Journal of Operational Research, Vol 56, pp 2-14

79. Dowsland, K., Dowsland, W. 1993. Heuristic Approaches to Irregular
Cutting Problems. Working Paper EBMS/1993/13, European Business
Management School, UC Swansea, UK

80. Dowsland, K.A., Dowsland, W.P. 1995. Solution Approaches to Irregular
Nesting Problems. European Journal of Operations Research, vol 84, pp
506-521

81. Dowsland, K.A. 1995a. Simulated Annealing. In Modern Heuristic
Techniques for Combinatorial Problems (ed. Reeves, C.R.), McGraw-
Hill, 1995

82. Dudzinski, K., Walukiewicz, S. 1987. Exact Methods for the Knapsack
Problem and its Generalizations. European Journal of Operational
Research, Vol 28, pp 3-21

83. Dutâ, L., Fabian, C. 1984. Solving Cutting-Stock Problems Through the
Monte-Carlo Method. Econ. Comp. Econ. Cybern. Studies Res., Vol 19,
pp35-54

84. Dyckhoff, H. 1981. A New Linear Programming Approach to the Cutting
Stock Problem. Operations Research, Vol 29, pp 1092-1104

85. Dyckhoff, H., Kruse, H.J., Abel, D., Gal, T. 1985. Trim Loss and Related
Problems. Omega, Vol 13, pp 59-72

86. Dyckhoff, H., Finke, U., Kruse, H.J. 1988. Standard Software for Cutting
Stock Management. Essays on Production Theory and Planning, Berlin,
pp 209-221

87. Dyckhoff, H., Wäscher, G., (eds). 1990a. Special Issue on Cutting and
Packing. European Journal of Operational Research, Vol 44, No. 2

88. Dyckhoff, H. 1990b. A Typology of Cutting and Packing Problems. Euro.
Jour. Of Operational research, Vol 44, pp 145-159

89. Dyckhoff, H, Finke, U. 1992. Cutting and Packing in Production and
Distribution. Physica-Verlag, Heidelberg, Germany

Graham Kendall 228

90. Dyson, R.G., Gregory, A.S. 1974. The Cutting Stock Problem in the Flat
Glass Industry. Operational Research Quarterly, Vol 25, pp 41-53

91. Eilon, S., Christofides, N. 1971. The Loading Problem. Management
Science, Vol 17, pp259-268

92. Eisemann, K. 1957. The Trim Problem. Management Science, Vol 3, pp
279-284

93. Erlenkotter, D. 1978. A Dual_Based Procedure for Uncapacitated Facility
Location, Operations Research, Vol. 26, pp 992-1009

94. Falkenauer, E. 1996. A Hybrid Grouping Genetic Algorithm for Bin
Packing. Journal of Heuristics, Vol. 2, No. 1, Kluwer Academic
Publishers, pp 5-30

95. Falkenauer, E. 1998. Genetic Algorithms and Grouping Problems. John
Wiley and Sons

96. Fayard, D., Zissimopoulos, V. 1995. An Approximation Algorithm for
Solving Unconstrained Two-Dimensional Knapsack Problems. European
Journal of Operational Research (Special Issue), Vol 84, pp 618-632

97. Fogel, D.B. (1998) Evolutionary Computation The Fossil Record, IEEE
Press, ISBN 0-7803-3481-7

98. Fogel, D.B. (2000a) Evolutionary Computation : Toward a New
Philosphy of Machine Intelligence, 2nd Ed., IEEE Press Marketing, ISBN
0-7803-5379-X

99. Fogel, D.B., Anderson, R. W. (2000b). Revisiting Bremermann’s
Genetic Algorithm: I. Simultaneous Mutation of All Parameters. In
proceedings of Congress on Evolutionary Computation 2000 (CEC 2000),
La Jolla Marriot Hotel, La Jolla, California, USA, 16-19 July 2000, pp
1204-1209

100. Fogel, D.B., Fraser, A. S. (2000c) Running Races with Fraser’s
Recombination. In proceedings of Congress on Evolutionary
Computation 2000 (CEC 2000), La Jolla Marriot Hotel, La Jolla,
California, USA, 16-19 July 2000, pp 1217-1222

101. Forrest, S. 1993. Genetic Algorithms: Principles of Natural Selection
Applied to Computation. Science, vol 261, 872-878

102. Forsyth P. and A. Wren (1997). An Ant System for Bus Driver
Scheduling. Presented at the 7th International Workshop on Computer-
Aided Scheduling of Public Transport, Boston, August 1997.

