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ABSTRACT 
 

Cellular automata (CA) are an important modelling paradigm in the natural sciences and an extremely useful approach 
in the study of complex systems. Homogeneity, massive parallelism, local cellular interactions and both synchronous 
and asynchronous models of rule execution are some of their most prominent features, allowing scientists to model 
and understand a variety of phenomena in, to name but a few, the physical, chemical, biological, social and 
information sciences. An ubiquitous problem related with the study of complex systems by means of CA is that of 
parameter identification. In some cases, analytical methods are available but in many others, due to the bottom-up 
complexity of the underlying processes, the best route for CA identification is through design optimization by means 
of a metaheuristic, such as an evolutionary algorithm. In this work we report on a systematic methodology we have 
developed to control the spatio-temporal behavior of a CA in order to obtain a ‘designoid’ target pattern. Four 
independent CA-based complex systems were used to assess our proposal which combines clustering, fitness distance 
correlation and evolutionary algorithms. 
 
 

1. INTRODUCTION  
 
Understanding how nature produces and relies upon natural phenomena, such as self-organization, evolution by 
natural selection, etc., to construct the magnificent engineering solutions routinely find in nature (e.g. eyes, lungs, 
brains, wings, etc.)  is of enormous scientific and technical relevance. Self-organisation, both in the temporal and 
spatial domain, is a common feature of many complex systems. Such systems have often been studied by means of 
cellular automata [1][2] and the design of CAs has often been accomplished by means of evolutionary algorithms.  
 
Examples in literature can be found in [3] where a GA was used two evolve a non-uniform CA, a development of the 
CA paradigm where each cell in the lattice does not use the same rule set.  This makes the systems considerably more 
complex, and thus presents the GA with a more difficult problem, although the papers report that good CAs can still 
be   evolved.  In this paper the obtained results were rule sets which allow the CA to generate sophisticated emergent 
computational strategies subsequently analyzed with regard to the interactions between the system particles.  Related 
work is described in [23] where a coevolutionary approach was used to evolve non-uniform CAs via cellular 
programming [21] considering three models of asynchrony among blocks of cells.  In [4] a research approach using an 
evolutionary algorithm was employed to discover a new dynamic universal automaton called R capable of building 
logic circuits and simulating the Game of Life. In [22] and [29], the author reports on the success of a GA in evolving 
the CA rules themselves (rather than parameters to these rules, as in our case).  Particularly interesting is the work 
based on the fault tolerance of the evolved systems, showing them to have 'graceful degradation' properties. 
 
In this paper we are interested in the automated (evolved) design of the parameter values a CA-based model of a 
complex system requires in order to attain a specific target spatio-temporal behaviour. This goal is related to the more 
general aim of designing and controlling complex systems [5]: 

“...perhaps the greatest concern is how do we build artificial systems (or manage natural ones) so that the properties 
that emerge are the ones we want?” 

To give a more accurate definition of our objective, we are interested in producing target designoids of the spatio-
temporal patterns that emerge from the execution of a set of cellular automaton models. The term ‘designoid’ was 
introduced in [6] to refer to objects that seem to have been designed but that were, in fact, evolved. 

A CA is defined as an infinite, regular grid of cells, each of which can be in one of a finite number of states.  At a 
given time step, t, the state of a cell is a function of that cell’s neighborhood at t-1. There are a number of possible 
definitions of a neighbourhood in CA systems as depicted in Figure 1. For instance, the Moore neighbourhood uses the 
eight surrounding cells of the cell in question for the update process, using these eight states as input to the update 
function. The von Neumann neighbourhood only uses the four cells – defined as north, south, east and west – that are 
strictly adjacent to the central cell. The Margolus neighbourhood divides the grid into groups of four cells, to which 
the update function is applied completely locally (i.e. using only the information in this group of four cells).  So as to 



allow propagation through the grid, the actual grouping of cells (in the 2x2 arrangement) changes on each update. 
There are also some extended models as the Extended Moore where the distance of the neighbourhood is extended 
beyond a radius of one. 

 
 
 
 
 
 
 
 
 

All the complex system models used in this work have been implemented in the NetLogo [7] program. The first model 
is a cellular automaton known as the coupled map lattice, referred to by NetLogo and from hereonin as CA continuous. 
Like a standard CA, it consists of a time-space representation, but the states are encoded as continuous rather than 
discrete values [8][9]. One of the applications this system has is the modelling of the behaviour of a boiling liquid 
[10]. At each step, the value of a cell is a function of its neighbours, in essence representing the process of heat 
diffusion. The same mechanism is also widely used for the study of complex dynamics in nonlinear chemical and 
biological problems. The second CA model, called Turbulence, is also based on a coupled map lattice. This model is 
used for investigating the relationship between turbulence, laminarity and viscosity of a fluid flowing through a pipe 
and how the roughness of the pipe surface can affect the fluid’s behaviour. The third complex system is the Gas 
Lattice model (also known as the Hardy, de Pazzis and Pomeau model [11]). This program can model the propagation 
of circular waves. The underlying space is composed of Margolus neighbourhoods, each containing a number of 
particles, each of which belong to two spacio-temporally separate sublattices, one modelling propagation, the other 
collision. The last model used in this work was developed by the authors and it is called the Meta-automaton. This 
system is a one dimensional cellular automaton of radius 1. The purpose of this system is to show how the change of 
dynamics along space and time affects the information flow, to understand how rules behave in a given configuration 
and how different combinations of rules could affect the complexity of the system. Example patterns generated from 
all four of these models are shown in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the following section, a detailed overview of our methodology will be presented, i.e. the evolutionary algorithm, the 
fitness correlation distance method and clustering. After that, in section 3, a set of experiments, results and analyses of 
our proposal will be presented. Finally, in section 4, discussions and future work will be shown. 
 
