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ABSTRACT In this paper, we are addressing the NP-hard nurse rostering problem utilizing a 2-stage
approach. In stage one, Monte Carlo Tree Search (MCTS) and Hill Climbing (HC) are hybridized in
finding a feasible solution (satisfying all the hard constraints). We propose a new constant C value (which
balances search diversification and intensification of MCTS) and tree policy/node selection function in the
selection procedure of MCTS. In stage two, the feasible solution is further improved using Iterated Local
Search (ILS) with Variable Neighbourhood Descent as the local search component. We introduce several
unique neighbourhood structures for the ILS. In addition, we propose a novel perturbation strategy to allow
the search to escape from local optimum. The proposedmethodology is tested on the Shift Scheduling dataset
(24 benchmark instances). New best results are reported for seven and two instances for the 10 and 60minutes
run respectively. An in-depth discussion on the attributes of the proposed methodology that lead to its good
performance is provided.

INDEX TERMS Nurse rostering, hill climbing, Monte Carlo tree search, iterated local search, variable
neighbourhood descent.

I. INTRODUCTION
Combinatorial Optimization Problems (COP) involve finding
the values for a set of variables from a discrete search space
which maximizes or minimizes an objective function. Exam-
ples of these type of problems include vehicle routing [38],
traveling salesman, bin packing, minimal spanning tree and
timetabling. There are many types of timetabling problems
e.g. educational timetabling [12], [41], [42], transportation
timetabling [29] and personnel scheduling [46]. Nurse ros-
tering is a specific type of personnel scheduling problem and
plays an important role in healthcare management. It involves
the assignment of shifts to nurses on a planning horizon (e.g.
one month), satisfying a set of hard and soft constraints.
The aim is not only to improve the operational efficiency
of hospital wards by having an effective utilization of the
limited resources, but also to focus on the well-being and job
satisfaction of nurses.
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approving it for publication was Huaqing Li .

Due to the number and nature of constraints, nurse ros-
tering is complex and challenging for both researchers and
administrators (personnel managers and head nurses) in hos-
pitals. In fact, the nurse rostering problem is NP-hard [24].
Until recently, most nurse rosters were still constructed man-
ually which can be tedious and time consuming. Having an
effective automated nurse roster is crucial. Among issues
that may be addressed by having a good roster in hospitals
include:

• Under or over staffing. The automated nurse rostering
systemwill ensure that the right number (within a prede-
fined range) of nurses will be assigned to a ward for each
shift in a day. This will not only improve the operational
efficiency but also reduce the operational cost of the
ward.

• Skills mismatch. Nurses with the right qualifications
and skills will be assigned to shifts so that healthcare
services can be delivered smoothly which will enhance
the well-being and life span of the patients.
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• Job dissatisfaction of nurses. Shifts will be assigned
to nurses according to their requirements speci-
fied in contracts such as minimum/maximum work
time, minimum/maximum consecutive shifts, prefer-
ence/avoidance of shift pattern, night shift assignment,
weekend assignment, days on/off, co-workers prefer-
ence/avoidance etc. A nurse-centred roster will improve
the life (health, family and social) quality and morale of
nurses which in turn will improve the nursing service
quality as well as the experience of patients.

• Shortage of nurses. Nurse shortages in Malaysia is
reported in [4]. The authors concluded that a supportive
work environment is important, in addition to growing
the workforce in addressing the issue. As the well-being
of nurses is improved by having an automated rostering
system, the nurse turnover rate and thus nursing shortage
are expected to be alleviated. Subsequently, this will
decrease staff management costs in terms of recruitment,
retention and training.

The coronavirus disease 2019 (COVID-19) was declared
a pandemic by the World Health Organization (WHO) in
March 2020. Since then, it has greatly impacted health-
care front liners in terms of psychological well-being,
their morale and work performance due to long work-
ing hours under stressful conditions [20]. The urgency of
having of an optimal roster is further underlined by the
pandemic.

The contributions of this paper are as follows. We apply
MCTS in nurse rostering problems for the first time. As far
as we are aware, there is no such application found in the sci-
entific literature. MCTS (as a relatively new search method-
ology) has become the focus of Artificial Intelligence (AI)
due to its success in the games domain, particularly Go
(where programs based on MCTS are competitive with the
best human players) [6]. We propose a new C value (which
balances the search diversification and intensification) and
tree policy/node selection function in the selection procedure
of MCTS. We introduce several unique neighbourhood struc-
tures and a novel perturbation strategy to allow ILS to escape
from local optimum. The proposedmethodology finds several
new best results in a comparison to the current state of the art
methodologies.

The remainder of this paper is organized as follows.
The nurse rostering problem and its formal representa-
tion are described in Section II. Related work is reviewed
in Section III. The proposed methodology is described in
Section IV. We present the experimental results in Section V.
An in-depth discussion is provided in Section VI. Finally,
the conclusion and suggestions for future work are given in
Section VII and VIII respectively.

II. PROBLEM DESCRIPTION
In this section, we describe the problem and the constraints
involved. We present a formal representation of the problem
using an integer programming model. The details of the
studied problem can be found in [15].

