
Vol.:(0123456789)1 3

Evolutionary Intelligence (2021) 14:1915–1930
https://doi.org/10.1007/s12065-020-00473-x

RESEARCH PAPER

Hybrid particle swarm optimization with particle elimination
for the high school timetabling problem

Joo Siang Tan1 · Say Leng Goh1 · Suaini Sura1 · Graham Kendall2,3 · Nasser R. Sabar4

Received: 13 March 2020 / Revised: 2 July 2020 / Accepted: 6 August 2020 / Published online: 28 August 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
In this paper, a PSO-based algorithm that hybridized Particle Swarm Optimization (PSO) and Hill Climbing (HC) is applied
to high school timetabling problem. This hybrid has two features, a novel solution transformation and particle elimination.
The proposed methodologies are tested on the XHSTT-2014 dataset (which is relatively new for the school timetabling
problem) plus other additional instances. The experimental results show that the proposed algorithm is effective in solv-
ing small and medium instances compared to standalone HC and better than the conventional PSO for most instances. In a
comparison to the state of the art methods, it achieved the lowest mean of soft constraint violations for 7 instances and the
lowest mean of hard constraint violations for 1 instance.

Keywords Particle swarm optimization · Hill climbing · Hybridisation · School timetabling

1 Introduction

Timetable construction is a Non-Polynomial (NP) complete
decision problem [16]. It belongs to both NP and the NP-
hard complexity classes. With the exponential increase of
decision problem size, it is impossible for a deterministic
algorithm to find an optimal solution under polynomial
time, as most scientists believed P ≠ NP [2]. Generally, four

common parameters are used in educational timetabling
problem: times, resources, meetings and constraints. The
objective is to assign times and resources to the meetings
by minimising the constraints violations [22].

There are many types of timetabling problems, e.g. edu-
cational [11–14], sports [27], transportation [24], nurse ros-
tering [4] etc. High school timetabling is a variant of the
educational timetabling problem. High school timetabling
problem involves assigning time and resources (teachers,
students, classes and rooms) to a collection of events while
respecting certain constraints. Some of the usual constraints
are; two subjects cannot occur simultaneously in the same
room, a teacher cannot be assigned to two subjects at the
same time, no idle time for students and workload limit
for teachers. In practice, it is important to have an efficient
timetable to prevent teachers from being overworked, as it
could lead to dissatisfaction among teachers and affect their
performance in teaching. The teacher is a dominant factor
affecting students’ learning effectiveness in class, thus influ-
encing their achievement [23].

In this work, we introduce a novel solution transformation
in the mutation and crossover operations of Particle Swarm
Optimization (PSO). Next, we propose a hybrid of PSO and
Hill Climbing (HC). The hybridisation intends to allow a
better exploration and exploitation in the search space in
finding an optimum solution. We further improve the algo-
rithm by adding a component called Particle Elimination.

 * Say Leng Goh
 slgoh@ums.edu.my

 Joo Siang Tan
 jsiang@live.com

 Suaini Sura
 su_sura@ums.edu.my

 Graham Kendall
 graham.kendall@nottingham.edu.my

 Nasser R. Sabar
 N.Sabar@latrobe.edu.au

1 Optimization Research Group, Faculty of Computing
and Informatics, Universiti Malaysia Sabah, Sabah, Malaysia

2 The University of Nottingham Malaysia Campus, Jalan
Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

3 The University of Nottingham, University Park,
Nottingham NG7 2RD, UK

4 Department of Computer Science and Information
Technology, La Trobe University, Melbourne, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s12065-020-00473-x&domain=pdf

1916 Evolutionary Intelligence (2021) 14:1915–1930

1 3

PSO was employed in high school timetabling problems [25,
26], however as far as we are aware, it has never been applied
to the XHSTT-2014 dataset. This dataset is complex and
challenging with many constraints thus not many researchers
are working on it. This motivated us to use the dataset as a
testbed to test the performance of our proposed algorithm.

This paper is organized as follows. Section 2 describes
high school timetabling problems and XHSTT-2014 dataset.
In Sect. 3, related work is reviewed. The proposed methodol-
ogy is described in Sect. 4. The experimental result is shown
in Sect. 5. Discussion is presented in Sect. 6. Finally, the
conclusion and future work are given in Sect. 7.

2 High school timetabling problem

The school timetabling problem differs for each country in
terms of constraints and objectives, which possibly due to
different cultural settings and education systems [20].

2.1 Extensible mark‑up language for high school
timetabling‑2014 (XHSTT‑2014) dataset

Extensible Mark-up Language for High School Timeta-
bling (XHSTT) is an XML based format used to define the
instances in XHSTT-2014 and International Timetabling
Competition 2011 (ITC2011) datasets [21]. The XML for-
mat is popular and widely used by operation research com-
munity because of the ease of use and flexibility in defining
scheduling problems. XHSTT is composed of four entities
namely times, resources, events and constraints [19].

– Times
 Times are the available time slots for events. Times can

be grouped into days, weeks and time group. Normally,
times are spread out for a week. For some instances,
times may be spread out for more than a week, where
odd and even weeks have different schedules.

– Resource
 Resources are rooms, teachers, students and classes

for assignment. Each resource has a type and belongs to
a certain group. For example, a computer lesson needs
resources such as a computer room and a computer liter-
ate teacher.

– Events
 This entity represents events to be scheduled. Each

event can be either a single lesson or a set of lessons
(which have the same starting time). It has a course/event
group, duration, preassigned time, workload and a set of
required resources. Event group and course are used to
group certain events. Event is like a capsule of resources
and time, adhering to specific constraints.

– Constraints
 The constraints are a set of specific conditions that

have to be satisfied. There is a total of 16 hard and soft
constraints [21]. The hard constraints are;

1. Assign Time Constraint. Assign a time to an event.
2. Assign Resource Constraint. Assign a resource to an

event.
3. Split Events Constraint. Split the selected event or

event groups into sub-events, within a maximum and
a minimum number of amount and duration.

4. Avoid Clashes Constraint. Schedule the selected
resources or resource groups without clashes (no
resource attends two events for the same time).

5. Limit Workload Constraint. Limit the workload of
the selected resources or resource groups.

 The constraints that can be hard or soft (depending on
the specific instance) are;

 1. Prefer Times Constraint. Assign a time from a
given set of time to a selected event.

 2. Prefer Resources Constraint. Assign a resource
from a given set of resource to a selected event
with specific role.

 3. Link Events Constraint. Set all events from the
selected event groups to a same starting time.

 4. Spread Events Constraint. Schedule the selected
event groups to a selected time group between a
minimum and a maximum number of times.

 5. Avoid Split Assignments Constraint. Schedule the
selected event groups with specific role to the
same resource.

 6. Distribute Split Events Constraint. Split the
selected event or event groups into sub-events
with a specific duration, within a maximum and
a minimum number of sub-events.

 7. Order Events Constraint. Assign times in chrono-
logical order to selected events.

 8. Avoid Unavailable Times Constraint. Avoid the
selected resources or resource groups are busy in
the selected times.

 9. Limit Idle Times Constraint. Each selected
resources or resource groups should have a lim-
ited number of idle times in a time groups.

 10. Limit Busy Times Constraint. Each selected
resources or resource groups should have a lim-
ited number of occupied times in a time groups.

