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a b s t r a c t 

Background and Objectives: In cancer therapy optimization, an optimal amount of drug is determined to 

not only reduce the tumor size but also to maintain the level of chemo toxicity in the patient’s body. 

The increase in the number of objectives and constraints further burdens the optimization problem. The 

objective of the present work is to solve a Constrained Multi- Objective Optimization Problem (CMOOP) of 

the Cancer-Chemotherapy. This optimization results in optimal drug schedule through the minimization 

of the tumor size and the drug concentration by ensuring the patient’s health level during dosing within 

an acceptable level. 

Methods: This paper presents two hybrid methodologies that combines optimal control theory with 

multi-objective swarm and evolutionary algorithms and compares the performance of these methodolo- 

gies with multi-objective swarm intelligence algorithms such as MOEAD, MODE, MOPSO and M-MOPSO. 

The hybrid and conventional methodologies are compared by addressing CMOOP. 

Results: The minimized tumor and drug concentration results obtained by the hybrid methodologies 

demonstrate that they are not only superior to pure swarm intelligence or evolutionary algorithm 

methodologies but also consumes far less computational time. Further, Second Order Sufficient Condi- 

tion (SSC) is also used to verify and validate the optimality condition of the constrained multi-objective 

problem. 

Conclusion: The proposed methodologies reduce chemo-medicine administration while maintaining ef- 

fective tumor killing. This will be helpful for oncologist to discover and find the optimum dose schedule 

of the chemotherapy that reduces the tumor cells while maintaining the patients’ health at a safe level. 

© 2020 Elsevier B.V. All rights reserved. 
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. Literature review 

Cancer remains as one of the major worldwide health problems

ausing 8.8 million deaths in 2015 according to the World Health

rganization (WHO) [1] . In the United States, cancer is the second

ighest cause of mortality, with an estimated 1735,350 new cancer

atients and 609,640 deaths in 2018 [2] . This disease is caused by

bnormal cells that spread and grow unbounded which destroys

he patient’s body and may cause death if no treatment is given at

n early stage. 
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Cancer is a serious threat to a human’s health. This disease

an be treated by immunotherapy, surgery, chemotherapy and ra-

iation therapy. Selection of the treatment relies on some criteria

uch as location, the stage of the tumor and the patient’s health

t that time. Chemotherapy occupies a crucial place in the cur-

ent arsenal of treatments where it has proven to be very effec-

ive in treating cancer [3] . Chemotherapy stops the growth of the

ancer cells and eventually kills them. However, it also affects the

ormal cells and for that reason, chemotherapy must be adminis-

ered to the tumor cells in doses that balance its anticancer activity

ith minimum damage to normal cells [3–8] . This poses a prob-

em for clinicians as the tumor resists the treatment at low drug

oncentrations but then increases in the drug concentration will

estroy normal cells. Furthermore, cancer treatments have a huge

conomic impact. In 2015, the direct costs in the United States
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reached $80.2 billion [9] according to the Agency for Healthcare

Research and Quality (AHRQ). 

There is an urgent need to deliver the optimal amount of

chemotherapy that maximizes the efficiency whilst reducing the

toxic effects and at the same time reducing the financial cost

of cancer treatment. Alleviating this problem involves engineers

and mathematicians cooperating with clinicians and research on-

cologists to investigate and build mathematical models of tumor

growth, aiming to better understand how the various aspects of

growth and treatment interact with one another so as to deliver

optimum chemotherapy treatments. In literature, there are many

mathematical models that represent the effects of chemotherapy

on the growth of tumor. Most of the mathematical models were

built to emulate the pharmacodynamic and pharmacokinetic pro-

cesses [10] . The pharmacodynamic processes describe the effects of

the treatment dose on normal and malignant cells while pharma-

cokinetic processes characterize the distribution and metabolism of

the treatment dose. 

In optimal chemotherapy treatment analysis, traditional math-

ematical models have neglected the inter-influence of normal and

cancerous cells as they focused on decreasing the tumor size by

increasing the dose and reducing the treatment period in order, to

decrease the drug resistance that develops at a low therapy inten-

sity, thus eliminating the small tumor mass [11] . Later models em-

bedded the negative effects of cancer cells on the normal cells in

the optimal chemotherapy analysis [12] , and the drug was applied

constantly at maximum rate under the constraint of the normal

cell population size to be maintained above a certain level along

with constrained drug concentration. Unlike the previous models,

the treatment period is determined based on the drug and toxicity

constraints. 

One of the important factors for tumor response to treatment

is the strength of the patient’s own immune response to the drug.