A. FORMAL REPRESENTATION OF THE PROBLEM
1) PARAMETERS

N : set of nurses.
h: number of days in the planning horizon.
D: set of days = {1 . . . h}.
W : set of weekends = {1 . . . h/7}.
S: set of shifts.
Ts: set of shifts that cannot be assigned immedi-

ately after shift s.
Dn: set of days that nurse n cannot assigned a shift.
ls: length of shift s in minutes.
mmaxns : max number of shift s that can be assigned to

nurse n.
bminn : min number of minutes that nurse n must be

assigned.
bmaxn : max number of minutes that nurse n can be

assigned.
cminn : min number of consecutive shifts that nurse n

must work.
cmaxn : max number of consecutive shifts that nurse n

can work.
ominn : min number of consecutive days off that

nurse n can be assigned.
amaxn : max number of weekends that nurse n can

work.
qnds: penalty if shift s is not assigned to nurse n on

day d .
pnds: penalty if shift s is assigned to nurse n on

day d .
uds: preferred total number of nurses assigned a

shift s on day d .
wminds : weight for cover below the preferred one for

shift s on day d .
wmaxds : weight for cover above the preferred one for

shift s on day d .

2) DECISION VARIABLES

xnds =
{
1 if nurse n is assigned to shift s on day d
0 otherwise (1)

knw =

{
1 if nurse n works on weekend w
0 otherwise

(2)

yds: total below the preferred cover for shift s on day d .
zds: total above the preferred cover for shift s on day d .

The objective function (Equation 3) is to satisfy the shift
requests of nurses (Equations 4 and 5) and minimize under
and over staffing (Equation 6). These requirements are soft
constraints which means they are optional and their degree of
satisfaction will determine the quality of the roster. qnds and
pnds in Equations 4 and 5 are weights that show the impor-
tance of shift on and off requests to a nurse. Meanwhile,
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wminds and wmaxds in Equation 6 are weights that underline the
importance of under and over coverage respectively.

Minimize
3∑
i=1

SCi (3)

SC1: Shift on penalty.∑
n∈N

∑
d∈D

qnds · (1− xnds) s ∈ S (4)

SC2: Shift off penalty.∑
n∈N

∑
d∈D

pnds · xnds s ∈ S (5)

SC3: Date specific cover penalty.∑
d∈D

wminds · yds +
∑
d∈D

wmaxds · zds s ∈ S (6)

Minimising the soft constraints (Equation 1) is subject to
the fulfilment of the hard constraints presented below. Hard
constraints are compulsory. A solution that satisfies all the
hard constraints is called a feasible solution.

HC1: A nurse cannot be assigned more than one shift per
day. ∑

s∈S

xnds ≤ 1 n ∈ N , d ∈ D (7)

HC2: A minimum rest time is required after each shift thus
certain shifts cannot follow others. For example, an early shift
cannot follow a late shift.

xnds + xn(d+1)t ≤ 1

n ∈ N , s ∈ S, d ∈ {1 . . . |D| − 1}, t ∈ Ts (8)

HC3: The total number of a shift assigned to a nurse must
not exceed the maximum allowed. For example, some nurses
do not work night shift or work a maximum number of night
shifts. ∑

d∈D

xnds ≤ mmaxns n ∈ N , s ∈ S (9)

HC4: The workload (in minutes) of a nurse must be
between a minimum and a maximum.

bminn ≤
∑
d∈D

ls · xnds ≤ bmaxn n ∈ N , s ∈ S (10)

HC5: The number of consecutive shifts assigned to a nurse
must not exceed the maximum allowed.
d+cmaxn∑
j=d

xnjs ≤ cmaxn n ∈ N , s ∈ S, d ∈ {1 . . . |D| − cmaxn }

(11)

HC6: The minimum number of consecutive shifts. If the
minimum is four, then the sequences {off-on-off}, {off-on-
on-off} and {off-on-on-on-off} are not allowed.

xnds +
(
s−

d+e∑
j=d+1

xnjs
)
+ xn(d+e+1)s > 0

n ∈ N , s ∈ S, e ∈ {1 . . . cminn − 1}, d ∈ {1 . . . |D|−(e+ 1)}

(12)

HC7: The minimum number of consecutive days off. If the
minimum is three, then the sequences {on-off-on} and {on-
off-off-on} are not allowed.

(
1− xnds

)
+

d+e∑
j=d+1

xnjs +
(
1− xn(d+e+1)s

)
> 0

n ∈ N , s ∈ S, e ∈ {1 . . . ominn − 1}, d ∈ {1 . . . |D|−(e+ 1)}

(13)

HC8: The maximum number of weekends. A weekend is
considered worked if a worker has a shift on either Saturday
or Sunday.

knw ≤ xn(7w−1)s + xn(7w)s ≤ 2knw
n ∈ N , s ∈ S, w ∈ W (14)∑

w∈W

knw ≤ amaxn n ∈ N (15)

III. RELATED WORK
An overview of the nurse rostering problem can be found
in [8], [11], [50]. As policies, legalities and regulations differ
between countries and hospitals, nurse rostering problems
differ in terms of requirements (constraints) [16], [23].