 11. Cluster Busy Times Constraint. Each selected re-
sources or resource groups should have a limited
number of time groups with an assigned time.

1917Evolutionary Intelligence (2021) 14:1915–1930

1 3

There are 25 instances in the XHSTT-2014 dataset. We also
work on 9 additional instances. Note that some instances
in the XHSTT-2014 dataset can also be found in the
ITC2011 dataset. There are 3 rounds in ITC2011. Partici-
pants in round 2 have to run their program within the time
limit determined by running a benchmark program on their
machine. Meanwhile, there are no time or technology restric-
tions for round 1 and 3. The features of the instances are
presented in Table 1 (sorted by the number of events). We
categorized the instances with less than 250 events as small
(S), instances with the number of events ranging from 250 to
900 as medium (M) and instances with more than 900 events
as large (L). The dash (–) symbol indicates that the feature
is not relevant to the instance.

3 Related work

Vinay Kumar el at. [18] proposed an Interactive Self-
Improvement based Adaptive PSO (ISI-APSO) in design-
ing the Very-Large-Scale Integration (VLSI) circuit for the
floor planning problem. An adaptive weight was updated in
each iteration to adjust the exploitation and exploration in
the multi-dimensional search space until a desired optimal
solution is found. Their method achieved better performance
than Genetic Algorithm (GA), Simulated Annealing (SA),
traditional PSO, Ant Colony Optimization and Differential
Evolution (DE) in terms of exploring efficiency and speed
of convergence.

Table 1 Features of the instances in the XHSTT dataset

Instance Times Teachers Rooms Classes Students Events Category Dataset Round in ITC2011

BrazilInstance1 25 8 – 3 – 21 S Others 1
ItalyInstance1 36 13 – 3 – 42 S Others 1
BR-SA-00 25 14 – 6 – 63 S XHSTT-2014 2 & 3
BrazilInstance3 25 16 – 8 – 69 S Others 2 & 3
BrazilInstance5 25 31 – 12 – 119 S Others 1
BR-SM-00 25 23 – 12 – 127 S XHSTT-2014 2 & 3
BR-SN-00 25 30 – 14 – 140 S XHSTT-2014 2 & 3
FI-WP-06 35 18 13 10 – 172 S XHSTT-2014 1
GR-P3-10 35 29 – 84 – 178 S XHSTT-2014 1
ZA-LW-09 148 19 2 16 – 185 S XHSTT-2014 1
BrazilInstance7 25 33 – 20 – 205 S Others 1
WesternGreeceUniversity3 35 19 – 6 – 210 S Others 2 & 3
ES-SS-08 35 66 4 21 – 225 S XHSTT-2014 2 & 3
GR-PA-08 35 19 – 12 – 262 M XHSTT-2014 2 & 3
ZA-WD-09 42 40 – 30 – 278 M XHSTT-2014 2 & 3
FI-MP-06 35 25 25 14 – 280 M XHSTT-2014 1
AU-SA-96 60 43 36 20 – 296 M XHSTT-2014 1
AU-TE-99 30 37 26 13 – 308 M XHSTT-2014 1
GR-H1-97 35 29 – 66 – 372 M XHSTT-2014 –
FI-PB-98 40 46 34 31 – 387 M XHSTT-2014 1
AU-BG-98 40 56 45 30 – 387 M XHSTT-2014 1
FinlandElementarySchool 35 22 21 291 – 445 M Others 2 & 3
FinlandSecondarySchool2 40 22 21 36 – 469 M Others 2 & 3
US-WS-09 100 134 108 – – 628 M XHSTT-2014 –
IT-I4-96 36 61 – 38 – 748 M XHSTT-2014 2 & 3
DK-VG-09 60 46 53 – 163 918 L XHSTT-2014 –
DK-FG-12 50 90 69 – 279 1077 L XHSTT-2014 –
NL-KP-09 38 93 53 48 - 1148 L XHSTT-2014 2 & 3
NL-KP-03 38 75 41 18 453 1156 L XHSTT-2014 1, 2 & 3
UK-SP-06 25 68 67 67 – 1227 L XHSTT-2014 1
DK-HG-12 50 100 71 – 523 1235 L XHSTT-2014 –
NL-KP-05 37 78 42 26 498 1235 L XHSTT-2014 1, 2 & 3
KS-PR-11 62 101 – 63 – 1912 L XHSTT-2014 2 & 3
GEPRO 44 132 80 44 846 2675 L Others 1

1918 Evolutionary Intelligence (2021) 14:1915–1930

1 3

Feng el at. [6] proposed a multi-group particle swarm
optimization algorithm (PSOEL) to solve the motion plan-
ning of redundant robotic manipulators. PSOEL consists of
one elite group and several child groups. The particles of
the elite group were made from the best performing parti-
cles of the child groups. Both groups evolved separately in
each iteration. An interaction mechanism will be triggered
when the elite group fell into a local optimum or was infe-
rior to child groups. The bad particles from the elite group
were replaced by the best particles from the child groups to
allow the PSOEL to escape from the local optimum. In their
simulation results, PSOEL was superior to the DE, GA and
traditional PSO.

Tassopoulos and Beligiannis [26] proposed PSO algo-
rithm in constructing Greek high school timetables. In the
beginning, 150 active particles with different fitness value
were initialized. Every particle in each generation was
evolved with 3 procedures (swap with probability, change
randomly with personal best and change randomly with
global best) to produce a new solution. If the fitness value of
a particle exceeded its tolerance value, the particle was inac-
tivated in the evolution procedure until the number of the
active particle was equal to 30. The purpose was to explore
wider searching space and keep minimum robust particles.
After 10,000 iterations, the best solution was further pro-
cessed by a local search procedure to minimize the teach-
ers’ idle periods. This method outperformed GA, Constraint
Programming and Evolutionary Algorithm (EA).

Tassopoulos and Beligiannis [25] improved the PSO by
hybridizing it with a local search to solve high school time-
tabling problems in Greece [5]. 50 particles were initialized
at random position in a two-dimensional matrix, and each
particle went through 3 procedures (swap function, insertion
from personal best and insertion from global best) to pro-
duce a feasible solution until the termination criteria were
met. After PSO terminated, a local search procedure was
applied to further improve the solution by minimising the
soft constraint violations. Their implementation achieved
better result compared to EA and SA.

3.1 Approaches specific to XHSTT instances

The winning methodology in ITC2011 was a hybrid
metaheuristic that combined SA and Iterated Local Search
(ILS) proposed by Fonseca et al. [10]. At first, an initial solu-
tion was generated by Kingston High School Timetabling
Engine (KHE) [15] and improved by SA with reheating.
Then ILS was applied to further improve the solution. There
were six neighbourhood structures used by SA during the
search: Event Swap (ES), Resource Swap (RS), Event Move
(EM), Resource Move (RM), Event Block Swap (EBS) and

Kempe Chain (KC). Meanwhile Reassign Resource Times
(RRT) and KC were used in the perturbation phase of ILS.
The method was successful because of its diversity of local
search moves.

