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Abstract
In this paper, a PSO-based algorithm that hybridized Particle Swarm Optimization (PSO) and Hill Climbing (HC) is applied 
to high school timetabling problem. This hybrid has two features, a novel solution transformation and particle elimination. 
The proposed methodologies are tested on the XHSTT-2014 dataset (which is relatively new for the school timetabling 
problem) plus other additional instances. The experimental results show that the proposed algorithm is effective in solv-
ing small and medium instances compared to standalone HC and better than the conventional PSO for most instances. In a 
comparison to the state of the art methods, it achieved the lowest mean of soft constraint violations for 7 instances and the 
lowest mean of hard constraint violations for 1 instance.

Keywords Particle swarm optimization · Hill climbing · Hybridisation · School timetabling

1 Introduction

Timetable construction is a Non-Polynomial (NP) complete 
decision problem [16]. It belongs to both NP and the NP-
hard complexity classes. With the exponential increase of 
decision problem size, it is impossible for a deterministic 
algorithm to find an optimal solution under polynomial 
time, as most scientists believed P ≠ NP [2]. Generally, four 

common parameters are used in educational timetabling 
problem: times, resources, meetings and constraints. The 
objective is to assign times and resources to the meetings 
by minimising the constraints violations [22].

There are many types of timetabling problems, e.g. edu-
cational [11–14], sports [27], transportation [24], nurse ros-
tering [4] etc. High school timetabling is a variant of the 
educational timetabling problem. High school timetabling 
problem involves assigning time and resources (teachers, 
students, classes and rooms) to a collection of events while 
respecting certain constraints. Some of the usual constraints 
are; two subjects cannot occur simultaneously in the same 
room, a teacher cannot be assigned to two subjects at the 
same time, no idle time for students and workload limit 
for teachers. In practice, it is important to have an efficient 
timetable to prevent teachers from being overworked, as it 
could lead to dissatisfaction among teachers and affect their 
performance in teaching. The teacher is a dominant factor 
affecting students’ learning effectiveness in class, thus influ-
encing their achievement [23].

In this work, we introduce a novel solution transformation 
in the mutation and crossover operations of Particle Swarm 
Optimization (PSO). Next, we propose a hybrid of PSO and 
Hill Climbing (HC). The hybridisation intends to allow a 
better exploration and exploitation in the search space in 
finding an optimum solution. We further improve the algo-
rithm by adding a component called Particle Elimination. 
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PSO was employed in high school timetabling problems [25, 
26], however as far as we are aware, it has never been applied 
to the XHSTT-2014 dataset. This dataset is complex and 
challenging with many constraints thus not many researchers 
are working on it. This motivated us to use the dataset as a 
testbed to test the performance of our proposed algorithm.

This paper is organized as follows. Section 2 describes 
high school timetabling problems and XHSTT-2014 dataset. 
In Sect. 3, related work is reviewed. The proposed methodol-
ogy is described in Sect. 4. The experimental result is shown 
in Sect. 5. Discussion is presented in Sect. 6. Finally, the 
conclusion and future work are given in Sect. 7.

2  High school timetabling problem

The school timetabling problem differs for each country in 
terms of constraints and objectives, which possibly due to 
different cultural settings and education systems [20].

2.1  Extensible mark‑up language for high school 
timetabling‑2014 (XHSTT‑2014) dataset

Extensible Mark-up Language for High School Timeta-
bling (XHSTT) is an XML based format used to define the 
instances in XHSTT-2014 and International Timetabling 
Competition 2011 (ITC2011) datasets [21]. The XML for-
mat is popular and widely used by operation research com-
munity because of the ease of use and flexibility in defining 
scheduling problems. XHSTT is composed of four entities 
namely times, resources, events and constraints [19].

– Times
  Times are the available time slots for events. Times can 

be grouped into days, weeks and time group. Normally, 
times are spread out for a week. For some instances, 
times may be spread out for more than a week, where 
odd and even weeks have different schedules.

– Resource
  Resources are rooms, teachers, students and classes 

for assignment. Each resource has a type and belongs to 
a certain group. For example, a computer lesson needs 
resources such as a computer room and a computer liter-
ate teacher.

– Events
  This entity represents events to be scheduled. Each 

event can be either a single lesson or a set of lessons 
(which have the same starting time). It has a course/event 
group, duration, preassigned time, workload and a set of 
required resources. Event group and course are used to 
group certain events. Event is like a capsule of resources 
and time, adhering to specific constraints.

– Constraints
  The constraints are a set of specific conditions that 

have to be satisfied. There is a total of 16 hard and soft 
constraints [21]. The hard constraints are; 

1. Assign Time Constraint. Assign a time to an event.
2. Assign Resource Constraint. Assign a resource to an 

event.
3. Split Events Constraint. Split the selected event or 

event groups into sub-events, within a maximum and 
a minimum number of amount and duration.

4. Avoid Clashes Constraint. Schedule the selected 
resources or resource groups without clashes (no 
resource attends two events for the same time).

5. Limit Workload Constraint. Limit the workload of 
the selected resources or resource groups.

   The constraints that can be hard or soft (depending on 
the specific instance) are; 

  1. Prefer Times Constraint. Assign a time from a 
given set of time to a selected event.

 2. Prefer Resources Constraint. Assign a resource 
from a given set of resource to a selected event 
with specific role.

 3. Link Events Constraint. Set all events from the 
selected event groups to a same starting time.

 4. Spread Events Constraint. Schedule the selected 
event groups to a selected time group between a 
minimum and a maximum number of times.

 5. Avoid Split Assignments Constraint. Schedule the 
selected event groups with specific role to the 
same resource.

 6. Distribute Split Events Constraint. Split the 
selected event or event groups into sub-events 
with a specific duration, within a maximum and 
a minimum number of sub-events.

 7. Order Events Constraint. Assign times in chrono-
logical order to selected events.

 8. Avoid Unavailable Times Constraint. Avoid the 
selected resources or resource groups are busy in 
the selected times.

 9. Limit Idle Times Constraint. Each selected 
resources or resource groups should have a lim-
ited number of idle times in a time groups.