The first international nurse rostering competition
(INRC-I) was organized in 2010 with the goal to generate
and compare new approaches to the problem in an objective
manner [22]. The winner of INRC-I, Valouxis et al. [45] used
a systematic two phase approach. In the first phase, the
daily workload for each nurse was decided using an integer
programming formulation with local search processes, while
in the second phase, the specific shifts were assigned using
an integer programming formulation. Other finalists of the
competition were; Burke and Curtois [7] applied an ejection
method for small instances and a branch and price algorithm
for medium and long instances; Nonobe [33] employed a
tabu search, with a mechanism to dynamically control the
tabu tenure and constraint weights; Bilgin et al. [5] applied
a hybrid approach where a greedy shuffle is deployed after
running a hyper-heuristic for 80% of the computation time.
Recent approaches for the nurse rostering problem include
adaptive variable neghbourhood search [43], hybrid harmony
search [3], randomized variable neighbourhood search [49],
neutrality based iterated local search [32], population-based
local search [2] and a hybrid of variable neighbourhood
search and dynamic programming [1].

The second international nurse rostering competition
(INRC-II) was organized in 2014 [9]. INRC-II is a simplified
version of INRC-I. A multi-stage problem formulation was
added. History information (border data such last worked
shift of each nurse) has to be taken into account by solvers.
Among the finalists of the competition were network flow
based mixed integer linear programming [36], rotation based
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branch-and-price [28] and a sequence-based selection hyper-
heuristic [26]. Among the competitive approaches post com-
petition were variable neighbourhood search [19], simulated
annealing [10] and a hyper-heuristic based upon a hidden
markov model [25].

Rahimian et al. [35] proposed a hybrid integer program-
ming and variable neighbourhood search algorithm for the
Shift Scheduling dataset (24 instances) introduced in [15].
A greedy heuristic was used to generate an initial solution.
Then a variable neigbourhood search algorithm and inte-
ger programming (IP) based on a ruin and recreate frame-
work was run alternately until the stopping criteria was met.
In the framework, a scoring scheme was used to identify
high penalty parts of the solution which were destroyed.
The solution was then recreated by an IP solver. IP was
applied again on the best found solution using the remaining
time limit. Strong results were reported. Other approaches
applied on these instances were branch-and-price, ejection
chain heuristic and Gurobi IP solver as reported in [15]. New
approaches applied on these instances were integer program-
ming [39], linear programming based on a column generation
heuristic [40] and a hybrid of mixed integer programming
and simulated annealing [44]. The other popular NRP bench-
mark datasets (ORTEC and NSPLib) and the recent solution
methodologies to address them are shown in Table 1.

MCTS is a relatively new technique and is being deployed
in various application domains such as games [14], fea-
ture selection [30] and parameter tuning [17]. MCTS has
rarely been used for combinatorial optimization problems.
The application of MCTS algorithms on job shop scheduling
problems can be found in [13], [37]. Matsumoto et al. applied
Single Player MCTS (SP-MCTS) on reentrant scheduling
problems [31]. The application of MCTS on variants of the
traveling salesman problems can be found in [34]. Goh et al.
applied MCTS to address course timetabling problems [18].

IV. PROPOSED METHODOLOGY
The overview of our proposed algorithm is presented in
Algorithm 1. We employ a 2-stage approach. In stage 1,
we attempt to find a feasible solution where all the hard
constraints are satisfied. If a feasible solution is found,
stage 2 is activated where we focus on decreasing the soft
constraint violations without compromising any of the hard
constraints.

Algorithm 1: Nurse Rostering

1 bestSol ← empty solution
// Stage 1

2 if FOUNDFEASIBLESOLUTION(bestSol) then
// Stage 2

3 ILS(bestSol)
4 else
5 print ‘‘No feasible solution found.’’
6 end

A. STAGE 1: FINDING A FEASIBLE SOLUTION
As shown in Algorithm 2, we try to find a feasible solution for
each nurse n utilising Monte Carlo Tree Search (MCTS) and
Hill Climbing (HC) (if required). A global feasible solution
is found if a feasible solution is found for all the nurses.
Note that the f function here is referring to hard constraint
violations.

Algorithm 2: FOUNDFEASIBLESOLUTION(bestSol)

1 foreach n ∈ N do
2 MCTS(n, bestSol)
3 if f (bestSoln) 6= 0 then
4 HC(n, bestSol)
5 end
6 end
7 if f(bestSol) = 0 then
8 return true
9 else
10 return false
11 end

1) MONTE CARLO TREE SEARCH (MCTS)
MCTS is depicted in Figure 1. Each node in the tree is
a state and each link is an action leading to a state. Each
node records an average value and a visit count. There are
four main steps in MCTS which are selection, expansion,
simulation and back-propagation. In the selection step, the
tree is traversed from the root until a leaf node is reached.
In the expansion step, a child node is added to the tree.
In the simulation step, a simulation is run from the child
node to produce an outcome. In the propagation step, the
traversed nodes including the child node are updated with
values from the outcome. These steps are repeated within
available resources.

FIGURE 1. MCTS.

In ourMCTS implementation, in each exploration/iteration,
we attempt to assign a shift s to nurse n on each day d
(in the planning horizon) in a constructive manner. At the end
of the exploration, nodes in MCTS are updated according to a
reward value (based on the solution generated). These nodes
will guide shift assignment for nurse n in the next exploration.
The exploration stops whenever a feasible solution for nurse
n is found or a certain number of iterations is reached.
We maintain a record of the best solution bestSol for further
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TABLE 1. Solution methodologies for the NRP benchmark datasets.

processing by HC (in case we could not find a feasible
solution for nurse n). The class diagram for the node class
is shown in Figure 2. The approximate complexity for MCTS
is O(e|D||S|), where e is the number of exploration, |D| is the
number of days and |S| is the number of shifts.