Post-competition, [9] continued to work on the ITC2011
dataset. They proposed a hybrid SA with stagnation-free
Late Acceptance Hill Climbing (sf-LAHC). Late Accept-
ance Hill Climbing was adapted from the HC method with
the acceptance criteria of accepting the worse solution.
The proposed sf-LAHC can reheat the system during the
stagnation condition, by retrieving the vector of costs from
the last improvement occurred. Overall, the search was per-
formed by SA after an initial solution was generated by the
KHE solver. sf-LAHC was employed further to improve the
solution. Their hybrid algorithm outperformed the winner
method by producing the best-known solution for 14 out of
18 instances.

Kristiansen el at. [17] proposed an Integer Programming
(IP) formulation to the XHSTT-2013 dataset. The method
was based on mixed-integer linear IP (MIP) model. Their
approach consisted of two steps. At first, the MIP model
was built using hard constraints only. It minimised hard
constraint violations until a time limit was reached or a fea-
sible solution was found. If a feasible solution was found,
the second step will be performed. The solution was fur-
ther improved in the remaining time by adding all the soft
constraints into the model. In their computational result, 2
optimal solutions were found and they also proved optimal-
ity for 4 other solutions out of 28 instances.

Fonseca et al. [7] further improved Kristiansen’s IP model
[17] by employing new cuts and reformulations. The frac-
tional points were reduced by improving a few valid ine-
qualities and an extended flow-based formulation from the
original formulation. Also, the unnecessary variables and
constraints were removed in the pre-processing routines.
A multi-commodity flow reformulation was used to drop
several non-essential constraints to reduce the size of the
constraints in an alternative formulation. Their proposed
method reduced 32% of the average gap from the IP model
and improved 11 best-known solutions out of 12 instances.
It is the current state-of-the-art for the problem instances in
ITC2011.

4 Proposed methodology

We employ a one-stage approach for the following meth-
odologies where the hard and soft constraint violations are
minimized simultaneously at the same time instead of min-
imizing each constraint violations exclusively in multiple
stages. We hope the search process can move freely in the
search space without restriction due to the constraints.

1919Evolutionary Intelligence (2021) 14:1915–1930

1 3

4.1 Particle swarm optimization (PSO)

PSO is an evolutionary algorithm that is inspired by a real
swarm in solving combinatorial problems [3]. Generally,
each particle in PSO operates in two equations in every
iteration [5]. In Eq. 1, the particle updates by adjusting the
velocity or step size. In Eq. 2, the particle moves by adding
the velocity to its previous position.

In the equations: t is the current iteration, i is the target par-
ticle’s index, xi is the particle’s position, vi is the velocity,
x∗
i
 is the best position found by the particle, xg is the global

best position obtained by any particles, c is the acceleration
constant (c > 0) while r1 and r2 are uniform random numbers
within [0, 1].

The basic steps in PSO are:

1. Initialize a population of particles with position and
velocity by randomly distributing them in the search
space.

(1)vi(t + 1) = vi(t) + cr1[x
∗

i
(t) − xi(t)] + cr2[x

g(t) − xi(t)]

(2)xi(t + 1) = xi(t) + vi(t + 1), i = 1,… ,Np

2. Evaluate fitness value of each particle and assign its cur-
rent position xi(t) as local best position x∗

i
(t).

3. Find the global best position xg(t) among all particles.
4. Update the velocity of each particle using the first equa-

tion and moving it to new position according to the sec-
ond equation.

5. Calculate new fitness value of each particle.
6. Update local best position x∗

i
(t) and global best position

xg(t) considering its new fitness value.
7. Repeat steps 4–6 until the termination criteria is met.

Based on preliminary experiments, we set the number of
particles to 25 as this number allows the PSO algorithm to
perform effectively within the time limit. The PSO algorithm
is presented in Algorithm 1. Mutation and crossover opera-
tions employed here are slightly similar to the ones found
in [25, 26] where only vertical transformation is used (see
Sects. 4.3.3.1 and 4.3.3.2).

1920 Evolutionary Intelligence (2021) 14:1915–1930

1 3

4.2 Hill climbing (HC)

HC is the simplest local search heuristic that is widely
applied in combinatorial problems [1]. At any point, HC
only accepts improving moves from the neighbouring solu-
tion. It starts from a random initial solution and iteratively
moves to a local optima.

The basic steps are:

1. Initialize a current solution and calculate its fitness
value.

2. Random generate a neighbourhood structure and pro-
duce a candidate solution.

3. Calculate the fitness value of candidate solution and
compare it with the fitness value of the current solution.

4. Replace the current solution with candidate solution if
the fitness value has improved; otherwise, do nothing.

5. Repeat steps 2–4 until the termination criteria is met.

The pseudo code of HC is presented in Algorithm 2.

Table 2 Neighbourhood structures and functions

Neighbourhood structure Neighbourhood function

SO ES and RS
MO EM and RM
KO KM

The neighbourhood structures used are Swap operator
(SO), Move operator (MO) and Kempe operator (KO). Each
neighbourhood structure consists of neighbourhood func-
tions as shown in Table 2. The neighbourhood functions
(similar to the ones used by Fonseca el at. [8]) are listed
below.

– Event Swap (ES)—The times t1 and t2 from two randomly
selected events are swapped.

– Resource Swap (RS)—Resources (of the same type)
r1 and r2 assigned to two randomly selected events are
swapped. e2 are swapped.

– Event Move (EM)—A randomly selected event is moved
to an empty time.

– Resource Move (RM)—The resource r1 of a randomly
selected event is replaced by another resource r1.

– Kempe Move (KM)—The events from two randomly
selected time t1 and t2 are represented as nodes in a graph.
The nodes in conflict (sharing the same resources) in dis-
tinct times are connected by edges to produce a bipartite
graph (known as conflict graph). The connected nodes in
the distinct times are swapped.

A neighbourhood structure is selected using probabilistic
selection with probability P (SO) = 0.3, P (MO) = 0.6 and
P (KO) = 0.1. A relevant neighbourhood function is then
selected with equal probability.

4.3 Hybrid PSO with particle elimination (HPSO‑PE)

4.3.1 Initial solution

Our initial solution is built constructively. Our method
comprises of structural phase, resource assignment phase
and time assignment phase. In the structural phase, we split
each event into sub-events randomly based on split event
constraint and distributed split event constraint. If the con-
straints do not apply to the event, the event will be split
into sub-events with a duration of either 1 or 2, to allow
flexibility during the event assignment. In the resource
assignment phase, resources are randomly assigned based
on prefer resource constraint, avoid split constraint and limit
workload constraint. If an event does not require any specific
resource, a random resource is selected and assigned based
on the resource type. Lastly, in the time assignment phase,

1921Evolutionary Intelligence (2021) 14:1915–1930

1 3

we assign a time to each event randomly based on prefer
time constraint and link event constraint. If an event does
not require any specific time, any time can be assigned to the
event based on event duration. Note that, these phases do not
solve the constraints completely, however they do minimize
the cost violations. The initial solution is then mapped into
a two-dimensional matrix.

4.3.2 Particle encoding

Each particle is encoded based on two variables: resources
(teachers, students, classes, rooms) and times in a two-
dimensional matrix. We allow more than one event in each
cell of the matrix to ease the placement of events. For exam-
ple, a particle p [5][20] = {47, 33}, events 47 (x7B_Eng-
lish_1) and 33 (x7D_Maths_1) are assigned to resource 5
(Teacher05) and time 20 (Wed_1_4).