 10. Limit Busy Times Constraint. Each selected 
resources or resource groups should have a lim-
ited number of occupied times in a time groups.

 11. Cluster Busy Times Constraint. Each selected re-
sources or resource groups should have a limited 
number of time groups with an assigned time.
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There are 25 instances in the XHSTT-2014 dataset. We also 
work on 9 additional instances. Note that some instances 
in the XHSTT-2014 dataset can also be found in the 
ITC2011 dataset. There are 3 rounds in ITC2011. Partici-
pants in round 2 have to run their program within the time 
limit determined by running a benchmark program on their 
machine. Meanwhile, there are no time or technology restric-
tions for round 1 and 3. The features of the instances are 
presented in Table 1 (sorted by the number of events). We 
categorized the instances with less than 250 events as small 
(S), instances with the number of events ranging from 250 to 
900 as medium (M) and instances with more than 900 events 
as large (L). The dash (–) symbol indicates that the feature 
is not relevant to the instance.

3  Related work

Vinay Kumar el at. [18] proposed an Interactive Self-
Improvement based Adaptive PSO (ISI-APSO) in design-
ing the Very-Large-Scale Integration (VLSI) circuit for the 
floor planning problem. An adaptive weight was updated in 
each iteration to adjust the exploitation and exploration in 
the multi-dimensional search space until a desired optimal 
solution is found. Their method achieved better performance 
than Genetic Algorithm (GA), Simulated Annealing (SA), 
traditional PSO, Ant Colony Optimization and Differential 
Evolution (DE) in terms of exploring efficiency and speed 
of convergence.

Table 1  Features of the instances in the XHSTT dataset

Instance Times Teachers Rooms Classes Students Events Category Dataset Round in ITC2011

BrazilInstance1 25 8 – 3 – 21 S Others 1
ItalyInstance1 36 13 – 3 – 42 S Others 1
BR-SA-00 25 14 – 6 – 63 S XHSTT-2014 2 & 3
BrazilInstance3 25 16 – 8 – 69 S Others 2 & 3
BrazilInstance5 25 31 – 12 – 119 S Others 1
BR-SM-00 25 23 – 12 – 127 S XHSTT-2014 2 & 3
BR-SN-00 25 30 – 14 – 140 S XHSTT-2014 2 & 3
FI-WP-06 35 18 13 10 – 172 S XHSTT-2014 1
GR-P3-10 35 29 – 84 – 178 S XHSTT-2014 1
ZA-LW-09 148 19 2 16 – 185 S XHSTT-2014 1
BrazilInstance7 25 33 – 20 – 205 S Others 1
WesternGreeceUniversity3 35 19 – 6 – 210 S Others 2 & 3
ES-SS-08 35 66 4 21 – 225 S XHSTT-2014 2 & 3
GR-PA-08 35 19 – 12 – 262 M XHSTT-2014 2 & 3
ZA-WD-09 42 40 – 30 – 278 M XHSTT-2014 2 & 3
FI-MP-06 35 25 25 14 – 280 M XHSTT-2014 1
AU-SA-96 60 43 36 20 – 296 M XHSTT-2014 1
AU-TE-99 30 37 26 13 – 308 M XHSTT-2014 1
GR-H1-97 35 29 – 66 – 372 M XHSTT-2014 –
FI-PB-98 40 46 34 31 – 387 M XHSTT-2014 1
AU-BG-98 40 56 45 30 – 387 M XHSTT-2014 1
FinlandElementarySchool 35 22 21 291 – 445 M Others 2 & 3
FinlandSecondarySchool2 40 22 21 36 – 469 M Others 2 & 3
US-WS-09 100 134 108 – – 628 M XHSTT-2014 –
IT-I4-96 36 61 – 38 – 748 M XHSTT-2014 2 & 3
DK-VG-09 60 46 53 – 163 918 L XHSTT-2014 –
DK-FG-12 50 90 69 – 279 1077 L XHSTT-2014 –
NL-KP-09 38 93 53 48 - 1148 L XHSTT-2014 2 & 3
NL-KP-03 38 75 41 18 453 1156 L XHSTT-2014 1, 2 & 3
UK-SP-06 25 68 67 67 – 1227 L XHSTT-2014 1
DK-HG-12 50 100 71 – 523 1235 L XHSTT-2014 –
NL-KP-05 37 78 42 26 498 1235 L XHSTT-2014 1, 2 & 3
KS-PR-11 62 101 – 63 – 1912 L XHSTT-2014 2 & 3
GEPRO 44 132 80 44 846 2675 L Others 1
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Feng el at. [6] proposed a multi-group particle swarm 
optimization algorithm (PSOEL) to solve the motion plan-
ning of redundant robotic manipulators. PSOEL consists of 
one elite group and several child groups. The particles of 
the elite group were made from the best performing parti-
cles of the child groups. Both groups evolved separately in 
each iteration. An interaction mechanism will be triggered 
when the elite group fell into a local optimum or was infe-
rior to child groups. The bad particles from the elite group 
were replaced by the best particles from the child groups to 
allow the PSOEL to escape from the local optimum. In their 
simulation results, PSOEL was superior to the DE, GA and 
traditional PSO.

Tassopoulos and Beligiannis [26] proposed PSO algo-
rithm in constructing Greek high school timetables. In the 
beginning, 150 active particles with different fitness value 
were initialized. Every particle in each generation was 
evolved with 3 procedures (swap with probability, change 
randomly with personal best and change randomly with 
global best) to produce a new solution. If the fitness value of 
a particle exceeded its tolerance value, the particle was inac-
tivated in the evolution procedure until the number of the 
active particle was equal to 30. The purpose was to explore 
wider searching space and keep minimum robust particles. 
After 10,000 iterations, the best solution was further pro-
cessed by a local search procedure to minimize the teach-
ers’ idle periods. This method outperformed GA, Constraint 
Programming and Evolutionary Algorithm (EA).