FIGURE 2. Node class definition.

The details of the MCTS procedure are presented in
Algorithm 3. A root node, rootNode is created (line 1). The
diversification co-efficient,C is initialized with a value of 5.0
(based on computational experience). In each exploration,
a current solution for nurse n, curSoln is initialized to an
empty solution (line 5). Day d is set as 1 (line 6). The
rootNode is added to the list of visited nodes, visitedNode
(line 7). A tree is traversed in the TREE procedure which
comprises of the selection and expansion steps (line 8). Shifts
are assigned to nurse n in both the TREE and SIMULA-
TION procedures. SIMULATION returns a reward value
which is used to update the visited nodes in the BACK-
PROPAGATION procedure. C is updated using a decay rate
of 0.9999 (line 11).

The details of the TREE procedure is shown in
Algorithm 4. rootNode is set as currentNode. A tree is
traversed through selected nodes until a leaf node is reached
(lines 2-7). During tree traversal, the visited nodes are kept in
the visitedNode list (line 4), shifts (of the selected nodes) are
assigned to nurse n, on day d (line 5) and d is incremented
by 1 (line 6). At the leaf node, the tree is expanded by
the EXPANSION procedure (line 8). One of the children
of currentNode is selected as childNode (line 9). childNode

Algorithm 3: MCTS(n, bestSol)

1 create a root node, rootNode
2 C ← 5.0
3 exploration← 0
4 while exploration < 200000 do
5 curSoln← empty solution
6 d ← 1
7 visitedNode← visitedNode ∪ rootNode
8 TREE(rootNode, visitedNode,C, n, d, curSoln)
9 reward ←SIMULATION(n, d, curSoln, bestSol)
10 BACKPROPAGATION(reward, visitedNode)
11 C ← C ∗ 0.9999
12 exploration++
13 end

is added to visitedNode (line 10). A shift (of childNode) is
assigned to nurse n, on day d (line 11). d is incremented
by 1 (line 12).

The SELECTION procedure is given in Algorithm 5.
In this procedure, a node with the highest value among the
child nodes of currentNode is selected and returned. Instead
of using the common Upper Confidence Bound (UCB) in
Equation 16, we use Equation 17 as the node evaluation
function or tree policy (line 4). In Equation 16, vi is the value
and ni is the visit count of child node i while np is the visit
count of the current (parent) node. It can be observed that
unvisited children are given the largest possible value so that
all of them are considered at least once. C is a constant when
set higher will promote search diversification as it prioritises
less frequently visited nodes. In Equation 17, vi is the value
of child node i. C is a co-efficient that determines the priority
given to randomness (diversification) when evaluating the
child nodes. The random component introduced in the node
evaluation function/tree policy decreases the branching factor
and effectively increases the tree depth. A deeper tree allows
MCTS tomake better decisions (in assigning shifts to a nurse)
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Algorithm4: TREE(rootNode, visitedNode,C, n, d, curSoln)

1 currentNode← rootNode
2 while currentNode is not leaf do
3 currentNode←SELECTION(currentNode,C)
4 visitedNode← visitedNode ∪ currentNode
5 curSolnd ← currentNode.shift
6 d ++
7 end
8 EXPANSION(currentNode, n, d, curSoln)
9 childNode← select one of currentNode.children

randomly
10 visitedNode← visitedNode ∪ childNode
11 curSolnd ← childNode.shift
12 d ++

and is therefore more efficient.

vi + C

√
ln np
ni

(16)

vi + C × RANDOM (0, 1) (17)

Algorithm 5: SELECTION(currentNode,C)

1 max ←−1
2 selectedNode← null
3 foreach node ∈ currentNode.children do
4 value← node.value+ C×RANDOM(0, 1)
5 if value > max then
6 selectedNode← node
7 max ← value
8 end
9 end
10 return selectedNode

The details of the EXPANSION procedure are shown in
Algorithm 6. All the valid and feasible shifts for nurse n,
on day d are added as the child nodes of the current node,
currentNode. The feasibility of a shift for a day can be fully
tested for the hard constraints; minimum rest time (HC2),
maximum total shift (HC3), maximum sequence (HC5), min-
imum sequence (HC6 and HC7) and pattern (HC8). For
example, if a shift is feasible for a day, the violation of these
constraints is zero. The workload hard constraint (HC4) is
violated when the total time unit is more than a maximum
value or less than a minimum value. Therefore, it can only be
partially tested (for maximum value). A shift is considered
feasible for a day even if the current total time unit is less
than a minimum value.

In the SIMULATION procedure (Algorithm 7), a valid
and feasible shift is assigned to nurse n on each remaining
day d . All the valid shifts for nurse n are assigned to shifts
list (line 2). A shift is probabilistically selected from shifts
(line 5). If the shift is feasible for a particular day, it will

Algorithm 6: EXPANSION(currentNode, n, d, curSoln)

1 foreach shift ∈ validShifts(n) do
2 if FEASIBLE(shift, currentNode.shift, n, d, curSoln)

then
3 currentNode.children←

currentNode.children ∪ Node(shift)
4 end
5 end

be assigned to nurse n on day d (line 16). Otherwise, the
shift is removed from shifts list. Another shift is selected and
tested for that day. If a valid and feasible shift is non-existent
for a day, a reward value defined in Equation 18 is returned
(line 7). After assigning a valid and feasible shift to nurse n
on every remaining day d , bestSoln is updated if f (curSoln) <
f (bestSoln) and a reward value as shown in Equation 19
is returned (line 23). At this juncture, only the workload
constraint (HC4) is possibly violated. Note that wemodify the
original calculation of the workload constraint violations. For
example, if time unit < minimum, the constraint violation is
[minimum - time unit] (instead of 1). Likewise, if time unit>
maximum, the constraint violation is [time unit - maximum]
(instead of 1).