Figure 1 shows a particle in a two-dimensional matrix. A
row represents a resource and a column represents a time.
The matrix can contain up to four resource types, depending
on the instance. Resources of similar type are grouped in
rows. For example, there are 56 teachers and 300 students.
The rows from 0 to 55 represent teachers while the rows
from 56 to 355 represent students.

We use a single dimension to represent multiple resource
types to save on memory utilization. We refrain from using
one dimension to represent each resource type even though
it may ease data manipulation as its application is memory
intensive.

4.3.3 The main algorithm

The pseudo-code of the proposed HPSO-PE is presented in
Algorithm 3. Note that a particle consists of a current posi-
tion and a local best position. In lines 3–10, we append 25
particles to the set activeParticle (swarm). For each particle,
we set the current position to a random position and the local
best position to the current position. The global best posi-
tion is set as the best local best position among the particles
(lines 5–8).

In lines 12–16, we attempt to move the position of each
particle utilizing mutation, local and global crossover opera-
tors. <horizontal and vertical> position transformation is
applied in these operators. A new position is accepted only
if its fitness value is better or equal to the current position. A
detail explanation of the operators is given in Sects. 4.3.3.1
and 4.3.3.2.

In lines 17–19, we apply 1 iteration of HC (shown in
Sect. 4.2) on 300 (set based on computational experience)
particles selected randomly from the swarm. Then, we
update the local best position of each particle and the global
best position (lines 20–27).

When 20% of the time limit is exceeded, we start to elimi-
nate the worst particle (in terms of fitness value) from the
swarm until there are 5 (set based on computational experi-
ence) particles left (lines 28–37). We are trying to switch the
focus of the search from exploration to exploitation towards
the end.

Fig. 1 Particle encoding Time1 Time2 … … Timen-1 Timen

Teacher 1 event event … … event event

… … … … … … …

Teacher t event event … … event event

Student 1 event event … … event event

… … … … … … …

Student s event event … … event event

Class 1 event event … … event event

… … … … … … …

Class c event event … … event event

Room 1 event event … … event event

… … … … … … …

Room r event event … … event event

1922 Evolutionary Intelligence (2021) 14:1915–1930

1 3

Matrix A Matrix B
79 36 45 45 36 79

78 20 30 78 30 20
2 94 52 2 52 94

17 5 17 5
45 97 17 → 97 17 45

93 54 16 93 16 54
35 74 83 83 35 74

62 71 62 71
50 64 81 78 50 78 81 64

11 10 77 10 77 11

Fig. 2 Example of mutation in the matrix by column (Matrix A
mutated to produce Matrix B)

Matrix A Matrix B
79 36 45 79 36 45

78 20 30 78 20 30
2 94 52 93 54 16

17 5 17 5
45 97 17 → 45 97 17

93 54 16 2 94 52
35 74 83 35 74 83

62 71 62 71
50 64 81 78 50 64 81 78

11 10 77 11 10 77

Fig. 3 Example of mutation in the matrix by row (Matrix A mutated
to produce Matrix B)

4.3.3.1 Mutation operator The mutation operator (line 13
of the Algorithm 3) swap two rows (similar resource type)
or columns in the solution matrix to produce a different solu-
tion. As shown in Algorithm 4, there is an equal probability
for mutation by column and row. If mutation by column is

chosen, two columns are randomly selected and swapped.
An example is given in Fig. 2. Otherwise, if mutation by
row is chosen, a resource type is randomly picked, two rows
of the resource type are randomly selected and swapped. An
example is given in Fig. 3.

1923Evolutionary Intelligence (2021) 14:1915–1930

1 3

Fig. 4 Example of crossover
by column (Matrix X crosso-
ver with Matrix Y to produce
Matrix Z)

Matrix X (Current) Matrix Y (Best) Matrix Z (New)
19 23 22 1 0 79 45 0 23 22

75 74 64 36 33 84 31 75 33 64 63
93 51 2 23 16 93 2
70 79 20 6 29 70 20 19 79

15 31 42 2 73 42 → 31 42
73 63 78 32 75 73 51

6 32 46 14 6 20 93 19 6 74 32 15
20 14 78 83 70 74 19 78 14
83 0 1 45 46 15 51 83 46 1 45

33 36 29 22 63 64 36 29

Fig. 5 Example of crossover by
row (Matrix X crossover with
Matrix Y to produce Matrix Z)

Matrix X (Current) Matrix Y (Best) Matrix Z (New)
19 23 22 1 0 79 45 2 19 93 22

75 74 64 36 33 84 31 75 74 64 51
93 51 2 23 16 23 16
70 79 20 6 29 70 79

15 31 42 2 73 42 → 15 31 42
73 63 78 32 75 73 63 78

6 32 46 14 6 20 93 19 6 32 46
20 14 78 83 70 74 20 14
83 0 1 45 46 15 51 83 0 1 45

33 36 29 22 63 64 33 36 29

4.3.3.2 Crossover operator As the mutation operator, this
operator aims to produce a potential new solution matrix
with a better fitness value. There are two types of crossover
operator namely local and global crossover.

The local crossover operator (line 14 of the Algorithm 3)
replaces a column or row of events in the current solution
matrix with the matching one in the local best solution
matrix. As shown in Algorithm 5, there is an equal prob-
ability for local crossover by column and row.

If local crossover by column is chosen, in the replaceCol-
umn procedure, a column (time) in the current solution matrix
is randomly selected. All the events (except the ones that can
be found in the matching column in the local best solution
matrix) in that column are randomly distributed to other cells.
That column is then replaced with the matching column in
the local best solution matrix. An example is given in Fig. 4.

Otherwise, if local crossover by row is chosen, in the
replaceRow procedure, a resource type is randomly selected.
A row of that resource type is randomly picked. All the
events (except the ones that can be found in the matching
row in the local best solution matrix) in the row are dis-
tributed to other cells. That row (similar resource type) is
then replaced by the matching row in the local best solution
matrix. An example is given in Fig. 5.

The global crossover operator (line 15 of the Algorithm 3)
is similar to the local crossover operator where it replaces
a column or row of events in the current solution matrix
with the matching one in the global best solution matrix
instead of the local best solution. The details are shown in
Algorithm 6.