103. Fowler, R.J., Paterson, M.S., Tanimoto, S.L. 1981. Optimal Packing and
Covering in the Plane are NP-Complete. Information Processing Letters,
Vol 12, pp 133-137

Graham Kendall 229

104. Fraser, A.S. 1957. Simulation of genetic systems by automatic digital
computers. II. Effects of linkage on rates under selection. Australian J. of
Biol Sci, vol 10, pp 492-499

105. Fraser, A.S. 1960. Simulation of genetic systems by automatic digital
computers. IV. Epistatis. Australian J. of Biol Sci, vol 13, pp 329-346

106. Frederickson, G.N. 1980. Probabalistic Analysis for Simple One and
Two-Dimensional Bin Packing. Inf. Proc. Lett., Vol 11, pp 156-161

107. Freeman, H., Shapira, R. 1975. Determining the Minimum-Area Encasing
Rectangle for an Arbitrary Closed Curve. Communications of the ACM,
Vol 18, pp 409-415

108. Garey, M.R. and Johnson. 1979. Computers and Interactability : A guide
to the Theory of NP-Completeness. W.H. Freeman and Company, San
Francisco

109. Garey, M.R., Johnson, D.S. 1981. Approximation Algorithms for Bin
Packing Problems: A Survey. Analysis and Design of Algorithms in
Combinatorial Optimization, CISM Courses and Lectures 266, Wien, pp
147-172

110. Ghosh, P. K. 1993. A Unified Computational Framework for Minkowski
Operations. Computers and Graphics, Vol. 17, No. 4, pp 357-378

111. Gilmore, P.C., Gomory, R.E. 1961. A Linear Programming Approach to
the Cutting-Stock Problem. Operations Research, vol 9, pp 849-859

112. Gilmore, P.C., Gomory, R.E. 1963. A Linear Programming Approach to
the Cutting-Stock Problem, Part II. Operations Research, vol 11, pp 863-
888

113. Gilmore, P.C., Gomory, R.E. 1965. Multistage Cutting Stock Problems of
Two and More Dimensions. Operations Research, vol 13, pp 94-120

114. Gilmore, P.C., Gomory, R.E. 1966. The Theory and Computation of
Knapsack Functions. Operations Research, vol 14, pp 1045-1074

115. Glover, F. 1977. Heuristics for Integer Programming using Surrogate
Constraints. Decisions Science, Vol. 8, pp156-166

116. Glover, F. 1989. Tabu Search – Part I. ORSA Journal on Computing, Vol
1, No. 3, pp 190-206

117. Glover, F. 1990. Tabu Search – Part II. ORSA Journal on Computing,
Vol 2, No. 1, pp 4-32

118. Glover, F., Laguna, M. 1998. Tabu Search. Kluwer Academic Publishers
119. Golan, I. 1981. Performance Bounds for Orthogonal Oriented Two-

Dimensional Packing Algorithms. SIAM Journal of Computing, Vol 10,
pp 571-582

120. Goldberg, D.E. 1989. Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley

Graham Kendall 230

121. Golden, B.L. 1976. Approaches to the Cutting Stock Problem. AIIE
Transactions, Vol 8, pp 265-274

122. Golomb, S.W. 1966. Polyominoes. George Allen and Unwin, London.
123. Graham, R.L. 1972. An Efficient Algorithm for Determining the Convex

Hull of a Finite Planar Set. Information Processing Letters, 1
124. Hart, P.E., Nilsson, N.J., Raphael, B. 1968. A Formal Basis for the

Heuristic Determination of Minimum Cost Paths. IEEE Transactions on
SSC, Vol 4, pp100-107

125. Hart, P.E., Nilsson, N.J., Raphael, B. 1972. Correction to ‘A Formal Basis
for the Heuristic Determination of Minimum Cost Paths’. SIGART
Newsletter, Vol 37, pp28-29

126. Haessler, R.W. 1968. An Application of Heuristic Programming to a
Nonlinear Cutting-Stock Problem Occurring in the Paper Industry.
Unpublished Doctoral Dissertation, The University of Michigan, Ann
Arbor, No. 69-12, 118

127. Haessler, R.W. 1971. A Heuristic Solution to a Nonlinear Cutting Stock
Problem. Management Science, Vol 17, B793-B803

128. Haessler, R.W. 1975. Controlling Cutting Pattern Changes in One-
Dimensional Trim Problems. Operations Research, Vol 23, pp 483-493

129. Haessler, R.W. 1980. A Note on Some Computational Modifications to
the Gilmore-Gomory Cutting Stock Algorithm. Operations Research, vol
28, pp1001-1005

130. Haessler, R.W. and Sweeney, P.E. 1991 Cutting Stock Problemsand
Solution Procedures. EJOR, 54, 141-150

131. Hahn, S.G. 1968. On the Optimal Cutting of Defective Sheets. Operations
Research, Vol 16, pp 1100-1114

132. Haims, M.J. 1966. On the Optimum Two-Dimensional Allocation
Problem. PhD Dissertation, Dept of Elec. Eng., New York Uni., Bronx,
Tech. Rept., 400-136