Pillis and Radunskaya [13] developed a mathematical model of the

immune response augmented to normal and tumor cells response

towards chemotherapy in order to improve the optimal analysis of

the chemotherapy treatment. Another mathematical model takes

obesity into account where they found that diet and losing weight

enhances the efficiency of the chemotherapy treatment [6] . The

improvement in the cancer therapy models inevitably increases the

number of constraints and objectives with the evolution from sin-

gle objective optimization that focuses to minimize the tumor size

to the multi-objective optimization that aims to reduce tumor size

and the drug concentration. It appears there is a need for a robust

optimization method that yields optimum outcome. 

Optimal Control (OC) is applied to most of the existing cancer

therapy mathematical models to obtain the optimum tumor and

drug concentration. This can be carried out by two approaches,

firstly the stochastic or the direct approach where the OC problem

is converted into the Non-Linear Program (NLP). The second ap-

proach is more deterministic. Taking advantage of Pontryagin Max-

imum/Minimum Principle (PMP), the OC problem is converted into

a boundary value problem. Some works used unconventional tech-

niques. For example, one of them used the two PID controllers

(proportional – integral – derivative) to maintain an acceptable

treatment dose, toxicity and body drug concentration [14] . A lin-

ear time varying approximation technique was also used to solve

the multi objective optimization problem of chemotherapy in can-

cer treatment to eliminate the cancer cells and to minimize the

amount of drug concentration in the simulated model [5] . Sharifi

et al. [15] used the Multiple Model Predictive Control (MMPC) to

find the effective treatment program for the mixed chemotherapy

and immunotherapy as a new cancer treatment strategy aimed to

minimize the required treatment and reduce the tumor size. 

Recently, with the increase in the number of objectives, vari-

ables and state constraints, most researchers tend to utilize Swarm
ntelligence (SI) and Evolutionary Algorithms (EA) to address the

onstrained multi-objective optimization problem (CMOOP). Dhi-

an and Kumar [16] proposed a Multi-objective Spotted Hyena

ptimizer (MOSHO) to address a constrained multi-objective en-

ineering design problem. The ability of this algorithm to address

he CMOOP was demonstrated by applying it to real-life opti-

ization problems such as speed reducer design where the re-

ults showed good performance. Lobato et al. [17] used multi-

bjective optimization differential evolution algorithm (MODE) and

on-dominated Sorting Genetic Algorithm (NSGA II) to solve a

ulti-objective optimization problem that aims to find the opti-

al control strategy for drug cancer treatment. Fan et al. [18] pro-

osed Push and Pull Search (PPS) combined with evolutionary

lgorithms to solve a multi objective optimization problem. The

PSO-MOEA/D showed the best results in comparison to five other

lgorithms; C-MOEA/D, MOEA/D-CDP, MOEA/D-IEpsilon, MOEA/D-

R and MOEA/D-Epsilon. 

Zhang et al. [19–23] proposed new MOPSO algorithms to han-

le multi-objective optimization problems based on different fea-

ures, such as Bare-Bones Multi-objective Particle Swarm Optimiza-

ion algorithm (BB-MOPSO) to solve the environment/economic

ispatch problems (EED) [21] . They introduced Cooperative Evolve-

ent Multi-Objective Particle Swarm Optimization (CEMOPSO)

ased on cooperative sub swarm to deal with complex multi-

bjective optimization problems [22] . Another MOPSO algorithm

ased on adaptive jump operator called JMOPSO is proposed to

olve the feature selection problem with unreliable data [23] . Also,

 Multi- Objective Particle Swarm based on Feature Selection with

ybrid Mutation HMPSOFS proposed as a first study to solve the

ost-based feature selection problems [20] . A new multi objective

eature Selection approach based on Two-Archive Multi-Objective

rtificial Bee Colony algorithm (TMABC-FS) proposed to handle

ith a cost-sensitive feature selection problem to reduce the fea-

ure cost and increase the classification performance [19] . The sim-

lation results showed the ability and the performance of the

roposed algorithms for solving the specified problems compared

ith other knowns multi-objective optimizers. Zihin et al. [24] pro-

osed a modified multi-objective particle swarm optimization al-

orithm (M-MOPSO) for solving CMOOP problems and explained

ow it avoided the weakness of the MOPSO algorithm especially

or problems with high dimensions. 

However, it’s not a trivial task to find the optimum dose of

hemotherapy that prevents unwanted effects while maximizing

he efficiency for killing cancer cells. Despite the existence of many

ethodologies to solve the mathematical model and obtain the de-

ired result, there is potential for improvement with the possibility

f hybridization of these methodologies. This work introduces hy-

rid algorithms that combines the indirect approach of OC theory

ith Evolutionary Algorithm (EA) and the Swarm Intelligence (SI)

o address CMOOP for the mathematical model of Pillis and Radun-

kaya [13] . The performance of the hybrid methodologies is evalu-

ted against standard EA’s and SI’s algorithms for three different

ases. 