Tassopoulos and Beligiannis [25] improved the PSO by 
hybridizing it with a local search to solve high school time-
tabling problems in Greece [5]. 50 particles were initialized 
at random position in a two-dimensional matrix, and each 
particle went through 3 procedures (swap function, insertion 
from personal best and insertion from global best) to pro-
duce a feasible solution until the termination criteria were 
met. After PSO terminated, a local search procedure was 
applied to further improve the solution by minimising the 
soft constraint violations. Their implementation achieved 
better result compared to EA and SA.

3.1  Approaches specific to XHSTT instances

The winning methodology in ITC2011 was a hybrid 
metaheuristic that combined SA and Iterated Local Search 
(ILS) proposed by Fonseca et al. [10]. At first, an initial solu-
tion was generated by Kingston High School Timetabling 
Engine (KHE) [15] and improved by SA with reheating. 
Then ILS was applied to further improve the solution. There 
were six neighbourhood structures used by SA during the 
search: Event Swap (ES), Resource Swap (RS), Event Move 
(EM), Resource Move (RM), Event Block Swap (EBS) and 

Kempe Chain (KC). Meanwhile Reassign Resource Times 
(RRT) and KC were used in the perturbation phase of ILS. 
The method was successful because of its diversity of local 
search moves.

Post-competition, [9] continued to work on the ITC2011 
dataset. They proposed a hybrid SA with stagnation-free 
Late Acceptance Hill Climbing (sf-LAHC). Late Accept-
ance Hill Climbing was adapted from the HC method with 
the acceptance criteria of accepting the worse solution. 
The proposed sf-LAHC can reheat the system during the 
stagnation condition, by retrieving the vector of costs from 
the last improvement occurred. Overall, the search was per-
formed by SA after an initial solution was generated by the 
KHE solver. sf-LAHC was employed further to improve the 
solution. Their hybrid algorithm outperformed the winner 
method by producing the best-known solution for 14 out of 
18 instances.

Kristiansen el at. [17] proposed an Integer Programming 
(IP) formulation to the XHSTT-2013 dataset. The method 
was based on mixed-integer linear IP (MIP) model. Their 
approach consisted of two steps. At first, the MIP model 
was built using hard constraints only. It minimised hard 
constraint violations until a time limit was reached or a fea-
sible solution was found. If a feasible solution was found, 
the second step will be performed. The solution was fur-
ther improved in the remaining time by adding all the soft 
constraints into the model. In their computational result, 2 
optimal solutions were found and they also proved optimal-
ity for 4 other solutions out of 28 instances.

Fonseca et al. [7] further improved Kristiansen’s IP model 
[17] by employing new cuts and reformulations. The frac-
tional points were reduced by improving a few valid ine-
qualities and an extended flow-based formulation from the 
original formulation. Also, the unnecessary variables and 
constraints were removed in the pre-processing routines. 
A multi-commodity flow reformulation was used to drop 
several non-essential constraints to reduce the size of the 
constraints in an alternative formulation. Their proposed 
method reduced 32% of the average gap from the IP model 
and improved 11 best-known solutions out of 12 instances. 
It is the current state-of-the-art for the problem instances in 
ITC2011.

4  Proposed methodology

We employ a one-stage approach for the following meth-
odologies where the hard and soft constraint violations are 
minimized simultaneously at the same time instead of min-
imizing each constraint violations exclusively in multiple 
stages. We hope the search process can move freely in the 
search space without restriction due to the constraints.
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4.1  Particle swarm optimization (PSO)

PSO is an evolutionary algorithm that is inspired by a real 
swarm in solving combinatorial problems [3]. Generally, 
each particle in PSO operates in two equations in every 
iteration [5]. In Eq. 1, the particle updates by adjusting the 
velocity or step size. In Eq. 2, the particle moves by adding 
the velocity to its previous position.

In the equations: t is the current iteration, i is the target par-
ticle’s index, xi is the particle’s position, vi is the velocity, 
x∗
i
 is the best position found by the particle, xg is the global 

best position obtained by any particles, c is the acceleration 
constant (c > 0) while r1 and r2 are uniform random numbers 
within [0, 1].

The basic steps in PSO are: 

1. Initialize a population of particles with position and 
velocity by randomly distributing them in the search 
space.

(1)vi(t + 1) = vi(t) + cr1[x
∗

i
(t) − xi(t)] + cr2[x

g(t) − xi(t)]

(2)xi(t + 1) = xi(t) + vi(t + 1), i = 1,… ,Np

2. Evaluate fitness value of each particle and assign its cur-
rent position xi(t) as local best position x∗

i
(t).

3. Find the global best position xg(t) among all particles.
4. Update the velocity of each particle using the first equa-

tion and moving it to new position according to the sec-
ond equation.

5. Calculate new fitness value of each particle.
6. Update local best position x∗

i
(t) and global best position 

xg(t) considering its new fitness value.
7. Repeat steps 4–6 until the termination criteria is met.

Based on preliminary experiments, we set the number of 
particles to 25 as this number allows the PSO algorithm to 
perform effectively within the time limit. The PSO algorithm 
is presented in Algorithm 1. Mutation and crossover opera-
tions employed here are slightly similar to the ones found 
in [25, 26] where only vertical transformation is used (see 
Sects. 4.3.3.1 and  4.3.3.2).
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4.2  Hill climbing (HC)

HC is the simplest local search heuristic that is widely 
applied in combinatorial problems [1]. At any point, HC 
only accepts improving moves from the neighbouring solu-
tion. It starts from a random initial solution and iteratively 
moves to a local optima.

The basic steps are: 

1. Initialize a current solution and calculate its fitness 
value.

2. Random generate a neighbourhood structure and pro-
duce a candidate solution.

3. Calculate the fitness value of candidate solution and 
compare it with the fitness value of the current solution.

4. Replace the current solution with candidate solution if 
the fitness value has improved; otherwise, do nothing.

5. Repeat steps 2–4 until the termination criteria is met.

The pseudo code of HC is presented in Algorithm 2. 

Table 2  Neighbourhood structures and functions

Neighbourhood structure Neighbourhood function

SO ES and RS
MO EM and RM
KO KM

The neighbourhood structures used are Swap operator 
(SO), Move operator (MO) and Kempe operator (KO). Each 
neighbourhood structure consists of neighbourhood func-
tions as shown in Table 2. The neighbourhood functions 
(similar to the ones used by Fonseca el at. [8]) are listed 
below.