 

2. METHODOLOGY 
 
In this section, we describe the methodology used to evolve designoid images that capture the target spacio-temporal 
behaviour of the complex system in question. The principal aim of our proposal is to present a protocol not only for 
evolving target CA behaviours, but also, most crucially, for verifying the robustness of this evolutionary process. The 
process, which combines clustering, fitness distance correlation and evolutionary algorithms, seems to be robust 
across the four different cellular automaton-based complex systems we have investigated, and could have applications 
to many other complex domains.   
 
 

(a) (b) (c) (d) 

Figure 2: Sample snapshots of spacio-temporal patterns from the CA Continuous (a), Turbulence (b), Gas Lattice (c), and Meta-

automaton models (d). 
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Figure 1: Illustrations of Moore, von Newman and Margolus neighbourhoods. 



 
  
 
 
 
 
 

 
Figure 3: Diagram of mappings from genotype onto phenotype and from phenotype onto numerical fitness value, and relationship 
to the analysis methods. 

 
Motivation 
 
In a complex system such as the four CA-based models described above, the mapping from genotype to phenotype 
and then from phenotype to fitness is a highly complex, non-linear relationship.  Figure 3 shows the three stage 
mapping process from genotype (the real numbered parameters) onto a phenotype though the execution of the 
complex system (the CA model) itself and then from this phenotype (a spacio-temporal pattern) onto a numerical 
fitness value via the objective function. 
 
Fitness Distance Correlation (FDC) is a measure of how effectively the fitness of an individual correlates to its 
genotypic distance to a known optimum.  In other words, given two different genotypes, FDC measures the correlation 
of the (numerical) Euclidian distance between these genotypes against the value assigned by the objective function.  If 
there is only a small relationship between these two values, a parameter optimisation GA, or for that matter any 
metaheuristic based on the same representation, will have very little effect.  Hence, FDC analyses the genotype – 
fitness relationship.  We must also analyse the phenotype – fitness relationship, in other words, we must verify that the 
objective function can effectively differentiate between dissimilar phenotypes and effectively classify similar 
phenotypes as such for the purpose of effective selection.  If the fitness function cannot achieve this, a parameter 
optimisation GA will have difficulty evolving towards better solutions as the selection process will not have sufficient 
accurate information to bias the search.  For verification of the phenotype-fitness relationship, we use clustering.  
Although FDC has been used in the past to assess the quality of the representation vis-à-vis the fitness function, e.g. 
[30], it has never been combined with a clustering process to obtain better insight of the complex mappings 
represented in figure 3.  
 
Such is the complexity of the genotype – phenotype mapping, that FDC can not be guaranteed to give a completely 
accurate picture, indeed the objective function itself is also only an approximation of two individuals’ phenotypic 
similarity.  For these reasons, relying on only one of FDC or clustering to validate an objective function would not be 
adequate.  Hence, we use both methods to show that a given function is suitable for use in evolving designoid spacio-
temporal behaviour patterns.  Details of the fitness function used, as well as details of the implementation of both the 
FDC analysis and clustering methods are presented in the next section. 
 

2.1 Genetic algorithm 
 
We have used a genetic algorithm whose aim is to generate a spatio-temporal behaviour ‘closest’ to some specified 
target image.  
 
Let T be a pre-defined set of real numbers that act as input parameters to the CA model.  These parameters give rise to 
a particular spacio-temporal behaviour, captured in the pattern FT.  We initialise the GA with a population of 
parameter sets, P0, P1, … Pn (which each map to some spacio-temproal behaviour, F0, F1, …, Fn) and evolve this 
population in the hope that a parameter set D will emerge that produces a pattern, FD as similar as possible to FT as 
shown by Figure 4 below. 
 
Each candidate pattern (Fi) is compared to the target pattern (FT) for similarity using an information distance-based 
metric described in more detail below.  This metric returns a numerical representation of similarity that is considered 
as the fitness of each individual. 



 
 
Figure 4: Interaction diagram for the evolution of a given target behaviour. The CA model receives the parameters obtained by the 
evolutionary algorithm and the emergent pattern is evaluated against the target. 