The main contribution of this paper is improvement of CMOOP

esults while reducing the computational cost by hybridizing the

ptimal control theory based on Pontryagin Max/Min with multi-

bjective optimizers based on EA and SI. This work takes advan-

age of the strength of OC theory as local minimizer while ensuring

ear global optimum is reached using SI and EA metaheuristics. 

This paper is structured as follows. Section 2 presents the

athematical model of tumor growth. Section 3 presents the

ulti-objective optimization problem and the state constraint.

hen, in Section 4 , the proposed methodologies to solve the

MOOP is described. Section 5 shows the optimal control design.

ection 6 presents the constraint handling methods. The second or-

er sufficient conditions are explained in Section 7 . In Section 8 , a
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Fig. 1. Pareto Optimal Solutions and Pareto Optimal Front. 
eneral description for PSO and EA algorithms is given. Section 9

resents the experiment results and discussion. Finally, the conclu-

ion is presented in Section 10. 

. The tumor model 

By utilizing mathematical tools such as partial differential equa-

ions (PDEs) and ordinary differential equations (ODEs), many

athematical models have been developed to simulate tumor

rowth, with each one such as having advantages and disad-

antages. This article utilizes the non-linear cancer mathemati-

al model that was developed by Pillis and Radunskaya [13] . This

odel was adopted as the growth of the tumor is considered as

 population dynamic problem that doesn’t focus on a specific

ype of cancer disease. Moreover, the spatial property of the tumor

rowth along with the surrounding of the tissue is not included

n this mathematical model. This model is very important in de-

eloping an effective drug schedule for cancer treatment [5] . The

umor mathematical model consists of three ordinary differential

quations that simulate the dynamic interactions of the tumor be-

ween the drug effect and cells including the death and growth of

he cells. These equations represent the tumor cells, normal cells

nd immune cells with respect to time t . 

˙ 
 = r 2 N(1 − b 2 N) − c 4 T N − a 3 u N(0) = N 0 (1)

˙ 
 = r 1 T (1 − b 1 T ) − c 2 IT − c 3 T N − a 2 u T (0) = T 0 (2)

˙ 
 = s + 

ρIT 

α + T 
− c 1 IT − d 1 I − a 1 u I(0) = I 0 (3)

N represents the number of normal cells, T denote the number

f tumor cells and I represents the number of immune cells at time

 . All of them are positive values. u represents the amount of drug

t time t in the cancer site. 

All parameters in this model are positive and every group of

arameters represent a different property. The growth law used

his model is based on logistic growth represented by r 1 and r 2 .

ecause the immune cell source is assumed to be outside of the

ystem, the influx rate s is assumed to be constant with this lim-

tation (0 < s < 0.5). c 1, c 2 , c 3 , c 4 are the competition terms. Tumor

ells and normal cells vie for space and resources. a 1 , a 2 , a 3 are the

ell death response coefficients ( a 2 ≥ a 1 ≥ a 3 , while 0 < a i < 0.5).

 1 , b 2 are the carrying capacities per capita. Mortality rate is repre-

ented by d 1 . ρ represents the rate of immune response per capita

0 ≤ ρ ≤ 1) and α represents the threshold rate (0 ≤ α ≤ 0.5). 

. Multi-objective optimization problem 

A lot of optimization problems have several conflicting objec-

ives to be optimized while satisfying a set of constraints. These

inds of problems are referred to constrained multi-objective opti-

ization problems (CMOOP). They are represented as follow: 

in F (x ) = ( f 1 (x ) , f 2 (x ) , ....... f n (x )) (4)

F ( x ) is the objective vector, with n is the number of objectives

ubject to j equality constraint/s and i is the inequality constraint/s.

ub ject to g o 
i 
(x ) ≥ 0 , i = 1 , 2 , ....., q 

h 

p 
j 
(x ) = 0 , j = 1 , 2 , ......, e 

(5) 

x m 

∈ 

[
R 

u 
m 

, R 

l 
m 

]
;

f unctions orders o, p ∈ [1 2 . . . [ ; (6) 

With m being the number of variables, the values of these vari-

bles are between upper and lower boundaries, [ R u m 

, R l m 

] . The op-
imization searches over the vector x = [ x 1 , x 2 ,…, x m 

] that com-

lies with the equality and inequality constraints and optimizes

he vector function F ( x ). For these kinds of problems, there is no

ptimal unique solution but there are a set of non-dominant solu-

ions called the pareto optimal set. This concept was proposed by

he Italian engineer Vilfredo Pareto where he used it in economic

tudies for calculating economical efficacy. For example, suppose

 1 , x 2 are two solutions belonging to the vector S or the feasible

olution set, that all have feasible solutions that satisfy the con-

traints. x 1 dominates x 2 if and only if f e ( x 1 ) ≤ f e ( x 2 ), ∀ e ∈ {1, ....,

 }, the value of the objective function of x 1 is less than or equal to

he value of the objective function of x 2 for all objectives functions

n minimization problem. The pareto optimal solutions are within

he Pareto optimal set when all feasible solutions in the vector S

ren’t dominated by other solutions. The pareto front is the map-

ing of pareto optimal set [18 , 25] . 