−(1.0−
d
|D|

) (18)

1.0
f (curSoln)+ 1

(19)

The BACKPROPAGATION procedure is shown
in Algorithm 8. We increment the visit count and the value
(as a cumulative mean of reward) of each node in the
visitedNode list.

2) HILL CLIMBING (HC)
If MCTS could not find a feasible solution for nurse n, a HC
procedure (Algorithm 9) is invoked. For each day d , we try
to replace the shifts for a random block of days. We call this
neighbourhood structureX -Extraction (Section IV-B1) where
X is set to a random value between 1 to 4. We focus on
minimizing the workload constraint (HC4) violations with-
out compromising other hard constraints (zero violations).
As previously noted, we have modified the violation calcula-
tion of this constraint. As the name of this procedure suggests,
we only accept improving moves. If the candidate solution is
worse than the current solution, the original shifts are kept.
The process is repeated for 60 seconds. The procedure is
exited when a feasible solution for nurse n is found (line 11).

B. STAGE 2: ITERATED LOCAL SEARCH (ILS)
In stage 2, we focus on minimizing soft constraint violations.
If a feasible solution is found, ILS (Algorithm 10) is exe-
cuted. The procedures VND and PERTURBATION are run
alternately until a time limit t is exceeded.
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Algorithm 7: SIMULATION(n, d, curSoln, bestSol)

1 while d ≤ |D| do
2 shifts← validShifts(n)
3 do
4 if shifts 6= ∅ then
5 shift ← select a shift probabilistically from

shifts
6 else
7 return −(1− d/|D|)
8 end
9 if FEASIBLE(shift, curSolnd−1, n, d, curSoln) then
10 state← true
11 else
12 shifts← shifts− shift
13 state← false
14 end
15 while ¬state
16 curSolnd ← shift
17 shifts← ∅
18 d ++
19 end
20 if f (curSoln) < f (bestSoln) then
21 bestSoln← curSoln
22 end
23 return 1.0/(f (curSoln)+ 1)

Algorithm 8: BACKPROPAGATION(Reward, visitedNode)

1 foreach node ∈ visitedNode do
2 node.visit ++
3 node.value←

node.value+ (reward − node.value)/node.visit
4 end

1) VARIBLE NEIGHBOURHOOD DESCENT (VND)
The VND procedure is shown in Algorithm 11. k neigh-
bourhood structures are defined (line 1). k is initialised to 1
(line 2). At each iteration, a record of the current cost is kept
(line 4) as record . Note that the f function is referring to
soft constraint violations. Candidate solutions are generated
using the neighbourhood structure k . The candidate solution
is accepted as the current solution if the candidate cost is
less than or equal to the current cost (lines 7-9). The best
solution is updated if the current cost is better than the best
cost (lines 11-13). If the current cost is equivalent to record ,
k is incremented by 1 (line 15). Otherwise, k is reset to 1
(line 17). The process is repeated until k = kmax . Note that
we are using first descent instead of the conventional steepest
descent variant of VND, to save computational time in order
to allow more transitions (accepted moves) to occur. The
approximate complexity for the VND procedure is O(ikmax)
where i is the number of iterations which varies according to
the search landscape. The neighbourhood structures applied
are:

Algorithm 9: HC(n, bestSol)

1 current solution, curSol ← bestSol
2 repeat
3 for d = 1 to |D| do
4 block ←RANDOM[1, 4]
5 for i = d to block do
6 canSolnd ← select a shift probabilistically

from validShifts(n)
7 end
8 if f (canSoln) ≤ f (curSoln) then
9 curSoln← canSoln
10 if f (curSoln) = 0 then
11 exit outer loop
12 end
13 else
14 replace the original shifts into curSoln
15 end
16 end
17 until this end condition
18 bestSol ← curSol

Algorithm 10: ILS(bestSol)

1 current solution, curSol ← bestSol
2 repeat
3 VND(curSol, bestSol)
4 PERTURBATION(curSol, bestSol)
5 until this end condition

FIGURE 3. An example of 2-horizontal exchange. E (Early), L (Late) and
N (Night) are shifts.

1) NS1 (X -Horizontal Exchange): Two blocks of X shifts
(same nurse, different days) are swapped, see Figure 3.

2) NS2 (X -Vertical Exchange): Two blocks of X shifts
(same days, different nurses) are swapped, see Figure 4.

3) NS3 (X -Extraction): A block of X shifts are extracted
and replaced with new shifts, see Figure 5.

In VND, we set the X variable to a random value in the
range of 1 to 4.