1924 Evolutionary Intelligence (2021) 14:1915–1930

1 3

Table 3 Result comparison
between <vertical> and
<horizontal and vertical>
solution transformations

Shown is the best and mean value of (hard + soft) constraint violations

Instance Vertical Horizontal and vertical t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 10.9 10 11.1 0.251
ItalyInstance1 16 21.7 15 22.8 0.060
BR-SA-00 9 10.1 9 10.1 0.500
BrazilInstance3 16 18.9 16 19.1 0.344
BrazilInstance5 27 29.8 26 29.7 0.362
BR-SM-00 37 41.5 38 41.5 0.471
BR-SN-00 37 38.5 36 38.7 0.262
FI-WP-06 23 26.3 24 26.0 0.233
GR-P3-10 151 166.0 156 168.7 0.050
ZA-LW-09 84 89.2 95 103.1 0.000
BrazilInstance7 53 56.8 51 56.6 0.363
WesternGreeceUniversity3 10 10.8 10 11.2 0.003
ES-SS-08 251 281.3 263 308.0 0.000
GR-PA-08 40 44.2 40 44.1 0.401
ZA-WD-09 110 123.3 112 121.7 0.075
FI-MP-06 38 41.5 38 41.2 0.202
AU-SA-96 2572 2675.2 2523 2547.4 0.000
AU-TE-99 2324 6469.4 1292 1358.3 0.000
GR-H1-97 7 9.8 7 9.7 0.471
FI-PB-98 115 121.7 112 120.4 0.042
AU-BG-98 22,455 31,806.1 14,491 23,077.4 0.000
FinlandElementarySchool 3 3.6 3 3.6 0.286
FinlandSecondarySchool2 64 67.5 61 65.7 0.007
US-WS-09 3142 3234.8 3169 3253.1 0.012
IT-I4-96 657 809.2 541 704.5 0.000
DK-VG-09 5276 5535.9 5504 5681.1 0.000
DK-FG-12 4905 6235.8 4932 6521.1 0.145
NL-KP-09 143,038 157,681.9 145,982 156.338.1 0.193
NL-KP-03 62,170 71,873.8 56,450 64.657.9 0.000
UK-SP-06 1822 2175.2 1615 2074.2 0.023
DK-HG-12 20,927 23,859.0 21,230 23,967.9 0.383
NL-KP-05 48,650 55,778.0 41,979 50.015.9 0.000
KS-PR-11 2073 2176.1 2010 2141.0 0.010
GEPRO 309,674 337,971.8 316,064 334.885.3 0.149

1925Evolutionary Intelligence (2021) 14:1915–1930

1 3

5 Experimental results

Experiments were performed on machines running on
 Intel® Xeon® E-2124 3.30 GHz with 16 GB RAM and
Windows Server 2019. The algorithms were coded in Java
and compiled with Eclipse IDE. The results obtained were
validated using HSEval validator1 . All the experiment
instances were supplied by University of Twente2 and the
time limit T (determined by running a benchmark program

on the computer) allowed for every single run is 540 s. The
statistical data were gathered by executing 31 runs for each
instance.

5.1 The effect of solution transformation

In this section, we compare the use of <vertical> and
<horizontal and vertical> transformations in the muta-
tion and crossover operations of PSO. Table 3 shows the
best and mean values of the constraint (hard + soft) viola-
tions. From t-tests, the p-values (less than 0.05) revealed
a significant difference between the means of PSO utiliz-
ing <vertical> and <horizontal and vertical> transforma-
tion on 15 instances. PSO utilizing our proposed solution

Table 4 Result comparison
between PSO and HPSO.
Shown is the best and mean
value of (hard + soft) constraint
violations

Instance PSO HPSO t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 11.1 10 11.0 0.286
ItalyInstance1 15 22.8 16 21.5 0.041
BR-SA-00 9 10.1 9 9.8 0.034
BrazilInstance3 16 19.1 14 18.1 0.035
BrazilInstance5 26 29.7 24 28.0 0.000
BR-SM-00 38 41.5 37 40.0 0.000
BR-SN-00 36 38.7 35 37.2 0.000
FI-WP-06 24 26.0 20 23.5 0.000
GR-P3-10 156 168.7 140 154.2 0.000
ZA-LW-09 95 103.1 71 77.0 0.000
BrazilInstance7 51 56.6 50 53.4 0.000
WesternGreeceUniversityInstance3 10 11.2 9 9.8 0.000
ES-SS-08 263 308.0 227 265.4 0.000
GR-PA-08 40 44.1 36 42.3 0.002
ZA-WD-09 112 121.7 105 114.3 0.000
FI-MP-06 38 41.2 35 38.1 0.000
AU-SA-96 2523 2547.4 2470 2502.9 0.000
AU-TE-99 1292 1358.3 1263 1310.5 0.000
GR-H1-97 7 9.7 4 8.9 0.041
FI-PB-98 112 120.4 97 106.6 0.000
AU-BG-98 14,491 23,077.4 4597 7766.8 0.000
FinlandElementarySchool 3 3.6 3 3.5 0.323
FinlandSecondarySchool2 61 65.7 48 52.3 0.000
US-WS-09 3169 3253.1 3194 3248.5 0.282
IT-I4-96 541 704.5 619 819.8 0.000
DK-VG-09 5504 5681.1 5437 5536.3 0.000
DK-FG-12 4932 6521.1 4888 6354.7 0.234
NL-KP-09 145,982 156.338.1 137,028 156,397.7 0.488
NL-KP-03 56,450 64.657.9 46,437 58,178.4 0.000
UK-SP-06 1615 2074.2 1555 1896.6 0.000
DK-HG-12 21,230 23,967.9 22,666 25,209.0 0.000
NL-KP-05 41,979 50.015.9 39,050 47,800.6 0.010
KS-PR-11 2010 2141.0 1958 2048.4 0.000
GEPRO 316,064 334.885.3 320,391 338,135.5 0.123

2 https ://www.utwen te.nl/en/eemcs /dmmp/hstt/.
1 http://www.it.usyd.edu.au/ jeff/cgi-bin/hseval.cgi.

https://www.utwente.nl/en/eemcs/dmmp/hstt/

1926 Evolutionary Intelligence (2021) 14:1915–1930

1 3

transformation <horizontal and vertical> managed to
achieve a lower mean value for 10 out of the 15 instances.
The proposed solution transformation is effective for most
of the medium and large instances.

5.2 Comparing PSO and HPSO

We compare the performance of PSO and hybrid PSO
(HPSO) in minimising constraint violations. To show the
effectiveness of hybridization, <horizontal and vertical>
transformation is used in both algorithms. As shown in
Table 4, the p-values (less than 0.05) revealed a signifi-
cant difference between the means of HPSO and PSO in

28 instances. No significant difference is observed for
6 other instances (BrazilInstance1, FinlandElementary-
School, US-WS-09, DK-FG-12, NL-KP-09 and GEPRO).
A lower mean value is obtained by HSPO for 26 out of
the 28 instances, showing that synergy is achieved by the
hybridization.

5.3 The effect of particle elimination

In this section, we present the effect of eliminating insig-
nificant particles in HPSO-PE in Table 5. The p-values
(less than 0.05) revealed a significant difference between
the means of HPSO and HPSO with particle elimination