This work has two objective functions given in Eqs. (7) and 8 .

he aim is to minimize the size of the tumor and the drug concen-

ration respectively with a state’s constraints shown in Eq. (9) to

nsure the normal cells are kept above a specific level to protect

he health of the patient during the treatment period. 

in 

∫ 
T dt (7) 

in 

∫ 
udt (8) 

States constraint: 

 ≥ 0 . 75 (9) 

. Optimization methodologies for solving CMOOP 

To maintain a good balance between minimizing the objectives

nd satisfying the constraints, Optimal Control (OC) theory is com-

ined with an Evolutionary Algorithms (EA) and a Particle Swarm

PS) algorithms to address the CMOOP. This work addresses the op-

imization problem by using three methodologies: 

1. PURE SI & EA: addresses the constrained multi objective opti-

mization problem (CMOOP) by using only swarm intelligence

(SI) such as M-MOPSO and MOPSO or only evolutionary algo-

rithms (EA) such as MODE and MOEAD to find the pareto opti-

mal set with penalty strategy to satisfy the state constraint. 

2. Hybrid 1: The indirect method of OC theory optimizes its sin-

gle composite objective function decomposed into the multi-

objectives of Particles Swarm and Evolutionary Algorithms (PS

and EA) to find the pareto optimal set with penalty strategy in

PS and EA to satisfy the state constraint. 
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Fig. 2. Flow Chart of the Methodology. 
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3. Hybrid 2: Indirect method of OC theory with Augmented La-

grangian (AL) to satisfy constraints that optimizes its sin-

gle composite objective function decomposed into the multi-

objectives of particles swarm and evolutionary algorithms to

find the pareto optimal set. 

The flowchart of the three methodologies are given in Fig. 2 .

First methodology (PURE SI & EA) employs PS and EA only,
hereas the second and third methodologies (Hybrid 1 and 2) are

ybrids of OC with PS and EA. The difference between the latter

wo is mainly due to how each of them handle the constraints.

n Hybrid 1, the constraints are imposed by using penalty strategy

n multi-objectives of PS and EA. If the penalty is avoided during

he optimization process, the constraints are considered satisfied.

ybrid 2 imposes constraint via augmented Langrage of OC. This

eans the OC handles the constraint itself without constraining
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he multi-objective function of PS and EA. The simulations were

arried out by these three methodologies on three different cases,

o test the performance of the hybrids algorithms, Hybrid 1 and

 against the first methodology where the results for the different

ethodologies are compared and analyzed. 

. Optimal controller design and necessary conditions 

The solution of optimal control theory has two approaches; di-

ect and indirect. The direct method employs stochastic non-linear

rogramming (NLP) to search for optimal solutions whereas indi-

ect methods are often cumbersome to model especially for many

onstraints OC problems but due to the deterministic nature con-

umes less computational time than the direct method. In our hy-

rid approach, we adopted the indirect method to be hybridized

ith PS and EA as the Radunska and Phillis model has only one

onstraint. The bang-bang control using indirect method is adopted

n Hybrid 1 and 2. In Hybrid 1, state constraint is not included in

he OC theory. However, it is satisfied by using penalty scheme in

he multi-objective function of SI and EA algorithms. In Hybrid 2,

he state constraint is embedded in the OC theory via AL, with the

I and EA algorithms only being utilized to find the Pareto optimal

et. To construct the objective function for optimal control theory,

 weighting scheme is used to treat the multi-objective problem as

 single objective problem where Eqs. (7) and (8) are combined to

orm Eq. (10) : 

in K = w 1 

∫ 
T dt + w 2 

∫ 
udt (10) 

As Eq. (10) is in Bolza form, it is converted to Mayer fo7890rm

o get a new differential Eq. (11) : 

˙ 
 = w 1 T + w 2 u (11) 

here: 

 1 + w 2 = 1 (12) 

In Hybrid 1 and 2, only one variable of PS and EA is required

o represent the weight w 1 , w 2 as shown in Eqs. (10) and (12) . The

S and EA will generate weight that enhances the optimization us-

ng OC. The search space for weight w 1 , w 2 are limited between 0

nd 1. The results of OC for tumor and drug concentration are then

valuated by objective functions of PS and EA given in Eqs. (7) and

 . Hence, we realize the hybridization of OC with PS and EA. 