 
We use a real-coded GA, that is to say, each individual’s chromosome (parameter set) comprises a set of real numbers, 
as opposed to the more traditional bit string.  Not only is this a more intuitive representation in this context, but 
research such as [25] suggests real-coded GAs may be more efficient than their binary counterparts.  During the 
evolution process, offspring are obtained using uniform crossover [26] where, for each gene, the algorithm determines 
randomly from which parent to draw an allele. Usually each parent has a 0.5 probability of being chosen.  Mutation is 
implemented using the BGA operator introduced in [27] that selects a value from a constant-size distribution either 
side of the initial value.   
 
Individuals are selected to be parents using the roulette wheel selection method [28] which essentially assigns each 
individual a ‘slice’ of the roulette wheel whose size is proportional to the individual’s fitness. Thus, fitter parents have 
a greater probability of being selected when the virtual wheel is spun, but all individuals in the population have some 
chance of selection.  The (µ+λ) replacement strategy is employed, where the children and parents are considered 
together and the best (fittest) µ individuals are chosen to form the next generation’s population.  The GA is run over 
100 generations with a population size of 20, i.e. µ=20.  At each generation, 10 offspring are created, i.e. λ=10.  
Crossover between parents occurs with 0.7 probability; mutation with 0.3. 
 
Our GA system has been specially developed through the CHELLnet project (http://www.chellnet.org) for 
optimising a range of design and manufacture problems.  It is a server-based system and can be tailored to solve a 
broad range of problems.  The number and data type of genes in the chromosome, along with the parameters for the 
GA (including the user’s choice of a range of selection, replacement, recombination and mutation operators and rates) 
can be specified in the web-based configuration module which builds an XML script as output.  This script, along with 
a plug-in-style problem specification class (which, most importantly, defines the fitness function), configures the GA 
to the specific problem to be optimised.  The execution of the GA can then be started and observed over the Internet 
through a Java servlet. As shown in Figure 5, this system enables a number of users to run tailored instances of the GA 
in parallel on different problems.  
 

 
 

Figure 5: Component diagram of the GA system.  



2.2 The Universal Similarity Metric  
The Universal Similarity Metric [12] is a measure of the similarity between two objects based on Kolmogorov 
complexity. This function is a robust compression-based mechanism and has been widely used in different topics of 
research (see [13] and references therein). 
 
The information distance between two objects is the amount of information required to compute one object given the 
other. For our purposes, the information distance was calculated with the USM formulae presented in [13] and shown 
in equation 1, where K(oi) is the Kolmogorov complexity of the object oi. The Kolmogorov complexity of an object is 
defined as the length of the shortest program for computing oi by a universal Turing machine [14]. Since Kolmogorov 
complexity is not computable, we have used the same approximation approach as proposed in [13]. The fitness 
distance correlation and clustering processes described below are used to show that the USM is an effective measure 
for comparing the spacio-temporal images generated by our CA systems, and thus a robust fitness function for a 
genetic algorithm. 
 
 
 

 

2.3 Fitness distance correlation 
Finding the most robust way for predicting when a GA will be an effective method of optimisation is still an open 
topic of research in evolutionary computation theory. One possible methodology, fitness distance correlation (FDC), is 
proposed in [17]. FDC is a statistical-based methodology which performs a correlation analysis given a known target 
solution and samples from the search space. Faced with a maximisation problem, a large positive correlation value 
indicates that the problem may be effectively optimised by a GA, whereas a large negative value suggests that GA 
optimisation might not be as effective. Correlation values around zero indicate that a more detailed analysis on a 
scatter plot of fitness versus distance should be performed. The formula for the derivation of a correlation value is 
shown in equation 2, where r is the correlation coefficient, n is the number of individuals under consideration, fi is the 

fitness of individual i, and di is its distance to the nearest global optimum, f and SF are the mean and standard 

deviation of the set of fitnesses, and d and SD are the mean and standard deviation of the set of distances. We 
performed fitness distance correlation analysis of the USM as applied to the CA generated images in order to extend 
our study of how effective it could be as a fitness function in a GA when trying to generate a target spatio-temporal 
behaviour. 

 
 
 
 
2.4 Clustering 
In order to further assess the proficiency of the USM as a fitness function, we use clustering. For this to be effective, 
the definition of a ‘similarity’ measure or, ideally, a metric is required. Thus, to cluster the spatio-temporal images for 
each data set described in the next subsection, the distance between each pair of spacio-temporal patterns was 
measured and recorded in a distance matrix, M.  Then, using this matrix, clustering [15] occurs by processing the 
distance matrix produced above with the clustering algorithm outlined in the Pseudocode 1. A number of different 
clustering methods and representations are available. In our case, we have used the unweighted arithmetic average 
method (UPGMA) and logarithmic tree representation respectively. One such implementation of clustering can be 
found at [16]. 
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makeCluster(M) implements UPGMA applied to M 

MakeCluster(M) 
 
  Input: M a distance matrix 
  let Minimum = maxNumber 
  While dimension(M) > 2x2 
      Foreach i,j where i≠j 