2) PERTURBATION
The PERTURBATION procedure is presented in
Algorithm 12. step and k are initialised to 1 (lines 2 and 3).
A record of the current cost is kept as record (line 4).
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Algorithm 11: VND(curSol, bestSol)

1 neighbourhood structures, Nk , k = 1, 2 . . . kmax
2 k ← 1
3 repeat
4 record ← f (curSol)
5 repeat
6 generate a candidate solution,

canSol ∈ Nk (curSol)
7 if f (canSol) ≤ f (curSol) then
8 curSol ← canSol
9 end
10 until this end condition
11 if f (curSol) < f (bestSol) then
12 bestSol ← curSol
13 end
14 if f(curSol) == record then
15 k ++
16 else
17 k ← 1
18 end
19 until k = kmax

FIGURE 4. An example of 2-vertical exchange. E (Early), L (Late) and
N (Night) are shifts.

FIGURE 5. An example of 2-extraction. E (Early), L (Late) and N (Night) are
shifts.

We attempt to gradually perturb the current solution until
the cost changes 1f ≥ 0.05 (5%). In each iteration, the
current solution is perturbed by utilising a neighbourhood
structure, Nk . The value of k is incremented by 1 and the
current solution is perturbed again if 1f < 0.05. When
k = kmax , step is incremented by 1 and k is reset to 1. The
current solution is repeatedly perturbed if necessary.

The PERTURB procedure is shown in Algorithm 13.
A candidate solution is generated using neighbourhood struc-
ture Nk . The candidate solution is accepted as the current

Algorithm 12: PERTURBATION(curSol, bestSol)

1 neighbourhood structures, Nk , k = 1, 2 . . . kmax
2 step← 1
3 k ← 1
4 record ← f (curSol)
5 do
6 PERTURB(curSol, bestSol, step,Nk , record)
7 if k = kmax then
8 step++
9 k ← 1
10 else
11 k ++
12 end
13 if record > f (curSol) then
14 1f ← record−f (curSol)

record
15 else
16 1f ← f (curSol)−record

record
17 end
18 while 1f < 0.05

solution if the candidate cost is less than or equal to record +
record ∗ step ∗ 0.01. Obviously, the acceptance criterion is
relaxed. The best solution is updated if the current cost is
better than the best cost. This process is repeated for |N | ×
|D|× |S| iterations. We utilise the same set of neighbourhood
structures in VND. However the X variable is set to a random
value in the range of 5 to 7. The approximate complexity for
this procedure is O(|N ||D||S|).

Algorithm13: PERTURB(curSol, bestSol, Step,Nk ,Record)

1 repeat
2 generate a candidate solution, canSol ∈ Nk (curSol)
3 if f (canSol) ≤ record + record ∗ step ∗ 0.05 then
4 curSol ← canSol
5 if f (curSol) < f (bestSol) then
6 bestSol ← curSol
7 end
8 end
9 until this end condition

V. EXPERIMENTAL RESULTS
The experiments in this paper are conducted on a machine
(Intel Xeon 3.3 GHz with 16 GB RAM) running Windows
Server 2019. We tested the proposed methodology on the
Shift Scheduling dataset introduced by Curtois and Rong
Qu [15]. The dataset consists of 24 instances which were
designed to reflect real world requirements. They vary from
small (8 nurses, 14 days, 1 shift) to large (150 nurses,
364 days, 32 shifts) as shown in Table 2. These instances were
designed to represent real world requirements (ranging from
easy to challenging) and yet simple to use. The increment
of |N |, |D| and |S | from instance 1 to 24 (Table 2) indicates
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TABLE 2. Statistics of the benchmark instances. |N| is the number of
nurses, |D| is the number of days and |S| is the number of shifts.

the increasing size of the problem instances. Shift is referring
shift types e.g., early, late, night shifts etc. We run the algo-
rithm for a total of 30 times for each instance. Its important
to note that all the solutions generated are validated using the
software RosterViewer provided by the dataset owner.

A. FINDING A FEASIBLE SOLUTION
1) COMPARING C VALUES
Table 3 shows the Hard Constraint Violations (HCV) and
time to feasibility in seconds when using different C values
in the SELECTION procedure of MCTS. Note that we are
using the original Equation 16 as the tree policy. We pro-
pose to set C to 5.0 and gradually decrement it according
to Ci+1 = Ci × α (decay rate) in each exploration. This
geometric cooling schedule is adopted from the Simulated
Annealing (SA) algorithm.We omitted the easy instances 1 to
12 as their HCV and time to feasibility are all zero. For the
hardest instance 21, setting C too low (1.0) or too high (10.0)
is equally bad. A lowC value promotes search intensification,
while a highC value promotes search diversification. It seems
a balance is achieved when C is fixed to 5 but it is not
sufficient to find even a feasible solution for this instance.
On the other hand, our proposed C value with decay rate
α = 0.9999 allows MCTS and HC to attain 100% feasibility.
We perform t-tests to compare the means (HCV) between
C value of 5.0 and the proposed C value with decay rate
α = 0.9999. The p value of 0.000 (less than 0.05) reveals a
significant difference between the means for the instance 21.
Note that p value cannot be generated for the rest of the
instances because the mean and therefore standard deviation
for both groups are zero.

TABLE 3. Mean HCV/mean time to feasibility(s). n = 30.

2) COMPARING TREE POLICIES/NODE EVALUATION
FUNCTIONS
In this section, we compare the HCV and time to feasibility
using different tree policies in the SELECTION procedure
of MCTS. Note that we are using the proposed C value
in the previous section due to its effectiveness. The UCB
tree policy is shown in Equation 16, with the proposed tree
policy is given in Equation 17. As evident in Table 4, the
proposed tree policy allows the hybridisation of MCTS and
HC to attain feasible solutions in shorter average times for
instance 21. The p value of 0.000 (less than 0.05) reveals a
significant difference between the means (time to feasibility)
for this instance. In addition, a lower overall average time
(1.12 vs 1.25) is achieved.