The inequality constraint Eq. (9) becomes: 

 = 0 . 75 − N ≤ 0 (13)

Hence, we construct the Hamiltonian equation for Hybrid 1: 

 H1 = w 1 T + w 2 u + λ1 
˙ N + λ2 

˙ T + λ3 ̇
 I + λ4 

˙ K (14)

For Hybrid 2, the Hamiltonian equation will be: 

 H2 = H H1 + η(0 . 75 − N) (15)

From the Hamiltonian, we obtain the co-states functions: 

˙ 
1 = −∂H 

∂N 

(16) 

˙ 
2 = −∂H 

∂T 
(17) 

η1 = 

1 

a 3 

[
−a 2 

(
−w 1 + λ1 c 4 N − λ2 

−a 1 

(
λ2 c 2 T − λ3 

(
ρT 

α + T 

)
+ 
˙ 
3 = −∂H 

∂ I 
(18) 

˙ 
4 = −∂H 

∂K 

(19) 

Control or switching function: 

wit ching _ f unct ion = w 2 (1 + λ4 ) − a 3 λ1 − a 2 λ2 − a 1 λ3 (20)

The constraint multiplier η is found through the derivation of

he switching function with time: 

 λ2 r 1 b 1 T + λ2 c 2 I + λ2 c 3 N − λ3 

(
αρI 

( α + T ) 
2 

)
+ λ3 c 1 I − w 1 λ4 

)

T + λ3 d 1 

)] 
− ( −r 2 λ1 + 2 r 2 b 2 λ1 N + λ1 c 4 T + λ2 c 3 T ) (21)

here: 

= 

{
η1 , 0 . 75 − N ≥ 0 

0 , otherwise 
(22) 

Bang-bang input control to minimize the objectives function: 

 = 

{ 

u min , swit ching _ f unct ion > 0 

u boundary , C ≥ 0 

u max , swit ching _ f unct ion < 0 

(23) 

The condition of the state constraint is first order, hence

he control value is at the boundary arc when it reaches the

tate constraint, can be obtained by deriving the state constraints

q. (13) with the time and equal it to zero. 

 

1 = − ˙ N = 0 (24) 

From Eq. (24) the control value inside the boundary arc when

 > 0, equal: 

 boundary = 

1 

a 3 
[ r 2 N(1 − b 2 N) − c 4 T N ] (25) 

. Constraint handling 

As mentioned in Section 4 , the constraint in Hybrid 2 will be

mbedded in the optimal control theory and that is shown in

ection 5 . For the first (pure SI&EA) and second methodology (Hy-

rid 1), the SI and EA algorithm handles the constraints via a

enalty scheme. Though there are a few techniques that can be

ncorporated with the SI and EA in order to handle the constraint,

he penalty method still remains as the commonly used method

or solving Constrained Optimization Problems (COP) as it is widely

ccepted due to theoretical reliability and its simplicity [26] . The

resent work adopted this technique where the penalty method

onverted the CMOOP to an unconstrained multi-objective opti-

ization problem. The penalty method has two approaches, the

rst is the interior method which penalizes the feasible solutions.

nd the second is the exterior method that penalizes infeasible so-

utions. Most researchers including the authors of this work prefer

sing the latter as there is no requirement for an initial feasible

olution [26] . In general, the main concept of the penalty method

s to convert the COP to an equivalent unconstrained optimization

roblem based on adding a specific value to the objective function

hat depends on the magnitude of the constraint violation that ap-

ears in a specific solution. 

The objectives and constraint functions that are given in

qs. (7) –(9) become: 

in ( φ1 (t)) = f 1 (t) + μp(C(t)) (26)

in ( φ2 (t)) = f 2 (t) + μp(C(t)) (27)
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Fig. 3. The SSC Flowchart. 
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whereas f 1 and f 2 , are the objectives functions given in Eqs. (7) and

(8) earlier, μ is the penalty parameter and p is the penalty value

that depend on C the constraint function that is presented in

Eq. (13) : 

p(x ) = 

{
0 , C 

i 
> 0 

C 
i 
, else 

(28)

whereas, i ∈ [ 1 v ] , v is the number of time discretization. 

7. Second order sufficient condition 

In OC, singular trajectories may not guarantee optimality [27–

31] and therefore the outcome of bang-singular in this work will

need careful analysis to verify and validate the optimality. The

Generalized Legendre Clebsh Condition are used to verify the opti-

mality of bang-bang control. However, it may not be adequate for

problems involving bang-singular control [32] . Bang singular is the

outcome of constrained OC using AL. For these kinds of problems,

first order and second order optimality conditions are developed

using induced optimization. For second order optimality verifica-

tion, Second Order Sufficient Condition (SSC) is applied for prob-

lem where control variable enters the system in non-linear fashion

[33–35] as in the present case of state constrained OC with AL.