– Event Swap (ES)—The times t1 and t2 from two randomly 
selected events are swapped.

– Resource Swap (RS)—Resources (of the same type) 
r1 and r2 assigned to two randomly selected events are 
swapped. e2 are swapped.

– Event Move (EM)—A randomly selected event is moved 
to an empty time.

– Resource Move (RM)—The resource r1 of a randomly 
selected event is replaced by another resource r1.

– Kempe Move (KM)—The events from two randomly 
selected time t1 and t2 are represented as nodes in a graph. 
The nodes in conflict (sharing the same resources) in dis-
tinct times are connected by edges to produce a bipartite 
graph (known as conflict graph). The connected nodes in 
the distinct times are swapped.

A neighbourhood structure is selected using probabilistic 
selection with probability P (SO) = 0.3, P (MO) = 0.6 and 
P (KO) = 0.1. A relevant neighbourhood function is then 
selected with equal probability.

4.3  Hybrid PSO with particle elimination (HPSO‑PE)

4.3.1  Initial solution

Our initial solution is built constructively. Our method 
comprises of structural phase, resource assignment phase 
and time assignment phase. In the structural phase, we split 
each event into sub-events randomly based on split event 
constraint and distributed split event constraint. If the con-
straints do not apply to the event, the event will be split 
into sub-events with a duration of either 1 or 2, to allow 
flexibility during the event assignment. In the resource 
assignment phase, resources are randomly assigned based 
on prefer resource constraint, avoid split constraint and limit 
workload constraint. If an event does not require any specific 
resource, a random resource is selected and assigned based 
on the resource type. Lastly, in the time assignment phase, 
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we assign a time to each event randomly based on prefer 
time constraint and link event constraint. If an event does 
not require any specific time, any time can be assigned to the 
event based on event duration. Note that, these phases do not 
solve the constraints completely, however they do minimize 
the cost violations. The initial solution is then mapped into 
a two-dimensional matrix.

4.3.2  Particle encoding

Each particle is encoded based on two variables: resources 
(teachers, students, classes, rooms) and times in a two-
dimensional matrix. We allow more than one event in each 
cell of the matrix to ease the placement of events. For exam-
ple, a particle p [5][20] = {47, 33}, events 47 (x7B_Eng-
lish_1) and 33 (x7D_Maths_1) are assigned to resource 5 
(Teacher05) and time 20 (Wed_1_4).

Figure 1 shows a particle in a two-dimensional matrix. A 
row represents a resource and a column represents a time. 
The matrix can contain up to four resource types, depending 
on the instance. Resources of similar type are grouped in 
rows. For example, there are 56 teachers and 300 students. 
The rows from 0 to 55 represent teachers while the rows 
from 56 to 355 represent students.

We use a single dimension to represent multiple resource 
types to save on memory utilization. We refrain from using 
one dimension to represent each resource type even though 
it may ease data manipulation as its application is memory 
intensive.

4.3.3  The main algorithm

The pseudo-code of the proposed HPSO-PE is presented in 
Algorithm 3. Note that a particle consists of a current posi-
tion and a local best position. In lines 3–10, we append 25 
particles to the set activeParticle (swarm). For each particle, 
we set the current position to a random position and the local 
best position to the current position. The global best posi-
tion is set as the best local best position among the particles 
(lines 5–8).

In lines 12–16, we attempt to move the position of each 
particle utilizing mutation, local and global crossover opera-
tors. <horizontal and vertical> position transformation is 
applied in these operators. A new position is accepted only 
if its fitness value is better or equal to the current position. A 
detail explanation of the operators is given in Sects. 4.3.3.1 
and  4.3.3.2.

In lines 17–19, we apply 1 iteration of HC (shown in 
Sect. 4.2) on 300 (set based on computational experience) 
particles selected randomly from the swarm. Then, we 
update the local best position of each particle and the global 
best position (lines 20–27).

When 20% of the time limit is exceeded, we start to elimi-
nate the worst particle (in terms of fitness value) from the 
swarm until there are 5 (set based on computational experi-
ence) particles left (lines 28–37). We are trying to switch the 
focus of the search from exploration to exploitation towards 
the end.

Fig. 1  Particle encoding Time1 Time2 … … Timen-1 Timen

Teacher 1 event event … … event event 

… … … … … … … 

Teacher t event event … … event event 

Student 1 event event … … event event 

… … … … … … … 

Student s event event … … event event 

Class 1 event event … … event event 

… … … … … … … 

Class c event event … … event event 

Room 1 event event … … event event 

… … … … … … … 

Room r event event … … event event 
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Matrix A Matrix B 
79 36 45 45 36 79 

78 20 30 78 30 20 
2 94 52 2 52 94 

17 5 17 5 
45 97 17 → 97 17 45 

93 54 16 93 16 54 
35 74 83 83 35 74 

62 71 62 71 
50 64 81 78 50 78 81 64 

11 10 77 10 77 11 

Fig. 2  Example of mutation in the matrix by column (Matrix A 
mutated to produce Matrix B)

Matrix A Matrix B 
79 36 45 79 36 45 

78 20 30 78 20 30 
2 94 52 93 54 16 

17 5 17 5 
45 97 17 → 45 97 17 

93 54 16 2 94 52 
35 74 83 35 74 83 

62 71 62 71 
50 64 81 78 50 64 81 78 

11 10 77 11 10 77 

Fig. 3  Example of mutation in the matrix by row (Matrix A mutated 
to produce Matrix B)

4.3.3.1 Mutation operator The mutation operator (line 13 
of the Algorithm 3) swap two rows (similar resource type) 
or columns in the solution matrix to produce a different solu-
tion. As shown in Algorithm 4, there is an equal probability 
for mutation by column and row. If mutation by column is 

chosen, two columns are randomly selected and swapped. 
An example is given in Fig.  2. Otherwise, if mutation by 
row is chosen, a resource type is randomly picked, two rows 
of the resource type are randomly selected and swapped. An 
example is given in Fig. 3.
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Fig. 4  Example of crossover 
by column (Matrix X crosso-
ver with Matrix Y to produce 
Matrix Z)