Table 5 Result comparison
between HPSO and HPSO-PE

Shown is the best and mean value of (hard + soft) constraint violations

Instance HPSO HPSO-PE t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 11.0 10 10.9 0.435
ItalyInstance1 16 21.5 15 20.7 0.134
BR-SA-00 9 9.8 8 9.6 0.163
BrazilInstance3 14 18.1 16 18.6 0.118
BrazilInstance5 24 28.0 24 27.5 0.076
BR-SM-00 37 40.0 35 38.4 0.000
BR-SN-00 35 37.2 35 36.1 0.000
FI-WP-06 20 23.5 14 20.9 0.000
GR-P3-10 140 154.2 102 121.2 0.000
ZA-LW-09 71 77.0 37 49.2 0.000
BrazilInstance7 50 53.4 47 49.8 0.000
WesternGreeceUniversity3 9 9.8 9 9.2 0.000
ES-SS-08 227 265.4 175 215.0 0.000
GR-PA-08 36 42.3 31 38.3 0.000
ZA-WD-09 105 114.3 72 82.1 0.000
FI-MP-06 35 38.1 28 31.3 0.000
AU-SA-96 2470 2502.9 2388 2425.5 0.000
AU-TE-99 1263 1310.5 1266 1308.2 0.340
GR-H1-97 4 8.9 3 9.2 0.325
FI-PB-98 97 106.6 61 69.8 0.000
AU-BG-98 4597 7766.8 2369 3152.8 0.000
FinlandElementarySchool 3 3.5 3 3.5 0.411
FinlandSecondarySchool2 48 52.3 16 21.2 0.000
US-WS-09 3194 3248.5 3164 3243.1 0.233
IT-I4-96 619 819.8 171 198.2 0.000
DK-VG-09 5437 5536.3 3475 3675.3 0.000
DK-FG-12 4888 6354.7 2846 4695.3 0.000
NL-KP-09 137,028 156,397.7 76,393 98,053.2 0.000
NL-KP-03 46,437 58,178.4 14,280 17,354.1 0.000
UK-SP-06 1555 1896.6 1134 1604.5 0.000
DK-HG-12 22,666 25,209.0 15,622 18,689.8 0.000
NL-KP-05 39,050 47,800.6 17,529 22,046.1 0.000
KS-PR-11 1958 2048.4 1086 1152.4 0.000
GEPRO 320,391 338,135.5 310,275 334,886.1 0.077

1927Evolutionary Intelligence (2021) 14:1915–1930

1 3

(HPSO-PE) for 24 out of the 34 instances. HPSO-PE
attained a lower mean value for all the 24 instances, indicat-
ing the effectiveness of particle elimination in HPSO-PE.

5.4 Comparing HC, PSO and HPSO‑PE

In this section, we compare the performance of HC, con-
ventional PSO and HPSO-PE in Table 6. Table 6 shows the
best and mean values of the constraint (hard + soft) viola-
tions. We also compare the performance of the three algo-
rithms using a ranking system used in the second round of

ITC2011. The three algorithms are ranked (1 or 2 or 3) based
on the constraint (hard + soft) violations in each run on each
instance. The average rank shown in the last row of Table 6
is calculated as the sum of ranks/ number of ranks. As we
run each algorithm for 31 times for each of the 31 instances,
therefore the number of ranks is 961. The average rank sug-
gests that HPSO-PE is the best followed by HC and PSO.
From observation, the HPSO-PE performed well on small
and medium-sized instances while HC is effective on the
larger instances.

Table 6 Result comparison
between HC, PSO and
HPSO-PE

Shown is the best and mean value of (hard + soft) constraint violations

Instance HC PSO HPSO-PE

Best Mean Best Mean Best Mean

BrazilInstance1 12 21.9 10 10.9 10 10.9
ItalyInstance1 28 46.0 16 21.7 15 20.7
BR-SA-00 14 19.0 9 10.1 8 9.6
BrazilInstance3 25 40.7 16 18.9 16 18.6
BrazilInstance5 34 39.3 27 29.8 24 27.5
BR-SM-00 46 57.2 37 41.5 35 38.4
BR-SN-00 42 53.9 37 38.5 35 36.1
FI-WP-06 30 39.4 23 26.3 14 20.9
GR-P3-10 124 147.7 151 166.0 102 121.2
ZA-LW-09 47 59.8 84 89.2 37 49.2
BrazilInstance7 58 66.2 53 56.8 47 49.8
WesternGreeceUniversity3 10 11.7 10 10.8 9 9.2
ES-SS-08 216 280.1 251 281.3 175 215.0
GR-PA-08 46 59.1 40 44.2 31 38.3
ZA-WD-09 101 130.1 110 123.3 72 82.1
FI-MP-06 32 42.7 38 41.5 28 31.3
AU-SA-96 2425 2497.4 2572 2675.2 2388 2425.5
AU-TE-99 1317 1412.9 2324 6469.4 1266 1308.2
GR-H1-97 14 24.8 7 9.8 3 9.2
FI-PB-98 63 84.7 115 121.7 61 69.8
AU-BG-98 2382 2555.8 22,455 31,806.1 2369 3152.8
FinlandElementarySchool 5 8.6 3 3.6 3 3.5
FinlandSecondarySchool2 11 18.0 64 67.5 16 21.1
US-WS-09 3243 3331.1 3142 3234.8 3164 3243.1
IT-I4-96 102 144.2 657 809.2 171 198.2
DK-VG-09 2595 2713.3 5276 5535.9 3475 3675.3
DK-FG-12 4973 6276.3 4905 6235.8 2846 4695.3
NL-KP-09 54,335 68,105.5 143,038 157,681.9 76,393 98,053.2
NL-KP-03 2772 3741.3 62,170 71,873.8 14,280 17,354.1
UK-SP-06 1446 2761.9 1822 2175.2 1134 1604.5
DK-HG-12 21,534 26,135.4 20,927 23,859.0 15,622 18,689.8
NL-KP-05 2561 3217.5 48,650 55,778.0 17,529 22,046.1
KS-PR-11 613 673.4 2073 2176.1 1086 1152.4
GEPRO 142,949 169,605.7 309,674 337,971.8 310,275 334,886.1
Average rank 2.25 2.33 1.34

1928 Evolutionary Intelligence (2021) 14:1915–1930

1 3

Out of curiosity, we extended the runtime to 5 times the
time limit or 5T (2700 s) for the large instances. It took
around 23 h to run each instance for 31 times. As shown
in Table 7, the result is consistent with the previous one
and HC still performed better than HPSO-PE on the large

instances. However, it seems that the improvement rate for
PSO and HSPO-PE is higher compared to HC for all the
large instances except GEPRO.

Table 7 Result comparison between HC, PSO and HPSO-PE using extended runtime (5T)

Shown is the best and mean value of (hard + soft) constraint violations

Instance HC PSO HPSO-PE

Best Mean Improvement
(%)

Best Mean Improvement
(%)

Best Mean Improve-
ment (%)

DK-VG-09 2231 2333.7 14 3377 3466.9 37 2526 2591.8 29
DK-FG-12 2677 5211.1 17 2675 3142.0 50 1785 2669.3 43
NL-KP-09 31,936 48,502.2 29 75,031 85,380.9 46 40,116 49,329.5 50
NL-KP-03 1610 2473.5 34 11,026 12,282.0 83 3163 3711.3 79
UK-SP-06 1416 2897.6 − 5 1452 1931.4 11 1218 1564.2 3
DK-HG-12 17,576 23,763.8 9 13,255 13,486.3 43 11,219 11,963.6 36
NL-KP-05 1481 1887.6 41 7800 9415.9 83 2811 3035.8 86
KS-PR-11 309 359.5 47 948 973.7 55 437 470.5 59
GEPRO 30,712 37,589.6 78 235,784 259,832.5 23 178,709 224,355.9 33

Table 8 Solver details Solver Reference Technique

A Fonseca et al. [10] Simulated annealing + iterative local search
B Fonseca et al. [9] Simulated annealing + stagnation-free late

acceptance hill climbing
C Kristiansen et al. [17] Mixed-integer programming
D Fonseca et al. [8] Matheuristic + variable neighbourhood search

Table 9 Comparing HPSO-PE with the state of the art methods on instances in round 2 of ITC2011. Shown is (mean of hard constraint viola-
tions/ mean of soft constraint violations)