Though computational comparison is made to verify and validate

the constrained OC, exploiting SSC to prove positive definite will

further justify our findings achieving optimality. 

The SSC model developed was based on Vossen [36] and the

SSC flowchart in Fig. 3 is used as reference. Once the state and

co-state values are obtained, the problem is converted to induced

optimization where optimized problem is converted to a new fi-

nite optimization problem that includes the optimization variable,

switching time, initial and final time, with respect to the optimiza-

tion variable z = ( t 1 ,....., t s ,t s + 1 ) T , t s + 1 = t f ,z ∈ R s + 1 , where s is the

amount of switching times. 
. Algorithm description 

This work utilizes four algorithms; M-MOPSO (Modified Multi-

bjective Particle Swarm Optimizer), MOPSO (Multi-Objective Par-

icle Swarm Optimizer) which are based on swarm intelligence (SI),

ODE (Multi-Objective Differential Evolution) and MOEAD (Multi-

bjective Evolutionary Algorithm based on Decomposition) which

re based on Evolutionary Algorithms (EA). The highlight of this

ork is the development of SI and EA hybrid with OC theory to

nd the optimal solution for the CMOOP. The results are shown as

 pareto optimal set. 

.1. Particle swarm optimization (PSO) 

Particle Swam Optimization (PSO) is a group of particles that

ehave and communicate like a swarm moving together in a speci-

ed search space looking for the best solution where every particle

epresents a solution. Each one of them has two properties; po-

ition and velocity. The swarm population share this information

ith each other. The particles use two guides, the history of the

est position for each particle symbolized by p best and the history

f the best position from the entire population called best global

ymbolized by g best . The particles change their respective position

y adjusting their velocity. After the particles reach a new position,

he guides are updated. This process is repeated until the stopping

riterion is met [37 , 38] . 

Both MOPSO and M-MOPSO algorithms are based on the PSO

lgorithm. They are quite similar but have some differences in

heir use of mutation, repository update, population evolution and

epository member deletion [24 , 39] . In MOPSO the particle flight

irection is based on Pareto Dominance and the previously best so-

utions are stored into non-denominated vectors used by other par-

icles to guide their own flight to reach the best non-denominated

olutions [39] . M-MOPSO uses the same procedure with some

odifications on the archiving procedure that reduces archiving

omputational cost and maintain the pareto front diversity to over-

ome the weakness of MOPSO with the premature convergence

roblem that appears with the increasing complexity in multi ob-

ective optimization problem. MMOPSO uses a new mechanism of

ynamic search boundary to escape local optimal by leveraging

alance between exploration and exploitation [24] . 

.2. Evolutionary algorithms 

Evolutionary Algorithms (EA) starts by random initialization of

 population, every individual represents a solution. Then all the

ndividuals of the population are evaluated to find the fitness that

ay be used to rank each solution within the population. The best

ndividuals in the population are found and the information for the

est population is used to generate the new generation of the pop-

lation. These steps will be repeated until a stopping creation is

atisfied [40 , 41] . 

The MODE and MOEAD are based on EA where the MODE used

ifferential evolution and the MOEAD used evolutionary algorithms

ased on decomposition. Souza et al. [42] discussed the robustness

f MODE for solving the multi-objective optimization problem. The

ptimization procedure and main differences between MODE and

OEAD algorithms are discussed in detail in [17 , 43] . 

PSO and EA algorithms are initiated by randomly initializing the

opulation’s matrix as given in Eq. (29) . 

 i, v = 

⎡ 

⎢ ⎣ 

X 1 , 1 · · X 1 , v 
· · · ·
· · · ·
X i, 1 · · X i, v 

⎤ 

⎥ ⎦ 

(29)
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Fig. 4. Finding the Closest Point to the Origin in the Pareto Optimal Front. 
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Table 1 

Parameter values of the swarm and evolutionary algorithms used. 

Algorithms Parameter Value 

M-MOPSO& MOPSO Inflation Rate 0.1 

Number of Grids per Dimension 10 

Number of populations 50 

Repository Size 50 

Leader Selection Pressure 4 

Deletion Selection Pressure 2 

Mutation Rate 0.5 

MODE Population size 50 

Scaling factor 0.5 

Crossover Probability 0.2 

Function evaluations bound 20,000 

MOEAD Population size 50 

size of the weight’s neighborhood 10 

crossover parameter 0.5 

h  

s  

b

I  

N  

T  

λ  

 

i  

F  

c  

w

 

g

 

c  

u  

o

here the i is the number of populations, and v is the number

f variables that is used to find the optimal solution. The num-

er of variables is determined by the amount of chemotherapy

 i ∈ [ u min u max ] at specific time where the simulation time is

iscretized into N of time intervals from the first day t 0 until the

nal day t f of the treatment period such that: 