         Minimum = Min(M[i,j], Minimum) 
      mergeRows(M,i,j) 
      mergeColumns(M,i,j) 
      M[k,ij] = avg(M[k,i], M[k,j]) 
      M[ij,k] = avg(M[i,k], M[j,k]) 
      Node = makeNode(i, j) 
      insertNode(T, node, minimum) 
  Output: T a hierarchical structure 

 

where 
mergeRows joins the content of rows i and j 
mergeColumns joins the content of columns i and j 
node associates i and j 
insertNode adds a new node in T 
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Pseudocode 1: Clustering procedure to assess the proficiency of the USM as a fitness function. Distances between all possible pair of 
objects belonging to a set of spacio-temporal behaviour patterns is stored in a matrix subsequently used in a clustering calculator. 
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2.5 Models and Data Sets 
Here, we describe the CA systems in detail, and the data sets we used to demonstrate our methodology. 
 

2.5.1 The Models 
The CA continuous model is a general dynamic system for the study of complex behaviours such as boiling a liquid. It 
consists of a discrete time-space representation whose cells take infinite continuous values, but limited by the 
precision of the computer. For this system, two variables were considered for generation of the spacio-temporal 
behaviour: PRECISION-LEVEL which gives the precision of the state values, ranging from 1 to 16 decimal places and 
ADD-CONSTANT which is a constant used in the calculation of each cell’s value.   
The Turbulence model is a system designed for understanding how a transition from order to disorder takes place 
when fluids flow through pipes. Subject to the value of the cells around it, a cell in the lattice maps to either a laminar 
or a turbulent behaviour. This model also consists of two variables: COUPLING-STRENGTH which ranges 
continuously from 0 to 1 and determines the extent to which cells influence their neighbours and ROUGHNESS which 
ranges from 0 to 0.025 and controls the friction acting on the modelled fluid.   
Finally, the Gas Lattice model is a complex system modelling how circular propagation of particles takes place. Each 
cell of the underlying space hosts a number of particles which are subject to collision and propagation as governed by 
the rules of the automaton model. The variables controlling the system are DENSITY which controls the number of 
particles per cell and RADIUS which defines the size of the initial circular wave.  
The Meta-automaton is a one-dimensional binary cellular automaton composed of a toroidal square lattice of 100 rows 
by 100 columns where each cell is associated with one of the so-called “256 elementary rules” defined in chapter 3 of 
[10]. Each rule is encoded with a binary array of length 8 where each bit is associated with a possible configuration 
given by the state of the cell containing the rule and the state of its two immediate surrounding cells. During runtime, 
the state of the first row of cells is randomly initialized with either 0 or 1. After that, at every timestep t each cell 
executes its rule considering its internal state plus the state of its two adjacent cells, and changes the state of the cell at 
timestep t+1 according to the related value to that configuration. An example of the elementary rule 145 is shown in 
Figure 6. 

 
 

 
 

Figure 6: Illustration of the elementary rule 145. Each possible configuration of three cells is associated with an output 
state used as the new state for the next timestep. 

 
The Meta-automaton is a particular instance of the so called non-uniform automaton [29]. In our case, the Meta-
automaton also allows the user to partition the system’s spatial and temporal dynamics using the variables K-TIMES 
and T-LIMIT. That is, groups of k-consecutive cells can be associated to the same rule and re-assignation of rules is 
allowed to take place every t timesteps. 
 

2.5.2 Data Sets 
For each of the four CA systems described above, we compiled a data set comprising a number of groups of spacio-
temporal patterns.  For a given model, all the parameters were fixed except one and a number of different groups of 
images were produced such that the variable parameter was altered for each group, and all the patterns in a given 
group were generated using the same parameters.  The notation used to identify a particular spacio-temporal pattern in 
the paper is of the form xyz_pQ where xyz refers to the model itself, p to the group and Q to the pattern within that 
group.  For example, turb_e5 refers to the fifth image in group e (i.e. the group generated using parameter set e) using 
the Turbulence model. Table 1 lists all the models, the number of data sets for each model, their parameters and 
associated reference to the NetLogo implementation. 
 

Model Number of Groups Number of Images NetLogo Library Parameters 

CA continuous 11 5 per group CA Continuous 
PRECISION-LEVEL  
ADD-CONSTANT 

Gas Lattice 12 5 per group Gas Lattice Automaton 
COUPLING-STRENGTH 
ROUGHNESS 

Turbulence 10 5 per group Turbulence 
DENSITY 

RADIUS 

Meta-automaton 3 10, 9 and 4   
K-TIMES 
T-LIMIT 

 
Table 1: Data set names, number of obtained groups per data set, number of images produced per group, name of the NetLogo 
library, and name of the parameters used for the generation of the spacio-temporal patterns. 
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3. EXPERIMENTS AND RESULTS 
 
This section describes the analysis and experiments performed using the methodology outlined above. The first part 
presents an analysis of the USM as a fitness function through the Fitness Distance Correlation method. Then, we 
present the results of clustering the spatio-temporal images using the USM. Finally, the results of the GA applied to a 
set of ten target spatio-temporal behaviour patterns will be described. 
 