Matrix X (Current) Matrix Y (Best) Matrix Z (New) 
19 23 22 1 0 79 45 0 23 22 

75 74 64 36 33 84 31 75 33 64 63 
93 51 2 23 16 93 2 
70 79 20 6 29 70 20 19 79 

15 31 42 2 73 42 → 31 42 
73 63 78 32 75 73 51 

6 32 46 14 6 20 93 19 6 74 32 15 
20 14 78 83 70 74 19 78 14 
83 0 1 45 46 15 51 83 46 1 45 

33 36 29 22 63 64 36 29 

Fig. 5  Example of crossover by 
row (Matrix X crossover with 
Matrix Y to produce Matrix Z)

Matrix X (Current) Matrix Y (Best) Matrix Z (New) 
19 23 22 1 0 79 45 2 19 93 22 

75 74 64 36 33 84 31 75 74 64 51 
93 51 2 23 16 23 16 
70 79 20 6 29 70 79 

15 31 42 2 73 42 → 15 31 42 
73 63 78 32 75 73 63 78 

6 32 46 14 6 20 93 19 6 32 46 
20 14 78 83 70 74 20 14 
83 0 1 45 46 15 51 83 0 1 45 

33 36 29 22 63 64 33 36 29 

4.3.3.2 Crossover operator As the mutation operator, this 
operator aims to produce a potential new solution matrix 
with a better fitness value. There are two types of crossover 
operator namely local and global crossover.

The local crossover operator (line 14 of the Algorithm 3) 
replaces a column or row of events in the current solution 
matrix with the matching one in the local best solution 
matrix. As shown in Algorithm 5, there is an equal prob-
ability for local crossover by column and row.

If local crossover by column is chosen, in the replaceCol-
umn procedure, a column (time) in the current solution matrix 
is randomly selected. All the events (except the ones that can 
be found in the matching column in the local best solution 
matrix) in that column are randomly distributed to other cells. 
That column is then replaced with the matching column in 
the local best solution matrix. An example is given in Fig. 4.

Otherwise, if local crossover by row is chosen, in the 
replaceRow procedure, a resource type is randomly selected. 
A row of that resource type is randomly picked. All the 
events (except the ones that can be found in the matching 
row in the local best solution matrix) in the row are dis-
tributed to other cells. That row (similar resource type) is 
then replaced by the matching row in the local best solution 
matrix. An example is given in Fig. 5.

The global crossover operator (line 15 of the Algorithm 3) 
is similar to the local crossover operator where it replaces 
a column or row of events in the current solution matrix 
with the matching one in the global best solution matrix 
instead of the local best solution. The details are shown in 
Algorithm 6.
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Table 3  Result comparison 
between <vertical> and 
<horizontal and vertical> 
solution transformations

Shown is the best and mean value of (hard + soft) constraint violations

Instance Vertical Horizontal and vertical t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 10.9 10 11.1 0.251
ItalyInstance1 16 21.7 15 22.8 0.060
BR-SA-00 9 10.1 9 10.1 0.500
BrazilInstance3 16 18.9 16 19.1 0.344
BrazilInstance5 27 29.8 26 29.7 0.362
BR-SM-00 37 41.5 38 41.5 0.471
BR-SN-00 37 38.5 36 38.7 0.262
FI-WP-06 23 26.3 24 26.0 0.233
GR-P3-10 151 166.0 156 168.7 0.050
ZA-LW-09 84 89.2 95 103.1 0.000
BrazilInstance7 53 56.8 51 56.6 0.363
WesternGreeceUniversity3 10 10.8 10 11.2 0.003
ES-SS-08 251 281.3 263 308.0 0.000
GR-PA-08 40 44.2 40 44.1 0.401
ZA-WD-09 110 123.3 112 121.7 0.075
FI-MP-06 38 41.5 38 41.2 0.202
AU-SA-96 2572 2675.2 2523 2547.4 0.000
AU-TE-99 2324 6469.4 1292 1358.3 0.000
GR-H1-97 7 9.8 7 9.7 0.471
FI-PB-98 115 121.7 112 120.4 0.042
AU-BG-98 22,455 31,806.1 14,491 23,077.4 0.000
FinlandElementarySchool 3 3.6 3 3.6 0.286
FinlandSecondarySchool2 64 67.5 61 65.7 0.007
US-WS-09 3142 3234.8 3169 3253.1 0.012
IT-I4-96 657 809.2 541 704.5 0.000
DK-VG-09 5276 5535.9 5504 5681.1 0.000
DK-FG-12 4905 6235.8 4932 6521.1 0.145
NL-KP-09 143,038 157,681.9 145,982 156.338.1 0.193
NL-KP-03 62,170 71,873.8 56,450 64.657.9 0.000
UK-SP-06 1822 2175.2 1615 2074.2 0.023
DK-HG-12 20,927 23,859.0 21,230 23,967.9 0.383
NL-KP-05 48,650 55,778.0 41,979 50.015.9 0.000
KS-PR-11 2073 2176.1 2010 2141.0 0.010
GEPRO 309,674 337,971.8 316,064 334.885.3 0.149
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5  Experimental results

Experiments were performed on machines running on 
 Intel®  Xeon® E-2124 3.30 GHz with 16 GB RAM and 
Windows Server 2019. The algorithms were coded in Java 
and compiled with Eclipse IDE. The results obtained were 
validated using HSEval validator1 . All the experiment 
instances were supplied by University of Twente2 and the 
time limit T (determined by running a benchmark program 

on the computer) allowed for every single run is 540 s. The 
statistical data were gathered by executing 31 runs for each 
instance.