133. Haims, M.J., Freeman, H. 1970. A Multistage Solution of the Template
Layout Problem. IEEE Transactions on System, Science and Cybernetics.
SSC-6, pp145-151

134. Hearn, D, Baker, P., M. 1994. Computer Graphics. Prentice Hall, New
Jersey

135. Heckmann, R., Lengauer, T., 1995. A Simulated Annealing Approach to
the Nesting Problem in the Textile Manufacturing Industry. Annals of
Operations Research, Vol 57, pp 103-133

136. Heistermann, J., Lengauer, T. 1995. The nesting Problem in the Leather
Manufacturing Industry. Annals of Operations Research, Vol 57, pp 103-
133 (check page numbers – and ref as a whole)

Graham Kendall 231

137. Herdy, M. (1991). Application of the Evolution Strategy to Discrete
Optimization Problems. Proceedings of the First International Conference
on Parallel Problem Solving from Nature (PPSN), Lecture Notes in
Computer Science (eds Schwefel, H-P and Männer, R), Springer-Verlag,
Vol. 496, pp 188-192

138. Herz, J.C. 1972. A Recursive Computing Procedure for Two-Dimensional
Stock Cutting. IBM J. Res. Develop., Vol 16, pp 462-469

139. Hinxman, A.I. 1980. The Trim Loss and Assortment Problems: A Survey.
European Journal of Operational Research, Vol 5, pp 8-18

140. Hofri, M. 1980. Two-Dimensional Packing : Expected Performance of
Simple Level Algorithms. Information and Control, Vol 45, pp 1-17

141. Holland, J.H. Adaptation in Natural and Artificial Systems. Ann Arbor:
University of Michigan Press, 1975

142. Holland, J.H. 1992. Adaptation in Natural and Artificial Systems.
University of Michigan Press (Second Edition: MIT Press, 1992).

143. Hopper E. and Turton B. C. H., 1997. Application of Genetic Algorithms
to Packing Problems - A Review. In: Chawdry, P. K., Roy, R. and Kant,
R. K. (eds.), Proceedings of the 2nd On-line World Conference on Soft
Computing in Engineering Design and Manufacturing, Springer Verlag,
London, pp. 279-288

144. Hopper E. and Turton B.C.H. 2000a. An Empirical Investigation of Meta-
Heuristics and Heuristic Algorithms or 2D Packing Problem. Accepted
for EJOR in June 1999, publication date not yet known.

145. Hopper, E. 2000b. Two-Dimensional Packing utilising Evolutionary
Algorithms and other Meta-Heuristic Methods PhD Thesis, Cardiff
University, UK

146. Hopper E. and Turton B. C. H. 2000c. A Suite of Benchmark Problems
and Problem Generators for 2D Rectangular and Irregular Strip Packing
Problems, submitted in April 2000 to the special issue on Cutting and
Packing in EJOR

147. Hower, W., Rosendahl, M., Köstner, D. 1996. Evolutionary Algorithm
Design. Artificial Intelligence in Design ’96, Kluwer Academic
Publishers, Netherlands (eds Gero, S., Sudweeks, F.), pp 663-680

148. Israni, S., Sanders, J.L. 1982. Two-Dimensional Cutting Stock Problem
Research: A Review and a New Rectangular Layout Algorithm. Journal
of Manufacturing Systems, Vol 1, pp 169-182

149. Israni, S., Sanders, J.L. 1985. Performance Testing of Rectangular Parts-
Nesting Heuristics. International Journal of Production Research, Vol 23,
pp 437-456

Graham Kendall 232

150. Jain, P., Fenyes, P., Richter, R. 1992. Optimal Blank Nesting Using
Simulated Annealing. Journal of Mechanical Design (Transactions of the
ASME), March 1992, Vol 114, pp 160-165

151. Kampe, T. 1988. Simulated Annealing: Use of a New Tool in Bin
Packing. Annals of Operations Research, Vol 16, pp 327-332

152. Kantorovich, L.V., Zalgaller, V.A. 1951. Optimal Calculation for
Subdivision in the Material Industry. Leningrad. Lenizdat. p 198

153. Karp, R.M. 1972. Reducibility Among Combinatorial Problems.
Complexity of Computer Computations, Miller, R.E., Thatcher, J.W.
(eds.), Plenum Press, New York, pp 85-103

154. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P. 1983. Optimization by
Simulated Annealing. Science, Vol 220, pp 671-680

155. Kröger, B. 1995. Guillotineable Bin Packing : A Genetic Approach.
European Journal of Operational Research (Special Issue), Vol 84, pp
645-661

156. Kuntz P., P. Layzell and D. Snyers (1997). A Colony of Ant-like Agents
for Partitioning in VLSI Technology. Proceedings of the Fourth European
Conference on Artificial Life, P. Husbands and I. Harvey, (Eds.), 417-
424, MIT Press.