TABLE 4. Mean HCV/mean time to feasibility(s). n = 30.

3) COMPARING SIMULATION AND MCTS
Here, we compare the simulation component of MCTS with
the fully fledged MCTS (with the proposed C value and tree
policy). As shown in Table 5, simulation alone fails to find
a feasible solution for instance 21. The p value of 0.000
(less than 0.05) reveals a significant difference between the
means (HCV) of heuristic-based simulation and MCTS for
instance 21. This highlights the importance of the learning
component (TREE) of MCTS. Note that p value cannot be
generated for the rest of the instances because the mean and
therefore standard deviation for both groups are zero.
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TABLE 5. Mean HCV/mean time to feasibility(s). n = 30.

TABLE 6. Feasibility (%) and time to feasibility. n = 30.

4) FEASIBILITY
Table 6 shows the feasibility and time to feasibility of the
solutions. The combination of MCTS and HC managed to
find a feasible solution in every run for each instance. A fea-
sible solution is found in < 1 second for instances 1 to 20.
It takes ≤ 12 seconds for instances 22 to 24. Instance 21
seems to be the most challenging as it takes between 7 and
15 seconds to find a feasible solution.

B. IMPROVING THE QUALITY OF SOLUTION
1) COMPARING THE INFLUENCE OF NEIGHBOURHOOD
STRUCTURES
To observe the influence of the proposed neighbourhood
structures, we run each with a combination of neighbour-
hood structure(s) iteratively in a sequential manner using hill
climbing acceptance criterion, with a runtime of 1 minute.
The mean soft constraint violations are shown in Table 7.
From observation, combinations of neighbourhood struc-
tures give better results than any individual neighbourhood

FIGURE 6. Convergence behaviour of the proposed ILS.

structure. The combination of <NS1+NS2+N3> is good for
most instances. The search may not have encountered local
optimums yet for these instances where this combination of
heuristics is not that effective.

2) CONVERGENCE BEHAVIOUR OF THE PROPOSED ILS
We run the proposed ILS on instance 8 using a random
seed of 1. A hill climbing (HC) is run using the same seed
for comparison purpose. Figure 6 shows the convergence
behaviour of both the proposed ILS and HC. It appears that
the HC stagnates relatively early at around 2200 (soft con-
straint violations). HC is assumed to be trapped in a local
optimum.Meanwhile, the proposed ILSwent through a series
of fluctuations in terms of current cost (due to perturba-
tions) and finally achieves a lower soft constraint violations
(approx. 1500). It shows the perturbations in the proposed
ILS are effective in helping the search to escape from local
optimums.

3) COMPARING WITH THE STATE-OF-THE-ART
METHODOLOGIES
Table 9 shows the quality of the solutions generated by the
proposed algorithm with a runtime of 10 minutes, in compar-
ison with other state of art methods (the details are given in
Table 8). The dash ‘‘−’’ symbol indicates that the algorithm
could not find a feasible solution within the time limit. The
optimal solutions are underlined. The bold values indicate the
best known result for an instance. Our proposed methodology
obtained the best results for 10 instances (1, 2, 4, 18, 19, 20,
21, 22, 23 and 24). For reference, the solver A (Branch &
Price) was run without time limit. The solvers B (Gurobi)
and C (Ejection Chain) were run on a (Intel Core 2 Duo
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TABLE 7. The influence of the proposed neighbourhood structures. Shown are mean soft constraint violations. n = 10.

TABLE 8. Solver details.

3.16 GHz and 8 GB RAM) computer. The solver D (Hybrid
IP+VNS) was performed on a (Intel Core i5 3.40 GHz and
4GB RAM) computer. Meanwhile, the solver E (Hybrid MIP
heuristics+SA) was run on a (Intel Core i3 2.27 GHz and
3GB RAM). Branch & Price and Gurobi seem to perform
well on small instances. Both the hybrids (solver D and E)
worked effectively for small and medium sized instances
but was lacking in terms of performance for large instances.
Our proposed methodology produces strong results for large
instances. We believe it is due to its ability in finding a
feasible solution faster and it therefore has more time to focus
on improving the solution quality. However, its performance
is mediocre for certain small and medium instances where an
optimal solution is not guaranteed unlike the exact method
such as Gurobi (integer programming). Note that the solver E
did not include instances 20-24 in their experiments as they
thought the data (planning horizon of six months or one year)
is not practical in the real world application.

As the other state of the art methods were compared using
the runtime of 60 minutes, we run the proposed algorithm
for the same time limit. Table 10 compares the solutions
generated by the proposed algorithm with those produced by
other state of art methods. The proposed algorithm reduces
the mean results for all the instances. It attains the best results
for instances 1, 2, 3, 4, 21 and 24. Note that we did not include
solvers F and G here as their runtime exceeded the time limit
of 60 minutes which hinders an objective comparison.

TABLE 9. Comparison of MCTS + ILS with the state of the art methods
with runtime of 10 minutes. Shown are best (mean) results in terms of
soft constraint violations. n = 30.