3.1 Fitness distance correlation 
For each group of patterns obtained from the CA Continuous, Turbulence and Gas Lattice models, each image in turn 
was considered as a target designoid while the remaining images of the group were compared to it using the USM. 
The resulting plots and correlation coefficients for some of the groups are shown in Figure 7, with further results 
available at http://www.cs.nott.ac.uk/~gzt/edbcs.  Overall, the correlation coefficients for the three 
systems range from 0.2140 to 0.5342, showing that the USM has a relatively high correlation with the genotype of the 
spacio-temporal behaviour pattern. However, some scatter plots indicate that the USM may only be effective in certain 
areas of the search space. For instance, we found that plots of the Turbulence system suggest that the USM will be 
effective only for target designoids with coupling-strength values between 0.400 and 0.800.  In the second experiment, 
we considered all the patterns in the data set as a single group. As before, each image, in turn, was considered as a 
target designoid and the remaining images compared to this target. In these results, some correlation coefficients were 
around zero (and thus present an inconclusive result) from −0.07 to 0.14, with certain structures appearing in the 
scatter plots showing no relationship between fitness and distance. However, other coefficients range from −0.2018 to 

−0.2579 and from 0.1642 to 0.6695 with scatter plots suggesting that the problem is suitable for optimisation by an 
evolutionary algorithm.  
 
Consequently, we can conclude from these results, that FDC is not always a completely reliable and clear indication of 
a fitness function’s suitability, especially when the geneotype – phenotype mapping is as complex as it is in these 
systems. 
 

3.2 Clustering 
The CA Continuous, Turbulence and Gas Lattice data sets were run four times using the algorithm outlined in 
pseudocode 1.  Clustering the eleven groups of spacio-temporal patterns for the CA continuous model generated the 
expected eleven clusters, corresponding with the eleven groups of spacio-temporal patterns.  The logarithmic cluster 
tree for this model can be found at Figure 8.  For Turbulence behaviour patterns, a similar result was achieved.  In this 
case, there was one outlier pattern, although its location is close to the family group to which it belongs.  This can be 
seen in Figure 9.  Full cluster trees, as well as further supporting material for this research can be found in the website 
referenced in subsection 3.1. 
 
Another positive result was obtained with Gas Lattice patterns - eleven groups were created. As a final experiment, the 
three data sets were processed together.  As expected, the characteristics of the three different collections were 
detected and hence different clusters were created for each group of our data set. Three different logical partitions 
locating the Turbulence model objects in the top, the CA Continuous in the middle and the Gas Lattice model 
instances at the bottom were easily identifiable (see Figure 9).  
 
Thus, we conclude that using the USM as part of the clustering process of complex system patterns was successful. It 
captured not only the change of behaviour that different values of a parameter produce in a complex system but also 
the dissimilarities between different spacio-temporal behaviour patterns. 
 
 
As a general conclusion, we can state that the FDC plus clustering analysis presented in subsection 3.1 and 3.2 
indicate that the use of USM – with both the chosen representation and genotype to phenotype mapping – are 
amenable for the evolutionary design of complex systems such as CAs. However, the FDC analysis and scatter plots 
also reveal that some of the target spatio-temporal patterns might be more difficult to evolve than others. So we expect 
that the evolutionary algorithm will, in some cases, find it difficult to evolve suitable patterns. In the next section we 
perform evolutionary experiments to test this methodology. 
 
 
 
 



Figure 7: Graphics of the resultant scatter plots and correlation coefficients for the group e in the Gas Lattice model and group f in the 
Turbulence model showing that the USM value has a relatively high correlation with the genotype of the spacio-temporal behaviour 
pattern. 



 
 
 
 
 
 
 
 
 

Figure 8: Illustration of the logarithmic cluster tree for patterns belonging to the CA continuous model. Clustering the fifty five images 
of patterns for the CA continuous model have generated the expected clusters, corresponding with the eleven groups of spacio-
temporal patterns. 
 



Figure 9: Illustration of the logarithmic cluster tree for patterns belonging to the Turbulence, CA Continuous and Gas Lattice models. 
The characteristics of the three different collections were detected giving three different logical partitions locating the Turbulence 

model objects in the top, the CA Continuous in the middle and the Gas Lattice model instances at the bottom. 



3.3 Genetic algorithm 
Here we present the results of the GA experiments using the Turbulence model as a first instance and the Meta-
automaton model as a second test case.  These two models are particularly well-suited to evolutionary design as the 
resultant pattern captures the entire spacio-temporal behaviour of the system, i.e. each subsequent row of the image 
represents the system behaviour at the next time step.  This is not the case for the Gas Lattice model, where each time 
step is associated with an entire image, which would make similarity calculations prohibitively compute- and time-
intensive.  The Turbulence model was run in preference to the CA continuous model as it is a more complex, and 
therefore more interesting model.   
 