157. Laszlo, M.J. 1996. Computational Geometry and Computer Graphics in
C++. Prentice Hall.

158. Li, Z., Milenkovic, V. 1995. Compaction and Separation Algorithms for
Non-Convex Polygons and Their Applications. EJOR (Special Issue)
Cutting and Packing, 84, 3, 95, pp 539-561

159. Lin, S. and Kernighan, B. W. 1973. An Effective Heuristic Algorithm for
the TSP. Oper. Res. Vol. 21, 498-516.

160. Lozano-Pérez, T., Wesley, M. A. 1979. An Algorithm for planning
collision-free paths among polyhedral obstacles. Communications of the
ACM 22, pp 560-570

161. Mahadevan, A. 1984. Optimisation in Computer-Aided Pattern Packing.
PhD thesis, North Caroline State University.

162. Man, K.F., Tang, K.S. and Kwong, S. 1999. Genetic Algorithms:
Concepts and Design, Springer-Verlag, London.

163. Maniezzo V., Colorni, A. 1999. The Ant System Applied to the Quadratic
Assignment Problem. IEEE Transactions on Knowledge and Data
Engineering, to appear

164. Martello, S., Toth, P. 1987. Algorithms for Knapsack Problems. Annals
of Discrete Mathematics, Vol 31, 213-258

Graham Kendall 233

165. Metropolis N., Rosenbluth A. W., Teller A. H., Teller E. 1953. Equation
of State Calculation by Fast Computing Machines. J. of Chem Phys. Vol
21, pp1087-1091

166. Michalewicz, Z. 1996. Genetic Algorithms + Data Structures = Evolution
Programs (3rd rev. and extended ed.). Springer-Verlag, Berlin

167. Michalewicz, Z and Fogel, D.B. 2000. How To Solve It. Springer-Verlag.
ISBN 3-540-66061-5

168. Mileham, A.R., Scott, A.J. 1996. A New Algorithm for Nesting Sheet
Metal Components. Proceedings of the twelth conference on CAD/CAM
Robotics and Factories of the Future, 14-16 Aug '96, 1048-1053

169. Mitchell, M. 1996. An Introduction to Genetic Algorithms. Massachusetts
Institute of Technology

170. Monmarché, N., Venturini, G., Slimane, M. 2000. On how Pachycondyla
apicalis ants suggest a new search algorithm. Future Generation
Computer Systems, pp 937-946

171. Moscato, P. 1989. On Evolution, Search, Optimization, Genetic
Algorithms and Martial Arts: Towards Memetic Algorithms, Report 826,
Caltech Concurrent Computation Program, California Institute of
Technology, Pasadena, California, USA

172. O'Rourke, J. 1998. Computational Geometry in C. Cambridge University
Press.

173. Oliveira, J. F., Ferreira, J. S. 1990. An Improved Version of Wang’s
Algorithm fot Two-Dimensional Stock Cutting Problems. European
Journal of Operations Research, vol. 44, pp 256-266.

174. Oliveira, J.F., Ferreira, J.S. 1993. Algorithms for Nesting Problems.
Applied Simulating Annealing, Lecture Notes in Economics and
Mathematical Systems (ed. Vidal, V. V.), Springer-Verlag, pp 255-273

175. Oliveira, J.F., Gomes, A.M., Ferreira, S. 1998. TOPOS A new
constructive algorithm for nesting problems. Accepted for ORSpektrum

176. Otten, R.H.J.M. 1982. Automatic Floorplan Design. ACM-IEEE 19th
Design Automation Conference, pp 261-267

177. Parada, V., Sepúlveda, M., Solar, M. (1998). Solution for the Constrained
Guillotine Cutting Problem by Simulated Annealing. Computer Ops Res,
25, 37-47

178. Paull, A.E. 1956. Linear Programming: A Key to Optimum Newsprint
Production. Pulp Paper Magazine. Canada. Vol 57

179. Prasad, Y.K.D., Somasundaram, S. 1991. CASNS – A Heuristic
Algorithm for the Nesting of Irregular Shaped Sheet Metal Blanks.
Computer Aided Engineering Journal, April, pp 69-73

Graham Kendall 234

180. Preparata, F.P., Shamos, M.I., 1985. Computational Geometry: An
Introduction. Springer-Verlag

181. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P. 1995.
Numerical Recipes in C. Cambridge University Press.

182. Qu, W., Sanders, J.L. 1987. A Nesting Algorithm for Irregular Parts and
Factors Affecting Trim Losses. International Journal of Production
Research, Vol 25, pp 381-397

183. Ramkumar, G. D. 1996. An Algorithm to Compute the Minkowski Sum
Outer-Face of Two Simple Polygons. In proceedings of 12th Annual
ACM Symposium of Computational Geometry, pp 234-241

184. Rana, A., Howe, A.E., Whitley, L.D, Mathias, K. 1996. Comparing
Heuristic, Evolutionary and Local Search Approaches to Scheduling.
Third Artificial Intelligence Plannings Systems Conference (AIPS-96).