5.1  The effect of solution transformation

In this section, we compare the use of <vertical> and 
<horizontal and vertical> transformations in the muta-
tion and crossover operations of PSO. Table 3 shows the 
best and mean values of the constraint (hard + soft) viola-
tions. From t-tests, the p-values (less than 0.05) revealed 
a significant difference between the means of PSO utiliz-
ing <vertical> and <horizontal and vertical> transforma-
tion on 15 instances. PSO utilizing our proposed solution 

Table 4  Result comparison 
between PSO and HPSO. 
Shown is the best and mean 
value of (hard + soft) constraint 
violations

Instance PSO HPSO t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 11.1 10 11.0 0.286
ItalyInstance1 15 22.8 16 21.5 0.041
BR-SA-00 9 10.1 9 9.8 0.034
BrazilInstance3 16 19.1 14 18.1 0.035
BrazilInstance5 26 29.7 24 28.0 0.000
BR-SM-00 38 41.5 37 40.0 0.000
BR-SN-00 36 38.7 35 37.2 0.000
FI-WP-06 24 26.0 20 23.5 0.000
GR-P3-10 156 168.7 140 154.2 0.000
ZA-LW-09 95 103.1 71 77.0 0.000
BrazilInstance7 51 56.6 50 53.4 0.000
WesternGreeceUniversityInstance3 10 11.2 9 9.8 0.000
ES-SS-08 263 308.0 227 265.4 0.000
GR-PA-08 40 44.1 36 42.3 0.002
ZA-WD-09 112 121.7 105 114.3 0.000
FI-MP-06 38 41.2 35 38.1 0.000
AU-SA-96 2523 2547.4 2470 2502.9 0.000
AU-TE-99 1292 1358.3 1263 1310.5 0.000
GR-H1-97 7 9.7 4 8.9 0.041
FI-PB-98 112 120.4 97 106.6 0.000
AU-BG-98 14,491 23,077.4 4597 7766.8 0.000
FinlandElementarySchool 3 3.6 3 3.5 0.323
FinlandSecondarySchool2 61 65.7 48 52.3 0.000
US-WS-09 3169 3253.1 3194 3248.5 0.282
IT-I4-96 541 704.5 619 819.8 0.000
DK-VG-09 5504 5681.1 5437 5536.3 0.000
DK-FG-12 4932 6521.1 4888 6354.7 0.234
NL-KP-09 145,982 156.338.1 137,028 156,397.7 0.488
NL-KP-03 56,450 64.657.9 46,437 58,178.4 0.000
UK-SP-06 1615 2074.2 1555 1896.6 0.000
DK-HG-12 21,230 23,967.9 22,666 25,209.0 0.000
NL-KP-05 41,979 50.015.9 39,050 47,800.6 0.010
KS-PR-11 2010 2141.0 1958 2048.4 0.000
GEPRO 316,064 334.885.3 320,391 338,135.5 0.123

2 https ://www.utwen te.nl/en/eemcs /dmmp/hstt/.
1 http://www.it.usyd.edu.au/ jeff/cgi-bin/hseval.cgi.

https://www.utwente.nl/en/eemcs/dmmp/hstt/
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transformation <horizontal and vertical> managed to 
achieve a lower mean value for 10 out of the 15 instances. 
The proposed solution transformation is effective for most 
of the medium and large instances.

5.2  Comparing PSO and HPSO

We compare the performance of PSO and hybrid PSO 
(HPSO) in minimising constraint violations. To show the 
effectiveness of hybridization, <horizontal and vertical> 
transformation is used in both algorithms. As shown in 
Table 4, the p-values (less than 0.05) revealed a signifi-
cant difference between the means of HPSO and PSO in 

28 instances. No significant difference is observed for 
6 other instances (BrazilInstance1, FinlandElementary-
School, US-WS-09, DK-FG-12, NL-KP-09 and GEPRO). 
A lower mean value is obtained by HSPO for 26 out of 
the 28 instances, showing that synergy is achieved by the 
hybridization.

5.3  The effect of particle elimination

In this section, we present the effect of eliminating insig-
nificant particles in HPSO-PE in Table 5. The p-values 
(less than 0.05) revealed a significant difference between 
the means of HPSO and HPSO with particle elimination 

Table 5  Result comparison 
between HPSO and HPSO-PE

Shown is the best and mean value of (hard + soft) constraint violations

Instance HPSO HPSO-PE t-test (p-value)

Best Mean Best Mean

BrazilInstance1 10 11.0 10 10.9 0.435
ItalyInstance1 16 21.5 15 20.7 0.134
BR-SA-00 9 9.8 8 9.6 0.163
BrazilInstance3 14 18.1 16 18.6 0.118
BrazilInstance5 24 28.0 24 27.5 0.076
BR-SM-00 37 40.0 35 38.4 0.000
BR-SN-00 35 37.2 35 36.1 0.000
FI-WP-06 20 23.5 14 20.9 0.000
GR-P3-10 140 154.2 102 121.2 0.000
ZA-LW-09 71 77.0 37 49.2 0.000
BrazilInstance7 50 53.4 47 49.8 0.000
WesternGreeceUniversity3 9 9.8 9 9.2 0.000
ES-SS-08 227 265.4 175 215.0 0.000
GR-PA-08 36 42.3 31 38.3 0.000
ZA-WD-09 105 114.3 72 82.1 0.000
FI-MP-06 35 38.1 28 31.3 0.000
AU-SA-96 2470 2502.9 2388 2425.5 0.000
AU-TE-99 1263 1310.5 1266 1308.2 0.340
GR-H1-97 4 8.9 3 9.2 0.325
FI-PB-98 97 106.6 61 69.8 0.000
AU-BG-98 4597 7766.8 2369 3152.8 0.000
FinlandElementarySchool 3 3.5 3 3.5 0.411
FinlandSecondarySchool2 48 52.3 16 21.2 0.000
US-WS-09 3194 3248.5 3164 3243.1 0.233
IT-I4-96 619 819.8 171 198.2 0.000
DK-VG-09 5437 5536.3 3475 3675.3 0.000
DK-FG-12 4888 6354.7 2846 4695.3 0.000
NL-KP-09 137,028 156,397.7 76,393 98,053.2 0.000
NL-KP-03 46,437 58,178.4 14,280 17,354.1 0.000
UK-SP-06 1555 1896.6 1134 1604.5 0.000
DK-HG-12 22,666 25,209.0 15,622 18,689.8 0.000
NL-KP-05 39,050 47,800.6 17,529 22,046.1 0.000
KS-PR-11 1958 2048.4 1086 1152.4 0.000
GEPRO 320,391 338,135.5 310,275 334,886.1 0.077
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(HPSO-PE) for 24 out of the 34 instances. HPSO-PE 
attained a lower mean value for all the 24 instances, indicat-
ing the effectiveness of particle elimination in HPSO-PE.