The Turbulence Model 
For this experiment, the Turbulence model was initialized with the parameter initial turbulence ranging from 0 to 100, 
coupling strength ranging from 0 to 1 and roughness from 0 to 0.025. All three parameters are free to take any value in 
their range, each to an accuracy of 64 bits. The generation of the spacio-temporal behaviour patterns from these 
parameters is automated through a simple wrapper using NetLogo’s Java API [7]. 
 
We ran the GA five times (capped at 100 iterations) on two groups (e and f) of Turbulence patterns which each 
comprise five target images. As explained in section 2.5.2, each target in a given group was generated using the same 
parameters, but as the Turbulence model is stochastic, each spatio-temporal pattern generated is somewhat different.  
Table 2 shows the values for the most successful of the five runs for each target image in each group.  
 
Given the three parameters for the Turbulence model, initial turbulence i, coupling strength c, and roughness r, for a 
given spacio-temporal behaviour pattern,  F = {iF, cF, rF} and a given target, T = {iT ,cT, rT}, we define the error for 

each gene, e(g) = 
T

FT

g

ggabs )( −

 and the average error for a given individual, E(F) = 
()(FFFceie+
 . 

Visual inspection of Figure 10 shows that for groups e and f, the USM values below 0.96 show that the resultant 
images are similar to the target in terms of information distance, and there are certain visual features which can be 
picked out; both resultant images share the targets’ density of light pixels, with a number of dark triangles dispersed 
throughout the image and the larger triangles at the top of Te5 have been succesfully represented in the Fe5. 
 
Looking at Table 2, it is evident that the GA has mixed success in approximating the actual target parameters. The 
error margins range from a most satisfactory 4.3% (cf3) to a widely inaccurate 1277% (rf2). It is interesting to note that 
the worst errors are all for parameter r (roughness). This suggests that it may be the case that r is the least influential in 
the generation of the images, and indeed a brief experimentation with the Turbulence program reveals that this is 
indeed the case, at least when combined with these values of i (50.5) and c (0.5). It appears that when i, the initial 
turbulence, is high, as in this case, a change in r makes little difference, but when i is low, r is far more influential.  
Indeed, this agrees with the physical dynamics of fluid flow which the system is modelling – if the fluid is initially 
perturbed, we can intuitively surmise that the roughness of the pipe will have a lesser effect than when the fluid is 
initially undisturbed. These observations show that, although an interesting indication, exact approximation of the 
parameters is not necessarily a good indication as to the similarly (or lack thereof) of two spacio-temporal behaviours.  
This is just a further confirmation of the highly complex, non-linear and stochastic nature of the genotype – phenotype 
mapping. 
 
With images such as Te5 and Tf3, whose parameters are such that they are not visually very different, the quality of the 
results is difficult to see. However, if we use a target pattern which is more visually distinctive, results are much 
clearer: A further target, TP was defined, giving a much more distinctive image (with a low value for i, giving more 
influence to r). The results for this target (shown in Figure 10) are noticeably better - not only is the resultant image 
visually very similar to the target (as indicated by a USM value of 0.91980 - substantially lower than that of the 
previous experiments), but the parameters have all been approximated to within about 35% of the target with a 
combined error value E = 0.22569, and interestingly, r is now the most accurate approximation (e(r) = 0.05552). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

Table 2: GA results for the most successful of the five runs for each target image in groups e and f of Turbulence patterns. 

 

Target behaviour 
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Resultant designoid behaviour 

 
Fe5 
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Tp 
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Figure 10: Snapshots of the target and designoid spacio-temporal behaviour patterns with annotations showing particularly well-

produced features for the Turbulence model. 

Target iF cF rF iT cT rT usm(F,T) e(i) e(c) e(r) E 

e1 62.90586 0.52350 0.00074 50.50000 0.50000 0.00100 0.95657 0.24566 0.04699 0.25948 0.18405 
e2 69.47874 0.48819 0.00094 50.50000 0.50000 0.00100 0.95738 0.37582 0.02361 0.06288 0.15410 
e3 51.97374 0.51587 0.01130 50.50000 0.50000 0.00100 0.95725 0.02918 0.03173 10.29811 3.45301 
e4 71.83373 0.46997 0.00080 50.50000 0.50000 0.00100 0.95817 0.42245 0.06005 0.19738 0.22663 
e5 43.03929 0.51941 0.00838 50.50000 0.50000 0.00100 0.95653 0.14774 0.03883 7.38250 2.52302 
f1 55.92625 0.56941 0.00791 50.50000 0.60000 0.00100 0.95785 0.10745 0.05098 6.91322 2.35722 
f2 65.98295 0.58869 0.01377 50.50000 0.60000 0.00100 0.95657 0.30659 0.01885 12.77470 4.36672 
f3 68.37877 0.60256 0.01140 50.50000 0.60000 0.00100 0.95608 0.35404 0.00426 10.40107 3.58646 
f4 53.86632 0.60256 0.00673 50.50000 0.60000 0.00100 0.95915 0.06666 0.00426 5.73318 1.93470 
f5 48.21686 0.60334 0.00549 50.50000 0.60000 0.00100 0.95781 0.04521 0.00556 4.48623 1.51234 
p 8.85724 0.54241 0.00356 6.98285 0.83854 0.00377 0.91980 0.26843 0.35314 0.05552 0.22569 