VI. DISCUSSION
In MCTS, feasibility is tested before assigning a shift to a
nurse on a particular day. All the hard constraints (HC3,
HC3, HC5, HC6, HC7 and HC8) can be fully tested except
workload constraint (HC4). We can only prevent a shift
assignment that will cause the time unit (of a nurse) to exceed
the maximum. A shift is considered feasible even though
the time unit is less than a minimum after its assignment.
To alleviate work underloading, the probability of selecting
a vacancy is set relatively lower than selecting any shift. This
setting also applies to HC, VND and perturbation procedures
where the neighbourhood structure X -Extraction is utilized.

MCTS is utilized in finding a feasible solution. Due
to the randomness property of the simulation component,
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TABLE 10. Comparison of MCTS + ILS with the state of the art methods
with runtime of 60 minutes. Shown are best (mean) results in terms of
soft constraint violations. n = 5.

MCTS does not possess the precision required especially in a
tight environment. HC helps to fine tune the solution in terms
of workload constraint violations.

We propose to set the C (Equation 17 in the SELECTION
procedure) to a fixed value and gradually decrement it using
a geometric cooling schedule. Setting C to a relatively high
value in the beginning allows search diversification as nodes
are randomly selected. As the search progress, C is decre-
mented as well as the priority given to the random compo-
nent. Effectively, priority is increasingly given to the value vi
component when selecting nodes. This allows the search to
intensify based on the information collected earlier towards
the end of the search. Therefore, our proposed C value is
effective.

A tree policy (Equation 17) for node evaluation in the
SELECTION procedure is proposed. The commonly used
UCB tree policy (Equation 16) gives unvisited nodes largest
possible values so that they are considered at least once as a
way to promote search diversification. However, we think that
it is unnecessary to consider every unvisited node and replace
the visit component in the equation with a random component
instead. Therefore, the proposed tree policy manages to find
feasible solutions in shorter times as shown in Table 4.

Note that we modify the calculation of workload constraint
(HC4) violations. The original calculation returns a penalty
of 1 for a nurse whose total time unit is either more than a
maximum or less than a minimum. The modified calculation
returns a penalty of [minimum-time unit] if time unit <
minimum and [time unit-maximum] if time unit>maximum.
For example, at one time point, the time unit for a nurse
is 5 and maximum is 1. The violation is 1 (based on original
calculation) and 4 (based on modified calculation). In the
original calculation, it is seen an as equal cost move. In the
modified calculation, it is seen as a worsening move. This

difference affects the acceptance and rejection of moves. This
modification is important in providing the accuracy required
in the calculation of the reward value (Equation 19) in the
SIMULATION procedure so that MCTS can work effec-
tively. Furthermore, this modification is crucial for our HC
(Algorithm 9) to work properly.
Several new best results are achieved for the runtimes of

10 and 60 minutes as presented in Tables 9 and 10. We hold a
competitive advantage as our proposedMCTS andHC combo
can find a feasible solution quickly. This leaves us with plenty
of remaining time to focus on improving the solution quality.

We opt to utilise VND as the local search for ILS because
of its diversification capability. It can perform effective search
through the employment of multiple neighbourhood struc-
tures. In addition, VND serves as a natural indicator of local
optimum when it stops running (after considering all the
neighbourhood structures).

From observation, a stagnating current cost indicates
that the search is stuck in a local optimum. Therefore, when
the execution of VND stops, we perturb the solution until
the current cost changes at least 5%. We gradually (step by
step) relax the acceptance criterion in case the current cost
is still stagnant. The difference between the neighbourhood
structures applied in VND and perturbation is the size range
of block X . We hope the variation will make the search space
more connected and allow the search to diversify and escape
from local optimum in case it is trapped.

VII. CONCLUSION
We presented the implementation details of utilising a hybrid
of MCTS and HC algorithms in finding feasible solutions.
Specifically, the proposed C value (SELECTION procedure
of MCTS) was compared with other fixed values. MCTS
and HC perform best by gradually decrementing an initial
C value based on a geometric cooling schedule. We also
compared the proposed tree policy with the UCB tree policy
commonly utilized inMCTS. The proposed tree policy allows
feasible solutions to be found in shorter times. In addition,
we demonstrated the importance of the learning component
in MCTS. MCTS and HC manage to achieve 100% feasi-
bility quickly. Furthermore, an ILS (VNS as local search)
was proposed in improving solution quality. The proposed
neighbourhood structures were shown to be suitable for the
problem instances. A convergence curve of the proposed ILS
was presented which shows its effectiveness in escaping from
local optimums. Finally, a comparison was made between the
proposed methodology and the state-of-the-art methodolo-
gies, in terms of soft constraint violations. New best results
are found for a number of instances for 10 and 60 minutes
run.

VIII. FUTURE WORK
We notice that given the same amount of time (300 minutes),
shorter runs (10 minutes × 30 runs) are better than longer
runs (60 minutes × 5 runs) in obtaining the best results for
instances 9, 12 and 13. This implies that the search becomes
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trapped in the longer runs for these instances. In future,
we seek to improve the diversification of the proposed algo-
rithm (ILS) to benefit from longer runs. We may consider
devising additional neighbourhood structures, embedding
tabu mechanisms and even hybridising the proposed method-
ologywith population-based algorithms, which are often used
for their diversification capability. The algorithms we would
consider include genetic algorithms and particle swarm
optimization.
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