5.4  Comparing HC, PSO and HPSO‑PE

In this section, we compare the performance of HC, con-
ventional PSO and HPSO-PE in Table 6. Table 6 shows the 
best and mean values of the constraint (hard + soft) viola-
tions. We also compare the performance of the three algo-
rithms using a ranking system used in the second round of 

ITC2011. The three algorithms are ranked (1 or 2 or 3) based 
on the constraint (hard + soft) violations in each run on each 
instance. The average rank shown in the last row of Table 6 
is calculated as the sum of ranks/ number of ranks. As we 
run each algorithm for 31 times for each of the 31 instances, 
therefore the number of ranks is 961. The average rank sug-
gests that HPSO-PE is the best followed by HC and PSO. 
From observation, the HPSO-PE performed well on small 
and medium-sized instances while HC is effective on the 
larger instances.

Table 6  Result comparison 
between HC, PSO and 
HPSO-PE

Shown is the best and mean value of (hard + soft) constraint violations

Instance HC PSO HPSO-PE

Best Mean Best Mean Best Mean

BrazilInstance1 12 21.9 10 10.9 10 10.9
ItalyInstance1 28 46.0 16 21.7 15 20.7
BR-SA-00 14 19.0 9 10.1 8 9.6
BrazilInstance3 25 40.7 16 18.9 16 18.6
BrazilInstance5 34 39.3 27 29.8 24 27.5
BR-SM-00 46 57.2 37 41.5 35 38.4
BR-SN-00 42 53.9 37 38.5 35 36.1
FI-WP-06 30 39.4 23 26.3 14 20.9
GR-P3-10 124 147.7 151 166.0 102 121.2
ZA-LW-09 47 59.8 84 89.2 37 49.2
BrazilInstance7 58 66.2 53 56.8 47 49.8
WesternGreeceUniversity3 10 11.7 10 10.8 9 9.2
ES-SS-08 216 280.1 251 281.3 175 215.0
GR-PA-08 46 59.1 40 44.2 31 38.3
ZA-WD-09 101 130.1 110 123.3 72 82.1
FI-MP-06 32 42.7 38 41.5 28 31.3
AU-SA-96 2425 2497.4 2572 2675.2 2388 2425.5
AU-TE-99 1317 1412.9 2324 6469.4 1266 1308.2
GR-H1-97 14 24.8 7 9.8 3 9.2
FI-PB-98 63 84.7 115 121.7 61 69.8
AU-BG-98 2382 2555.8 22,455 31,806.1 2369 3152.8
FinlandElementarySchool 5 8.6 3 3.6 3 3.5
FinlandSecondarySchool2 11 18.0 64 67.5 16 21.1
US-WS-09 3243 3331.1 3142 3234.8 3164 3243.1
IT-I4-96 102 144.2 657 809.2 171 198.2
DK-VG-09 2595 2713.3 5276 5535.9 3475 3675.3
DK-FG-12 4973 6276.3 4905 6235.8 2846 4695.3
NL-KP-09 54,335 68,105.5 143,038 157,681.9 76,393 98,053.2
NL-KP-03 2772 3741.3 62,170 71,873.8 14,280 17,354.1
UK-SP-06 1446 2761.9 1822 2175.2 1134 1604.5
DK-HG-12 21,534 26,135.4 20,927 23,859.0 15,622 18,689.8
NL-KP-05 2561 3217.5 48,650 55,778.0 17,529 22,046.1
KS-PR-11 613 673.4 2073 2176.1 1086 1152.4
GEPRO 142,949 169,605.7 309,674 337,971.8 310,275 334,886.1
Average rank 2.25 2.33 1.34
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Out of curiosity, we extended the runtime to 5 times the 
time limit or 5T (2700 s) for the large instances. It took 
around 23 h to run each instance for 31 times. As shown 
in Table 7, the result is consistent with the previous one 
and HC still performed better than HPSO-PE on the large 

instances. However, it seems that the improvement rate for 
PSO and HSPO-PE is higher compared to HC for all the 
large instances except GEPRO.

Table 7  Result comparison between HC, PSO and HPSO-PE using extended runtime (5T)

Shown is the best and mean value of (hard + soft) constraint violations

Instance HC PSO HPSO-PE

Best Mean Improvement 
(%)

Best Mean Improvement 
(%)

Best Mean Improve-
ment (%)

DK-VG-09 2231 2333.7 14 3377 3466.9 37 2526 2591.8 29
DK-FG-12 2677 5211.1 17 2675 3142.0 50 1785 2669.3 43
NL-KP-09 31,936 48,502.2 29 75,031 85,380.9 46 40,116 49,329.5 50
NL-KP-03 1610 2473.5 34 11,026 12,282.0 83 3163 3711.3 79
UK-SP-06 1416 2897.6 − 5 1452 1931.4 11 1218 1564.2 3
DK-HG-12 17,576 23,763.8 9 13,255 13,486.3 43 11,219 11,963.6 36
NL-KP-05 1481 1887.6 41 7800 9415.9 83 2811 3035.8 86
KS-PR-11 309 359.5 47 948 973.7 55 437 470.5 59
GEPRO 30,712 37,589.6 78 235,784 259,832.5 23 178,709 224,355.9 33

Table 8  Solver details Solver Reference Technique

A Fonseca et al. [10] Simulated annealing + iterative local search
B Fonseca et al. [9] Simulated annealing + stagnation-free late 

acceptance hill climbing
C Kristiansen et al. [17] Mixed-integer programming
D Fonseca et al. [8] Matheuristic + variable neighbourhood search

Table 9  Comparing HPSO-PE with the state of the art methods on instances in round 2 of ITC2011. Shown is (mean of hard constraint viola-
tions/ mean of soft constraint violations)