 0 = t 0 < t 1 < ..... < t i < .. < t N = t f 

 = 1 , 2 , ........., N 

The amount of the drug u i ∈ [ u min u max ] during each in-

erval time t i ∈ [ t i t i +1 ] is called bang-bang arcs. The time t i ∈
 t i t i +1 ] is represented as decision variables which amount to

. Pure SI&EA based on pure PS or EA whereas the number of deci-

ion variables used is 16. This value is selected arbitrarily to ensure

ossibility of multiple bang-bang arcs optimization solution are not

eglected. The arbitrary selection of N may be overestimated or

erhaps underestimated. To avoid this uncertainty, PS and EA are

ybridized with OC theory to develop Hybrid 1 and Hybrid 2. Hy-

rid 1 and 2 employ only one variable to represent the weight w

s shown in Eq. (10) . By this way, the number of variables is easily

re-determined based on the number of objectives used. This also

eads to significant reduction of variables used for Hybrid 1 and 2

ompared to Pure SI&EA. Consequently, the convergence speed of

he optimization increases. 

. Results and discussion 

As discussed earlier, the cancer chemotherapy model by Pil-

is and Radunskaya [13] is analyzed and the performance of the

ybrid methodologies (Hybrid 1 and 2) proposed in this work

re compared to SI and EA method’s (Pure SI&EA). Three differ-

nt cases of cancer chemotherapy model [13] are addressed using

hree methodologies (pure SI&EA, Hybrid 1 and Hybrid 2). Since

he cancer chemotherapy model has a constraint that has to be

espected, the optimization is called Constrained Multi-Objective

ptimization Problem (CMOOP) and by applying the necessary

nd sufficient optimality conditions explained in Section 5 and 7 ,

he problem becomes two points Boundary Value Problem (BVP)

here the initial values of the states and the final values of the co-

tates are known. The Runge-Kutta 4-5th order method is used to

ntegrate the equations. Hypervolume (HV) metric indicator have

sed also in the comparison of the results. HV indicator measures

he volume of the region between the pareto front and a dom-

nated reference point in n -dimensional objective space whereas
igher HV means better set of nondominated solutions with re-

pect to diversity and convergence viewpoints, where n is the num-

er of objectives [44] . 

States initial values: 

 ( 0 ) = 0 . 25 (30)

 ( 0 ) = 0 . 9 (31)

 ( 0 ) = 0 . 25 (32)

Co-states final values: 

1 

(
t f 

)
= λ2 

(
t f 

)
= λ3 

(
t f 

)
= λ4 

(
t f 

)
= 0 (33)

The closest point to the origin in the Pareto Optimal Front,

s the point with the distance to the origin point as shown in

ig. 4 along with the number of iterations required to find it. These

riterions are used to evaluate the methodologies developed in this

ork. The time simulation runs from 0 to 149 days. 

The parameters that were used in SI and EAs algorithms are

iven in Table 1 . 

The results of this work were carried out by using a computer,

ore i7 with 8 G RAM with MATLAB R2016a software used for sim-

lation. The simulation was carried out 20 times and the average

utcome of each case study are shown in the tables. 
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Fig. 5. Pareto Optimal Front for Case Study 1 by Using: (A) M-MOPSO, (B) MOPSO, (C) MODE and (D) MOEAD. 
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9.1. Case study 1 

As explained in Section 2 , the mathematical model that was

used in this work has 14 parameters and the meaning of each pa-

rameter is given in the same section. The following values are con-

sidered for the first case study: 

a 1 = 0.2, a 2 = 0.3, a 3 = 0.1, c 1 = 1, c 2 = 0.5, c 3 = 1, c 4 = 1,

b 1 = 1, b 2 = 1, d 1 = 0.2, r 1 = 1.5, r 2 = 1, s = 0.33, ρ = 0.01,

α = 0.3. 

Fig. 5 shows the results of the Pareto Optimal Front for the

three methodologies explained in Fig. 2 with the SI and EA. The

Pareto Optimal Front for the three methodologies are shown in

Fig. 5 (A)–(D) using M-MOPSO, MOPSO, MODE and MOEAD respec-

tively. The results of Pure SI & EA methodology are represented

by red points, the green points represent the results of Hybrid 1

and Hybrid 2 results are shown by the blue points. As it appears,

Hybrid 2 Pareto Front curve is closer to the origin in compari-

son with Pure SI & EA and Hybrid 1 whereas Hybrid 1 is better

than Pure SI&EA as it shows improved Pareto Front. The results

reveal that Hybrid 2 that employs AL approach removes the SI’s

and EA’s burden to handle constraint which in return aids the op-

timization. Hybrid 1 comes short of Hybrid 2 but performs bet-

ter than Pure SI&EA. In Hybrid 1, SI and EA handle the constraint

via Penalty Method in their objective function. This makes the

search space larger, consequently Hybrid 1 performs less satisfac-

torily compared to Hybrid 2. However, in general, the results show

that the OC theory is a very efficient optimizer if combined with SI

or EA. 