185. Rayward-Smith, V.J., Shing, M.T., 1983. Bin Packing. Bulletin of the
IMA, Vol 19, pp 142-146

186. Rayward-Smith V.J., Osman I.H., Reeves C.R., Smith G.D. 1996.
Modern Heuristic Search Methods. John Wiley and Sons.

187. Rechenberg, I. 1965. Cybernetic Solution Path of an Experimental
Problem. Ministry of Aviation, Royal Aircraft Establishment (UK).

188. Rechenberg, I. 1973. Evolutionsstrategie: Optimierung Technischer
Systeme nach Prinzipien der Biologischen Evolution. Frommann-
Holzboog (Stuttgart)

189. Reeves, C.R. 1995. Genetic Algorithms. In Modern Heuristic Techniques
for Combinatorial Problems (ed. Reeves, C.R.), McGraw-Hill, 1995

190. Rich, E., Knight, K. 1993. Artificial Intelligence. Mc-Graw Hill.
191. Roberst, S.A. 1984. Application of Heuristic Techniques to the Cutting-

Stock Problem for Worktops. Journal of the Operational Research
Society, Vol 35, pp 369-377

192. Rode, M., Rosenberg, O. 1987. An Analysis of Heuristic Trim Loss
Algorithms. Engineering Cost and Production Economics, Vol 12, pp 71-
78

193. Ross, P. Corne, D., Hsiao-Lan, F. 1994. Improving Evolutionary
Timetabling with Delta Evaluation and Directed Mutation. In Y. Davidor,
H-P Schwefel and R. Manner (eds) Parallel Problem Solving in Nature,
Vol 3, Springer-Verlag, Berlin

194. Russell, S., Norvig, P. 1995. Artificial Intelligence A Modern Approach.
Prentice-Hall

195. Salkin, H.M., de Kluyver, C.A. 1975. The Knapsack Problem: A Survey.
Naval Research Logistics Quarterly, Vol 22, pp 127-144

Graham Kendall 235

196. Sarin, S.C. 1983. Two Dimensional Stock Cutting Problems and Solution
Methodologies. Journal of Engineering for Industry – Trans. of the
ASME, Vol 105, pp155-160

197. Sarker, B.R. 1988. An Optimum Solution for One-Dimensional Slitting
Problem: A Dynamic Programming Approach. Journal of Operational
Research Society, Vol 39, pp749-755

198. Schwartz, J. T., Sharir, M. 1990. Algorithmic Motion Planning in
Robotics, in J. van Leeuwen (ed), Algorithms and Complexity, Handbook
of Theoretical Computer Science, Vol A, Elsevier, Amsterdam, pp 391-
430

199. Schwefel, H-P. 1975. Evolutionsstrategie und numerische Optimierung.
Ph.D. thesis, Technische Universität Berlin

200. Schwefel, H-P. 1977. Numerische Optimierung von Computer-Modellen
mittels der Evolutionsstrategie. Basel: Birkhäuser

201. Schwefel, H. P. (1981) Numerical Optimization for Computer Models.
John Wiley, Chichester, UK.

202. Sedgewick, R. 1992. Algorithms in C++. Addison-Wesley, Reading,
Massachusetts

203. Serra, J. 1982. Image Analysis and Mathematical Morphology, Vol. 1,
Academic Press, New York

204. Shamos, M. I., Hoey, D. 1976. Geometric Intersection Problems.
Seventeenth Annual IEEE Symposium on Foundations of Computer
Science, pp 208-215.

205. Shamos, M.I. 1978. Computational Geometry. PhD Thesis, UMI
#7819047, Yale University, New Haven, CT.

206. Shpitalni, M, Manevich, V. 1996. Optimal Orthogonal Subdivision of
Rectangular Sheets. Journal of Manufacturing Science and Engineering,
Vol 118, pp 281-288

207. Sleator, D. 1980. A 2.5 Times Optimal Algorithm for Packing in Two
Dimensions. Information Processing Letters, Vol 10, pp 37-40

208. Smith, D. 1985. Bin Packing with Adaptive Search. International
Conference on Genetic Algorithms and their Applications, Pittsburgh,
Erlbaum, L. (ed), pp 202-207

209. Sweeney, E., Paternoster, R.E. 1992. Cutting and Packing Problems: A
Categorized, Application-Orientated Research Bibliography. Journal of
the Operational Research Society, Vol 43, No. 7, pp 691-706

210. Vajda, S. 1958. Trim Loss Reduction. Readings in Linear Programming.
New York, Wiley, pp78-84

Graham Kendall 236

211. Vasko, F.J., Wolf, F.E., Pflugrad, J.A. 1991. An Efficient Heuristic for
Planning Mother Place Requirements at Bethlehem Steel. Interfaces, Vol
21, No.2, pp 1-7