Instance A B C D HPSO-PE

BR-SA-00 (1.0/63.9) (0.0/78.0) (0/46) (0.0/5.8) (9.6/0.0)
BrazilInstance3 (0.0 /127.8) (0.0/160.2) (0/39) (0.0/31.2) (18.6/0.0)
BR-SM-00 (17.2/99.6) (2.4/164.2) (5/286) (0.0/63.6) (38.4/0.0)
BR-SN-00 (4.0/223.5) (0.0/221.0) (0/682) (0.0/51.6) (36.1/0.0)
WesternGreeceUniversity3 (0.0 /5.6) (0.0/5.2) (0/25) (0.0/5.6) (7.1/2.0)
ES-SS-08 (0.0 /865.2) (0.0/856.8) (1454/11,020) (0.0/474.8) (105.3/109.7)
GR-PA-08 (0.0 /7.4) (0.0/6.6) (0/81) (0.0/5.0) (29.7/8.6)
ZA-WD-09 (2.0/15.8) (2.0/12.0) (1801/705) (0.0/57.8) (42.9/39.2)
FinlandElementarySchool (0.0 /4.0) (0.0/3.8) (0/3) (0.0/3.0) (0.0/3.5)
FinlandSecondarySchool2 (0.0 /0.4) (0.0/0.4) (1604/3878) (0.0/0.0) (18.6/2.6)
IT-I4-96 (0.0 /658.4) (0.0/302.2) (0/17,842) (0.0/32.2) (168.9/29.2)
NL-KP-09 (36.6/154,998.5) (25.8/112,335.0) (17,512/140) (11.8/11545.0) (92,068.6/5984.5)
NL-KP-03 (0.4/89,132.2) (0.6/90,195.8) (8491/6920) (0.0/1257.8) (3390.6/13,963.4)
NL-KP-05 (30.2/33,169.6) (33.9/27,480.4) (2567/53) (14.4/5677.8) (4267.6/17,778.4)
KS-PR-11 (14.0/6934.4) (6.3/6383.8) (3626/2620) (0.0/9.0) (996.4/156.0)
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5.5  Comparing HPSO‑PE with the state of the art 
methods

Note that as we follow the time limit restriction as stipulated 
in round 2 of ITC2011, therefore we only compare HPSO-
PE with the state of art methods (which are following the 
same restriction) on instances in round 2 of ITC2011. As 
shown in Table 9, HPSO-PE performs well in minimizing 
soft constraint violations but it is not that competitive in 
minimizing hard constraint violations. It achieved the low-
est mean of soft constraint violations for 7 instances and the 
lowest mean of hard constraint violations for 1 instance. The 
solver details are given in Table 8.

6  Discussion

From observation, HC outperformed HPSO-PE in larger 
instances. HC is relatively lighter in terms of processing 
compared to HPSO-PE (a population based method). There-
fore, it can perform more iterations than HPSO-PE. Fur-
thermore, the time limit does not allow a sufficient number 
of iterations for HPSO-PE to perform effectively on larger 
instances. HC is also better than HPSO-PE in exploiting the 
search space by making small changes to the current solution 
and moving to its neighbour solutions.

Meanwhile, HPSO-PE performed better than HC in 
smaller instances. This is possibly because HPSO-PE now 
has a sufficient number of iterations to function effectively. 
Besides, HC can easily get stuck in local optima as its capa-
bility in exploring the search space is rather limited. On 
the other hand, HPSO-PE is better at exploring the search 
space. When one of the particles (solutions) is stuck in local 
optima, the other particles will attempt to guide it out of the 
local optima and move it towards the global best position.

The proposed HPSO-PE is superior compared to HC and 
PSO. The performance is attributed to the features in the 
algorithm. The proposed solution transformation <horizon-
tal and vertical> is more effective than vertical transfor-
mation (E.g. swapping by columns only) in mutation and 
crossover operations. The connectivity of the search space 
is improved by having an additional method in generating 
a new solution. In HPSO-PE, the particles in the PSO com-
ponent are used to explore the search space while the HC 
component is employed to exploit the search space. The 
combination of PSO and HC helps to reduce the probability 
of a solution getting stuck in local optima. Also, the number 
of particles in the swarm is reduced (by eliminating a certain 
number of insignificant particles) towards the end of HPSO-
PE. Particle elimination works because it allows the search 
to switch from exploration to exploitation towards the end.

7  Conclusion and future work

We have presented the effect of various solution transfor-
mation used in the mutation and crossover operations of 
PSO. We found that the proposed solution transformation 
<horizontal and vertical> is better than vertical transfor-
mation. We have compared PSO and HPSO. Results indi-
cate that synergy is achieved by hybridizing the PSO with 
HC. We have made a comparison of the performance of 
HPSO with and without particle elimination. Results show 
that HPSO-PE is superior to HPSO. We also compared the 
performance of HC, PSO and HPSO-PE. Average rank sug-
gests that HPSO-PE is the best followed by HC and PSO. 
The HPSO-PE performed well on small and medium-sized 
instances while HC is effective on larger instances. Overall, 
the HPSO-PE performed better than HC and PSO. Lastly, 
we compared HPSO-PE with the state of the art methods.

In this work, we employed a one-stage approach where 
the hard and soft constraint violations are minimized 
simultaneously at the same time. The disadvantage of this 
approach is that the feasibility of a solution is not guaran-
teed. In future, we may develop a repair function to fix the 
feasibility of the solution at the end of the search. We may 
also try a two-stage approach where hard and soft constraints 
are minimized separately in stages.

Neighbourhood structures play an important role in the 
search for better quality solutions. Therefore, we look for-
ward to developing a variety of novel neighbourhood struc-
tures to improve the connectivity of the search space.

The current HC component in HPSO-PE only accepts 
candidate solutions with better fitness value which strictly 
limits the exploration capability of the search. We are con-
sidering to relax the acceptance criteria to conditionally 
accept worse candidate solutions. We may also try to hybrid-
ize the PSO with other local search methods such simulated 
annealing, tabu search, iterated local search etc.
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