Instance A B C D HPSO-PE

BR-SA-00 (1.0/63.9) (0.0/78.0) (0/46) (0.0/5.8) (9.6/0.0)
BrazilInstance3 (0.0 /127.8) (0.0/160.2) (0/39) (0.0/31.2) (18.6/0.0)
BR-SM-00 (17.2/99.6) (2.4/164.2) (5/286) (0.0/63.6) (38.4/0.0)
BR-SN-00 (4.0/223.5) (0.0/221.0) (0/682) (0.0/51.6) (36.1/0.0)
WesternGreeceUniversity3 (0.0 /5.6) (0.0/5.2) (0/25) (0.0/5.6) (7.1/2.0)
ES-SS-08 (0.0 /865.2) (0.0/856.8) (1454/11,020) (0.0/474.8) (105.3/109.7)
GR-PA-08 (0.0 /7.4) (0.0/6.6) (0/81) (0.0/5.0) (29.7/8.6)
ZA-WD-09 (2.0/15.8) (2.0/12.0) (1801/705) (0.0/57.8) (42.9/39.2)
FinlandElementarySchool (0.0 /4.0) (0.0/3.8) (0/3) (0.0/3.0) (0.0/3.5)
FinlandSecondarySchool2 (0.0 /0.4) (0.0/0.4) (1604/3878) (0.0/0.0) (18.6/2.6)
IT-I4-96 (0.0 /658.4) (0.0/302.2) (0/17,842) (0.0/32.2) (168.9/29.2)
NL-KP-09 (36.6/154,998.5) (25.8/112,335.0) (17,512/140) (11.8/11545.0) (92,068.6/5984.5)
NL-KP-03 (0.4/89,132.2) (0.6/90,195.8) (8491/6920) (0.0/1257.8) (3390.6/13,963.4)
NL-KP-05 (30.2/33,169.6) (33.9/27,480.4) (2567/53) (14.4/5677.8) (4267.6/17,778.4)
KS-PR-11 (14.0/6934.4) (6.3/6383.8) (3626/2620) (0.0/9.0) (996.4/156.0)

1929Evolutionary Intelligence (2021) 14:1915–1930

1 3

5.5 Comparing HPSO‑PE with the state of the art
methods

Note that as we follow the time limit restriction as stipulated
in round 2 of ITC2011, therefore we only compare HPSO-
PE with the state of art methods (which are following the
same restriction) on instances in round 2 of ITC2011. As
shown in Table 9, HPSO-PE performs well in minimizing
soft constraint violations but it is not that competitive in
minimizing hard constraint violations. It achieved the low-
est mean of soft constraint violations for 7 instances and the
lowest mean of hard constraint violations for 1 instance. The
solver details are given in Table 8.

6 Discussion

From observation, HC outperformed HPSO-PE in larger
instances. HC is relatively lighter in terms of processing
compared to HPSO-PE (a population based method). There-
fore, it can perform more iterations than HPSO-PE. Fur-
thermore, the time limit does not allow a sufficient number
of iterations for HPSO-PE to perform effectively on larger
instances. HC is also better than HPSO-PE in exploiting the
search space by making small changes to the current solution
and moving to its neighbour solutions.

Meanwhile, HPSO-PE performed better than HC in
smaller instances. This is possibly because HPSO-PE now
has a sufficient number of iterations to function effectively.
Besides, HC can easily get stuck in local optima as its capa-
bility in exploring the search space is rather limited. On
the other hand, HPSO-PE is better at exploring the search
space. When one of the particles (solutions) is stuck in local
optima, the other particles will attempt to guide it out of the
local optima and move it towards the global best position.

The proposed HPSO-PE is superior compared to HC and
PSO. The performance is attributed to the features in the
algorithm. The proposed solution transformation <horizon-
tal and vertical> is more effective than vertical transfor-
mation (E.g. swapping by columns only) in mutation and
crossover operations. The connectivity of the search space
is improved by having an additional method in generating
a new solution. In HPSO-PE, the particles in the PSO com-
ponent are used to explore the search space while the HC
component is employed to exploit the search space. The
combination of PSO and HC helps to reduce the probability
of a solution getting stuck in local optima. Also, the number
of particles in the swarm is reduced (by eliminating a certain
number of insignificant particles) towards the end of HPSO-
PE. Particle elimination works because it allows the search
to switch from exploration to exploitation towards the end.

7 Conclusion and future work

We have presented the effect of various solution transfor-
mation used in the mutation and crossover operations of
PSO. We found that the proposed solution transformation
<horizontal and vertical> is better than vertical transfor-
mation. We have compared PSO and HPSO. Results indi-
cate that synergy is achieved by hybridizing the PSO with
HC. We have made a comparison of the performance of
HPSO with and without particle elimination. Results show
that HPSO-PE is superior to HPSO. We also compared the
performance of HC, PSO and HPSO-PE. Average rank sug-
gests that HPSO-PE is the best followed by HC and PSO.
The HPSO-PE performed well on small and medium-sized
instances while HC is effective on larger instances. Overall,
the HPSO-PE performed better than HC and PSO. Lastly,
we compared HPSO-PE with the state of the art methods.

In this work, we employed a one-stage approach where
the hard and soft constraint violations are minimized
simultaneously at the same time. The disadvantage of this
approach is that the feasibility of a solution is not guaran-
teed. In future, we may develop a repair function to fix the
feasibility of the solution at the end of the search. We may
also try a two-stage approach where hard and soft constraints
are minimized separately in stages.

Neighbourhood structures play an important role in the
search for better quality solutions. Therefore, we look for-
ward to developing a variety of novel neighbourhood struc-
tures to improve the connectivity of the search space.

The current HC component in HPSO-PE only accepts
candidate solutions with better fitness value which strictly
limits the exploration capability of the search. We are con-
sidering to relax the acceptance criteria to conditionally
accept worse candidate solutions. We may also try to hybrid-
ize the PSO with other local search methods such simulated
annealing, tabu search, iterated local search etc.

References

 1. Al-Betar MA (2017) $\beta $-Hill climbing: an exploratory
local search. Neural Comput Appl 28(s1):153–168. https ://doi.
org/10.1007/s0052 1-016-2328-2

 2. Arora S, Barak B (2009) Computational complexity—modern
approach. Cambridge University Press. http://www.cambr idge.
org/catal ogue/catal ogue.asp?isbn=97805 21424 264

 3. Burke EK, Kendall G et al (2005) Search methodologies. Springer,
Berlin

 4. Ceschia S, Dang N, De Causmaecker P, Haspeslagh S, Schaerf A
(2019) The second international nurse rostering competition. Ann
Oper Res 274(1–2):171–186

 5. Du KL, Swamy MNS (2016) Search and optimization by
metaheuristics. Springer, Berlin. https ://doi.org/10.1007/978-3-
319-41192 -7

https://doi.org/10.1007/s00521-016-2328-2
https://doi.org/10.1007/s00521-016-2328-2
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
http://www.cambridge.org/catalogue/catalogue.asp?isbn=9780521424264
https://doi.org/10.1007/978-3-319-41192-7
https://doi.org/10.1007/978-3-319-41192-7