The Meta-automaton Model 
Three groups of target patterns were defined using the meta-automaton system. In the first set, all the cells have been 
initialized with the same rule without considering dynamic rule reassignment. The target patterns produced by the 
automaton are shown in Figure 11. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the second group of target patterns, the spacial dynamics were divided in two. That is, given two random rules 
chosen from the pool of 256 rules, the first consecutive 50 cells were associated with one rule and the remaining 50 
with the other. As in the previous data set, there is no reassignment of rules during runtime. The obtained patterns are 
shown in Figure 12. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to provide the GA with an even more challenging data set, the spacial dynamics were divided into four for the 
last group of target patterns. In this case, cells were divided in groups of 25 consecutive cells and a randomly selected 
rule le from the pool of 256 was associated to every cell belonging to the same group. The obtained patterns for this 
data set are shown in Figure 13. 
 
 
 
 
 
 
 

Figure 11: Target patterns produced by the Meta-automaton using the same rule in all cells. (a) meta_a1, (b) meta_a2, (c) 
meta_a3, (d) meta_a4, (e) meta_a5, (f) meta_a6, (g) meta_a7, (h) meta_a8, (i) meta_a9, (j) meta_a10. 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) (j) 

Figure 13: Target patterns produced by the Meta-automaton changing dynamics over space with four different rules: (a) meta_c1, 
(b) meta_c2, (c) meta_c3. 

 

(a) (b) (c) 

(a) (b) (c) (d) (e) 

(f) (g) (h) (i) 

Figure 12: Target patterns produced by the Meta-automaton changing dynamics over space with two different rules: (a) meta_b1, 
(b) meta_b2, (c) meta_b3, (d) meta_b4, (e) meta_b5, (f) meta_b6, (g) meta_b7, (h) meta_b8,  (i) meta_b9. 



We ran the evolutionary algorithm on the meta-automaton once per target pattern, each individual was evaluated 10 
times per generation and the mean USM value was taken as fitness.  The results for the first, second and third 
experiments are shown in Table 3, Table 4 and Table 5 respectively. The Patterns column identifies the target pattern, 
OR refers to the set of original rules used to generate the target pattern and ER shows the rules evolved by the GA. The 
USM column contains the fitness values of the best individuals whilst the ST column (similarity type) classifies the 
resemblance of the evolved pattern to the target image. 
 
As shown in Table 3, five out of ten experiments have evolved the expected rule for the first data set. However, if we 
further analyse the remaining results we see that in most of the cases where the expected rule was not achieved, the 
evolved rule often results either in a mirror or otherwise similar image. For instance, as Figure 14 (a, b) show the 
designoid target patterns found for meta_a2 and meta_a4 are mirrors. Moreover, as depicted in Figure 15 (a), it is 
clear that the diagonal black strips appearing in meta_a9 were well captured by the USM. We can argue, therefore, 
that certain similarities between the target pattern and the designoid were found in most cases. Contrarily, in the case 
of meta_a6 and meta_a7, no similarities at all appear despite USM values close to 1.  

 
 
 
 

Patterns OR ER USM ST 

meta_c1 [49 34 84 147] [73 141 188 230] 0.907788419 Captured 

meta_c2 [61 251 23 165] [38 140 105 234] 0.917228868 Captured 

meta_c3 [41 183 195 110] [61 120 146 196] 0.940763235 Captured 

 
 
In the case of the second data set, equivalent rules, mirrors and close similarities are also found. As shown in table 4, 
none of the results have reached exactly the correct rules. However, five results out of ten are acceptable - three 
designoids end up producing mirror images and two reproduce important features appearing in the target patterns. In 
fact, Figure 14 (c, d, e) show that a target rule plus an equivalent rule were found in the case of the mirrored meta_b1, 
meta_b2 and meta_b7. On the other hand, Figure 15 (b, c) show that in meta_b8 the lightest areas are shown as the 
darkest in the left hand side of the image whilst for meta_b9 the USM was able to capture the small dark triangles at 
the right hand side of the image. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Patterns OR ER USM ST 

meta_b1 [177 132] [164 177] 0.818578016 Mirror 

meta_b2 [68 122] [122 100] 0.885830497 Mirror 

meta_b3 [65 135] [215 146] 0.948304844 None 

meta_b4 [5 57] [115 192] 0.870995252 None 

meta_b5 [25 60] [26 125] 0.96081944 None 

meta_b6 [60 102] [183 20] 0.964207074 None 

meta_b7 [147 2] [130 147] 0.905361748 Mirror 

meta_b8 [129 46] [126 16] 0.958283213 Captured 

meta_b9 [167 180] [91 167] 0.993560531 Captured 

     

Patterns OR ER USM ST 

meta_a1 [122] [122] 0.993958124 Correct 

meta_a2 [148] [6] 1.042744644 Mirror 

meta_a3 [181] [181] 0.984504855 Correct 

meta_a4 [120] [106] 0.983119009 Mirror 

meta_a5 [97] [97] 0.985429776 Correct 

meta_a6 [135] [195] 0.976343879 None 

meta_a7 [229] [195] 1.048922986 None 

meta_a8 [131] [131] 1.00218998 Correct 

meta_a9 [154] [169] 0.987069886 Captured 

meta_a10 [133] [133] 0.950053315 Correct 

Table 3: Genetic algorithm results for the Meta-automaton 
patterns using one rule. 