212. Vasko, F.J., Floyd, E.W. 1994. Journal of the Operational Research
Society, Vol 45, No.3, pp 281-286

213. Vassilios, E., Theodoracatos, Grimsley, J. 1995. The Optimal Packing of
Arbitarily-Shaped Polygons using Simulated Annealing and Polynolmial-
Time Cooling Schedules. Computer Methods in Applied Mechanics and
Engineering, Vol 25, Iss 1-4, pp 53-70

214. Wang, P.Y. 1983. Two Algorithms for Constrained Cutting Stock
Problem. Operations Research, Vol 31, pp 573-586

215. Wolfson, M.L. 1965. Selecting the Best Lengths to Stock. Operations
Research, Vol 13, pp 570-585

216. Wolpert, D. Macready, W. 1997. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 67-82

217. Yeong, W.Y., Yue, T.M., 1991. Cutting Down Trim-Loss for
Competitive Advantage – A Singaporean Company Experience. Journal
of the Operational Research Society, Vol 42, Iss 8, pp 649-654

218. Zhenyu, Li. 1994. Compaction Algorithms for Non-Convex Polygons and
Their Applications. PhD Thesis, Computer Science, Harvard University,
Cambridge, Massachusetts.

Graham Kendall 237

Appendix A – Papers produced as a result of
this research

Journal Papers
E.K. Burke and G. Kendall, "Comparison of Meta-Heuristic Algorithms for
Clustering Rectangles", Computers and Industrial Engineering, Vol. 37, Iss. 1-2,
pp 383-386 (Proccedings of the 24th International Conference on Computers and
Industrial Engineering, Brunel University, September, 1998)

Conference Papers

E.K. Burke and G. Kendall, "Applying Evolutionary Algorithms and the No Fit
Polygon to the Nesting Problem", in proceedings of IC-AI'99 : The 1999
International Conference on Artificial Intelligence, Las Vegas, Nevada, USA, 28
June - 1 July 1999, pp 51-57

E.K. Burke and G. Kendall, "Applying Simulated Annealing and the No Fit
Polygon to the Nesting Problem", Proceedings of WMC '99 : World
Manufacturing Congress, Durham, UK, 27-30 September, 1999, pp 70-76

E.K. Burke and G. Kendall, "Applying Ant Algorithms and the No Fit Polygon to
the Nesting Problem", Proceeings of 12th Australian Joint Conference on Artificial
Intelligence, Sydney, Australia, 6-10 December 1999, Lecture Notes in Artifcial
Intelligence (1747), Foo, N. (Ed), pp 453-464

E.K. Burke and G. Kendall, "Evaluation of Two Dimensional Bin Packing
Problem using the No Fit Polygon", Proceedings of the 26th International
Conference on Computers and Industrial Engineering, Melbourne, Australia, 15-
17 December 1999, pp 286-291

Graham Kendall 238

Appendix B – Data for Test Problem 1

Number of Items : 13
BinWidth : 80
Optimal Bin Height : 140

Test Data 1
(no. of items : width x height)

2 : 60 x 14
2 : 22 x 26
1 : 42 x 44
1 : 62 x 26
1 : 18 x 70
2 : 18 x 48
1 : 20 x 28
2 : 28 x 16
1 : 24 x 16

Graham Kendall 239

Appendix C – Data for Test Problem 2

Number of Items : 13
BinWidth : 6240
Optimal Bin Height : unknown

Test Data 2
(no. of vertices : x, y coordinates)

3 : 3024,0 : 0,3357 : 0,0
5 : 2025,0 : 2130,0 : 2130,7785 : 0,7785 : 0,2235
4: 2475,2760 : 2475,6060 : 0,6060 : 0,0
4 : 2127,0 : 2127,5328 : 0,2871 : 0,0
5 : 1050,0 : 2130,2235 : 2130,7785 : 0,7785 : 0,0
3 : 3024,0 : 3024,3357 : 0,0
4 : 2850,0 : 2850,5850 : 0,2730 : 0,0
4 : 1785,0 : 1785,2550 : 0,2550 : 0,0
4 : 2220,0 : 2220,5940 : 0,5940 : 0,2310
4 : 2550,0 : 2550,3015 : 0,6060 : 0,0
3 : 3054,0 : 3054,3390 : 0,3390
4 : 2127,0 : 2127,2871 : 0,5328 : 0,0
3 : 3054,3390 : 0,3390 : 0,0

Graham Kendall 240

Appendix D – Dataset from (Hopper, 2000a)

Number of Items : 16 or 17 items
BinWidth : 20
Optimal Bin Height : 20
Category : 1

Problem 1
(width x height)

Problem 2
(width x height)

Problem 3
(width x height)