1930 Evolutionary Intelligence (2021) 14:1915–1930

1 3

 6. Feng Z, Chen L, Chen CH, Liu M, Yuan M (2020) Motion plan-
ning for redundant robotic manipulators using a novel multi-group
particle swarm optimization. Evol Intel. https ://doi.org/10.1007/
s1206 5-020-00382 -z

 7. Fonseca GH, Santos HG, Carrano EG, Stidsen TJ (2017) Integer
programming techniques for educational timetabling. Eur J Oper
Res 262(1):28–39. https ://doi.org/10.1016/j.ejor.2017.03.020

 8. Fonseca GHG, Santos HG, Carrano EG (2016) Integrating
matheuristics and metaheuristics for timetabling. Comput Oper
Res 74:108–117

 9. Fonseca GHG, Santos HG, Carrano EG (2016) Late acceptance
hill-climbing for high school timetabling. J Sched 19(4):453–465.
https ://doi.org/10.1007/s1095 1-015-0458-5

 10. da Fonseca GHG, Santos HG, Toffolo TÂM, Brito SS, Souza
MJF (2016) GOAL solver: a hybrid local search based solver for
high school timetabling. Ann Oper Res 239(1):77–97. https ://doi.
org/10.1007/s1047 9-014-1685-4

 11. Goh SL, Kendall G, Sabar NR (2017) Improved local search
approaches to solve the post enrolment course timetabling prob-
lem. Eur J Oper Res 261(1):17–29. https ://doi.org/10.1016/j.
ejor.2017.01.040

 12. Goh SL, Kendall G, Sabar NR (2018) Simulated annealing with
improved reheating and learning for the post enrolment course
timetabling problem. J Oper Res Soc 70(6):873–888. https ://doi.
org/10.1080/01605 682.2018.14688 62

 13. Goh SL, Kendall G, Sabar NR (2019) Monte carlo tree search
in finding feasible solutions for course timetabling problem. Int
J Adv Sci Eng Inf Technol 9(6):1936. https ://doi.org/10.18517 /
ijase it.9.6.10224

 14. Goh SL, Kendall G, Sabar NR, Abdullah S (2020) An effective
hybrid local search approach for the post enrolment course timeta-
bling problem. OPSEARCH. https ://doi.org/10.1007/s1259 7-020-
00444 -x

 15. Kingston JH (2014) KHE14: An algorithm for high school time-
tabling. In: Proceedings of the tenth international conference on
practice and theory of automated timetabling, 269–291. http://
www.it.usyd.edu.au/~jeff/khe/khe14 .pdf

 16. Kingston JH (2014) Timetable construction: the algorithms and
complexity perspective. Ann Oper Res 218(1):249–259

 17. Kristiansen S, Sørensen M, Stidsen TR (2015) Integer program-
ming for the generalized high school timetabling problem. J Sched
18(4):377–392. https ://doi.org/10.1007/s1095 1-014-0405-x

 18. Vinay Kumar SB, Rao PV, Singh MK (2019) Optimal floor plan-
ning in VLSI using improved adaptive particle swarm optimiza-
tion. Evol Intel. https ://doi.org/10.1007/s1206 5-019-00256 -z

 19. Post G, Ahmadi S, Daskalaki S, Kingston JH, Kyngas J, Nurmi
C, Ranson D (2012) An XML format for benchmarks in high
school timetabling. Ann Oper Res 194(1):385–397. https ://doi.
org/10.1007/s1047 9-010-0699-9

 20. Post G, Kingston JH, Ahmadi S, Daskalaki S, Gogos C, Kyn-
gas J, Nurmi C, Musliu N, Pillay N, Santos H, Schaerf A (2014)
XHSTT: an XML archive for high school timetabling problems
in different countries. Ann Oper Res 218(1):295–301

 21. Post G, Di Gaspero L, Kingston JH, McCollum B, Schaerf A
(2016) The third international timetabling competition. Ann Oper
Res 239(1):69–75. https ://doi.org/10.1007/s1047 9-013-1340-5

 22. Qu R, Burke EK, McCollum B, Merlot LTG, Lee SY (2009) A
survey of search methodologies and automated system develop-
ment for examination timetabling. J Sched 12(1):55–89

 23. Sanders WL, Wright SP, Horn SP (1997) Teacher and classroom
context effects on student achievement: implications for teacher
evaluation. J Pers Eval Educ 11(1):57–67

 24. Schöbel A (2017) An eigenmodel for iterative line planning, time-
tabling and vehicle scheduling in public transportation. Transp
Res Part C Emerg Technol 74:348–365

 25. Tassopoulos IX, Beligiannis GN (2012) A hybrid particle swarm
optimization based algorithm for high school timetabling prob-
lems. Appl Soft Comput 12(11):3472–3489

 26. Tassopoulos IX, Beligiannis GN (2012) Using particle swarm
optimization to solve effectively the school timetabling problem.
Soft Comput 16(7):1229–1252. https ://doi.org/10.1007/s0050
0-012-0809-5

 27. Yi X, Goossens D, Nobibon FT (2020) Proactive and reac-
tive strategies for football league timetabling. Eur J Oper Res
282(2):772–785

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s12065-020-00382-z
https://doi.org/10.1007/s12065-020-00382-z
https://doi.org/10.1016/j.ejor.2017.03.020
https://doi.org/10.1007/s10951-015-0458-5
https://doi.org/10.1007/s10479-014-1685-4
https://doi.org/10.1007/s10479-014-1685-4
https://doi.org/10.1016/j.ejor.2017.01.040
https://doi.org/10.1016/j.ejor.2017.01.040
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.1080/01605682.2018.1468862
https://doi.org/10.18517/ijaseit.9.6.10224
https://doi.org/10.18517/ijaseit.9.6.10224
https://doi.org/10.1007/s12597-020-00444-x
https://doi.org/10.1007/s12597-020-00444-x
http://www.it.usyd.edu.au/%7ejeff/khe/khe14.pdf
http://www.it.usyd.edu.au/%7ejeff/khe/khe14.pdf
https://doi.org/10.1007/s10951-014-0405-x
https://doi.org/10.1007/s12065-019-00256-z
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.1007/s10479-010-0699-9
https://doi.org/10.1007/s10479-013-1340-5
https://doi.org/10.1007/s00500-012-0809-5
https://doi.org/10.1007/s00500-012-0809-5

	Hybrid particle swarm optimization with particle elimination for the high school timetabling problem
	Abstract
	1 Introduction
	2 High school timetabling problem
	2.1 Extensible mark-up language for high school timetabling-2014 (XHSTT-2014) dataset

	3 Related work
	3.1 Approaches specific to XHSTT instances

	4 Proposed methodology
	4.1 Particle swarm optimization (PSO)
	4.2 Hill climbing (HC)
	4.3 Hybrid PSO with particle elimination (HPSO-PE)
	4.3.1 Initial solution
	4.3.2 Particle encoding
	4.3.3 The main algorithm
	4.3.3.1 Mutation operator
	4.3.3.2 Crossover operator

	5 Experimental results
	5.1 The effect of solution transformation
	5.2 Comparing PSO and HPSO
	5.3 The effect of particle elimination
	5.4 Comparing HC, PSO and HPSO-PE
	5.5 Comparing HPSO-PE with the state of the art methods

	6 Discussion
	7 Conclusion and future work
	References