Table 4: Genetic algorithm results for the Meta-automaton 
patterns using two rules. 

Figure 14: Mirrored designoid patterns found for Meta-automata patterns using one and two rules:  (a) meta_a2 and its mirror, (b) 
meta_a4 and its mirror, (c) meta_b1 and its mirror, (d) meta_b2 and its mirror, (e) meta_b7 and its mirror. 

(a) (b) 

(d) 

(c) 

(e) 

Table 5: Genetic algorithm results for the Meta-automaton patterns using four rules. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the case of the third data set, mirrors were more difficult to produce and, as Table 5 reveals, none of the results have 
reached the correct rules. However, a visual analysis of the obtained designoids supports the idea that some relevant 
features were captured from the target patterns. For example, in Figure 16 (a) it is interesting to note that two rules for 
producing the inverted v-shape drawing in the middle were discovered (but with inverted colouring and in a different 
position). Moreover, in Figure 16 (b) an equivalent rule for the second strip was discovered at the fourth position in 
the designoid and the chaotic behaviour of the last strip is represented in the third position of the designoid. Finally, in 
Figure 16 (c) a similar effect of colours inversion occurred between the second and third strip of the target pattern and 
designoid respectively. 
 
Even in those results where the exact rules have not been found, the nature of the rules used in the Meta-automaton 
mean that a number of different rules can have very similar spacio-temporal behaviour.  Hence, as seen in the results 
for the Turbulence models, a significantly different genotype can, in fact, result in a similar phenotype – yet another 
illustration of the complex, non-linear nature of the genotype-phenotype-fitness mapping in these systems).  It is 
evident from these experiments that, although the USM’s information distance-based metric works well in many 
cases, it has a number of shortcomings.  As illustrated by the results above, one of the most obvious is its blindness to 
negative images.  (Intuitively, using the description of conditional Kolmogorov complexity described above in section 
2.2, we can see how the amount of information needed to produce, for example, a segment of black pixels, given a 
segment of white pixels is equal to that needed to produce a segment of white pixels given a segment of black pixels).  
Similarly, the USM does not differentiate between mirror images – the actual information content of a mirrored image 
is identical to its unmirrored counterpart.  It is a logical progression, therefore, to extend the fitness function using an 
additional measurement such as hamming distance or an entropy analysis.  Using a measure of Hamming distance 
involves calculating the colour difference between target and designoid on a pixel-by-pixel basis.  Alternatively, an 
image's entropy is an estimate of the distance between two images based on calculating the frequency of the 
appearance of different sub-blocks or fragments of the images.  In either case, the fitness function would need to be 
extended to either a multi-objective setting or a single weighted function. 

 
 
4. DISCUSSION AND FUTURE WORK 
 
In this paper we have presented a methodology to control the spatio-temporal evolution of a CA in order to obtain a 
‘designoid’ target spatio-temporal behaviour by combining clustering, fitness distance correlation analysis and an 
evolutionary algorithm. 
 
We can conclude that the clustering and fitness distance correlation together are good indicators of the quality of the 
encoding, i.e. genotype, its mapping to phenotype and the fitness function evaluation of phenotypes. The application 
of this methodology before starting long and expensive evolutionary runs should be considered.   
 
In the cellular automata examples we presented, the methodology gave some support for the use of a compression-
based information distance metric such as the USM as a fitness.  However, from the analysis of the FDC and 

(a) (b) (c) 

Figure 15: Captured similarities for the Meta-automata patterns using one and two rules: (a) meta_a9 and its similar designoid, (b) 
meta_b8 and its similar designoid, (c) meta_b9 and its similar designoid. 

Figure 16: Captured similarities for the Meta-automata patterns using four rules: (a) meta_c1 and its similar designoid, (b) meta_c2 
and its similar designoid, (c) meta_c3 and its similar designoid. 

(a) (b) (c) 



clustering, one could expect (and this was indeed confirmed by the evolutionary runs) that there would be cases where 
the USM cannot properly inform the evolutionary process. Moreover, an introspective analysis of the cases where the 
FDC reported no or low correlation and where the USM induced bad clustering can shed light of ways on improving 
the fitness function used. 
 
There are a vast number of systems that can be modelled by cellular automata and we expect that the methodology 
described here could be helpful in some of these cases.   
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