2 x 12 4 x 1 4 x 14
7 x 12 4 x 5 5 x 2
8 x 6 9 x 4 2 x 2
3 x 6 3 x 5 9 x 7
3 x 5 3 x 9 5 x 5
5 x 5 1 x 4 2 x 5
3 x 12 5 x 3 7 x 7
3 x 7 4 x 1 3 x 5
5 x 7 5 x 5 6 x 5
2 x 6 7 x 2 3 x 2
3 x 2 9 x 3 6 x 2
4 x 2 3 x 13 4 x 6
3 x 4 2 x 8 6 x 3
4 x 4 15 x 4 10 x 3
9 x 2 5 x 4 6 x 3
11 x 2 10 x 6 10 x 3
 7 x 2

Graham Kendall 241

Appendix E – Dataset from (Hopper, 2000a)

Number of Items : 25 items
BinWidth : 40
Optimal Bin Height : 15
Category : 2

Problem 1
(width x height)

Problem 2
(width x height)

Problem 3
(width x height)

11 x 3 11 x 2 12 x 7
13 x 3 2 x 3 7 x 7
9 x 2 10 x 7 7 x 1
7 x 2 8 x 4 5 x 1
9 x 3 9 x 5 3 x 2
7 x 3 7 x 2 6 x 2
11 x 2 4 x 1 7 x 2
13 x 2 6 x 1 5 x 2
11 x 4 4 x 5 3 x 1
13 x 4 8 x 3 6 x 1
3 x 5 1 x 3 12 x 6
11 x 2 5 x 5 9 x 6
2 x 2 3 x 1 12 x 2
11 x 3 12 x 4 7 x 2
2 x 3 6 x 2 10 x 3
5 x 4 2 x 4 4 x 1
6 x 4 11 x 4 5 x 1
12 x 2 10 x 2 16 x 3
1 x 2 3 x 2 5 x 3
3 x 5 11 x 2 4 x 2
13 x 5 3 x 4 5 x 2
12 x 4 26 x 4 10 x 3
1 x 4 8 x 4 9 x 3
5 x 2 3 x 2 16 x 3
6 x 2 6 x 2 5 x 3

Graham Kendall 242

Appendix F – Test Data from (Blazewicz,
1993)

Number of Items : 28
BinWidth : 15
Optimal Bin Height : unknown

Blazewicz, 1998
(no. of vertices : x, y coordinates)

6 : 0,0 : 2,-1 : 4,0 : 4,3 : 2,4 : 0 3
8 : 0,0 : 3,0 : 2,2 : 3,4 : 3,5 : 1,5 : –1,3 : –1,1
8 : 0,0 : 2,0 : 3,1 : 3,3 : 2,4 : 0,4 : –1,3 : –1,1
8 : 0,0 : 2,1 : 4,0 : 3,2 : 4,5 : 2,4 : 0,5 : 1,3
7 : 0,0 : 5,0 : 5,5 : 4,5 : 3,2 : 2,2 : 0,1
3 : 0,0 : 2,3 : –2,3
4 : 0,0 : 2,0 : 2,2 : 0,2

Each shape appears four times, making a total of 28 shapes

This data is re-produced in (Oliveira, 1998)

	University of Nottingham, Nottingham
	October 2000
	Contents
	Figures
	Tables
	Abstract
	Acknowledgements
	1. Introduction
	Cutting
	Packing
	2. Related Work
	2.1.1 Introduction
	2.1.2 The Stock Cutting Problem
	2.3.1 Heuristic Search Methods
	2.3.2 Neighbourhood (or Local Search) Methods
	Hill Climbing
	P = exp(-∆E/kT) (2.1)
	P = exp(-∆E/T) (2.2)
	Tabu Search (TS)
	2.3.3 Evolutionary (or Population) Based Approaches
	Ant Algorithms
	Tij (t + n) = p . Tij(t) + ΔTij (2.4)
	Genetic Algorithms
	Evolutionary Strategies
	Memetic Algorithms
	The Selfish Gene by Richard Dawkins (Dawkins, 1976) introduces the idea of a meme. In 1989 Moscato (Moscato, 1989) coined the term memetic algorithms.
	“Examples of memes are tunes, ideas, catch-phrases, clothes, fashions, ways of making pots or of building arches. Just as genes propagate themselves in the gene pool by leaping from body to body via sperm eggs, so memes propagate themselves in the mem...
	(Dawkins, 1976)
	A meme can be considered to be a unit of information, for example an idea which is passed from generation to generation. Unlike genetic material, which cannot be altered by its recipient, a meme can be amended to suit the receiver.
	The idea behind a memetic algorithm, with regard to optimisation problems, is to combine evolutionary algorithms with a local search mechanism in the hope that an individual in the population can be improved. An outline algorithm, based on (Corne, 199...
	InitialisePopulation, Pop
	Foreach individual, i (Pop do (Local-Search-Engine(i)
	Foreach individual, i (Pop do (Evaluate(i)
	Repeat
	for j = 1 to #recombinations do
	SelectToRecombine a set Spar (Pop (|Spar| (2)
	offspring (Recombine(Spar)
	offspring (Local-Search-Engine(offspring)
	add offspring to Pop
	endfor
	for j = 1 to #mutations do
	SelectToMutate an individual i (Pop
	im (Mutate(im)
	im (Local-Search-Engine(im)
	Evaluate(im)
	add im to Pop
	endfor
	until termination-condition = true
	A good introduction to memetic algorithms can be found in (Corne, 1999) in which Pablo Moscato introduces the topic and other practitioners discuss the area in more depth.
	2.3.4 Meta-heuristics
	The literature and academic community often use the phrase meta-heuristic. As far as the author is aware there is no definitive statement as to what this term actually means.
	If you look up the term meta in a dictionary (see, for example www.dictionary.com) the term is defined as “Beyond; transcending; more comprehensive”, suggesting that a meta-heuristic takes us beyond a heuristic algorithm. An alternative, computer scie...
	“In computer science, a common prefix that means "about". So, for example, metadata is data that describes other data (data about data). A metalanguage is a language used to describe other languages. A metafile is a file that contains other files. The...
	This would suggest that a meta-heuristic is somehow a heuristic about heuristics.
	Of the two definitions given above, for the purposes of this thesis the first definition is preferred. The algorithms that we use go beyond the usual heuristic approaches.
	Therefore, for this work the term meta-heuristic can be used to describe both neighbourhood approaches and population based approaches.
	3. A Simplified Problem
	Presented with two rectangles (R1, R2) we can make the following observations. By placing R1 and R2 in contact with each other we can place a bounding box, Bbox, around them. The area of Bbox, Area(Bbox), depends on how the rectangles are placed in re...
	3.3.1 Interpretation
	3.4.1 Crossover, Neighbour and Mutation
	3.4.2 Genetic Algorithm (GA)
	3.4.3 Tabu Search (TS)
	3.4.4 Simulated Annealing (SA)
	4. Evaluation of the Two Dimensional Bin Packing Problem using the No Fit Polygon
	4.3.1 The Basic Method
	P
	P
	4.3.2 Caching of Evaluations
	4.3.3 Polygon Types
	4.3.4 Forcing Re-evaluations
	4.4.1 Test Data
	4.4.2 Testing the Cache
	4.3 Re-evaluation Parameter
	5. Comparing Meta-Heuristics and Evolutionary Algorithms when Applied to the Convex Nesting Problem
	C is the bin capacity

	5.4.1 Simulated Annealing
	Random : Selects two polygons at random and swaps them.

	5.4.2 Tabu Search
	Test Data 2
	5.4.3 Genetic Algorithms
	Test Data 1
	5.5.2 Results
	6. Applying Ant and Memetic Algorithms with the No Fit Polygon to the Nesting Problem
	6.4.1 Ant Algorithm Parameters
	6.4.2 Results
	7. Determining the No Fit Polygon for Non-Convex Polygons and Combining Non-Convex Polygons
	NO Intersection
	Intersection
	Intersection
	Intersection
	Intersection

	7.5.1 Introduction
	7.5.2 Sliding Edge and Sliding Vertex
	7.5.3 Determination of Sliding Distance
	O
	S
	O
	S
	7.5.4 Multiple Points of Contact
	7.5.5 Check for Intersection After Potential Move
	7.5.6 Additions to the Algorithm
	In figure 7.16d, the situation is similar to figure 7.16c in that there are two occurrences of “UtouchesAB” but they cannot be differentiated by their distance from A as they are effectively the same point. In this case, the edge to be used should be ...

	O
	O
	O
	V
	B
	B
	8. Comparing Meta-Heuristics and Evolutionary Algorithms when Applied to the Non-Convex Nesting Problem
	8.4.1 Comparison over 7000 iterations
	8.4.2 Comparison over fixed time interval
	Category Test Data 1
	Category Test Data 2

	BL
	BL-DH
	BL-DW
	BLF
	BLF-DH
	BLF-DW
	GA+BL
	NE+BL
	SA+BL
	HC+BL
	RS+BL
	GA+BLF
	NE+BLF
	SA+BLF
	HC+BLF
	RS+BLF
	9. Conclusions and Discussion
	9.1.1 Speeding up Evaluations
	9.1.2 Development of the No Fit Polygon Algorithm for Non-Convex Polygons
	9.1.3 Applying Ant Algorithms to the Stock Cutting Problem
	9.1.4 Search Strategies
	9.3.1 Commercial Exploitation
	References
	Appendix A – Papers produced as a result of this research
	Appendix B – Data for Test Problem 1
	Appendix C – Data for Test Problem 2
	Appendix D – Dataset from (Hopper, 2000a)
	Appendix E – Dataset from (Hopper, 2000a)
	Appendix F – Test Data from (Blazewicz, 1993)