Fig. 6 shows the results of the distance for the closest point to

the origin in the Pareto Optimal Front with the number of itera-

tions for the three methodologies that are explained in Fig. 2 com-

bined with the SI and EA algorithms. The distance of the Pareto

Optimal Front for the three methodologies are shown in Fig. 6 (A)–

(D) using M-MOPSO, MOPSO, MODE and MOEAD respectively. The

results of Pure SI&EA are represented by the red line, the results of

Hybrid 1 by the green line and the results of Hybrid 2 by the blue

line. 
From Fig. 6 (A), Pure SI&EA using M-MOPSO takes more than

40 iterations to find the closest point to the origin; Pure SI&EA

sing MOPSO needed more than 100 iterations to saturate at its

losest point to the origin as shown in Fig. 6 (B). Pure SI&EA based

n MODE required more than 160 iterations to converge to its clos-

st point to the origin whereas Pure SI&EA based on MOEAD took

ore than 350 iterations to discover the closest point to the ori-

in. In contrast, Hybrid 1 and 2 for SI’s and EA’s used only two

terations to achieve its closest point to the origin. The OC theory

n Hybrid 1 and 2 directs the optimization toward global optimum

aving the considerable effort used to discover the closest point to

he origin by Pure SI&EA. Hybrid 2 achieves the best results among

he three methodologies. 

The simulation was carried out 20 times and the outcome of

verage tumor size, average drug volume, average number of it-

rations and average consumed time for the closest point to the

rigin, as well as the average HV indicator for case study 1, are

iven in Table 2 . The closest point to the origin is shown in the

orm of distance from origin. The Hybrid methodologies obtained

mproved minimum outcome in terms of tumor cell concentra-

ion and drug volume compared with Pure SI&EA. Hybrid 2 ob-

ained the best results among the three methodologies. The aver-

ge distance of the four algorithms with origin point for Hybrid 2

s 9.847 and for Hybrid 1 is 10.39, while for Pure SI&EA the aver-

ge distance is 10.685. Based on the results of the closest point

o the origin, SI’s and EA’s have differences in the performance

ithin Pure SI&EA. However, such differences did not appear for

ybrid 1 and 2 as each methodology performed equally for dif-

erent type of SI and EA used. Based on Table 2 , the computa-

ional time consumed by Hybrid 2 is the least among the three

ethodologies, while computational time consumed by the Hybrid

 is similar or higher than Pure SI&EA. The combined approach of

enalty method and the OC theory in Hybrid 1 makes the search

rocedure consume more computational time. However, this prob-

em ceases if the penalty method is replaced by AL approach in

C theory as developed for Hybrid 2. The outcome shows Hybrid

 is not only robust but computationally faster than Pure SI&EA
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Fig. 6. Distance for the Closest Point to Origin in the Pareto Optimal Front for Case Study 1 vs Number of Iterations by Using: M-MOPSO, (B) MOPSO, (C) MODE, (D) MOEAD. 

Table 2 

The results summary for case study 1. 

Pure SI&EA Hybrid 1 Hybrid 2 

Algorithms M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD 

Distance of Closest Point to Origin 10.68 10.67 10.71 10.68 10.39 10.39 10.39 10.39 9.875 9.82 9.82 9.875 

Number of Iterations 160 123 165 317 2 2 2 2 2 2 2 2 

Tumor cells concentration 6.303 6.127 5.911 5.891 6.44 6.44 6.44 6.44 5.68 5.69 5.69 5.789 

Drug volume 8.222 8.375 8.941 8.848 8.159 8.159 8.159 8.159 8 8 8 8 

Consumed Time (sec) 543 702 410 982 578 820 470 792 282 245 309 213 

HV (Hypervolume) 126.5 124.3 123.3 125.9 127.1 127.1 123.2 127.1 138.7 136.2 129.3 131.2 
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nd that relies purely on SI’s and EA’s. HV is calculated for the

hree methods with respect to a dominated reference point (17,17).

s appears, Hybrid 2 has obtained the largest values followed by

ybrid 1 whereas the Pure SI&EA obtained the lowest HV results,

onsequently, Hybrid 2 Pareto results are better with respect to the

onvergence and diversity viewpoints than Pareto results of Hybrid

 and Pure SI&EA. Overall, the results show Hybrid 2 achieved re-

uction both in tumor cell concentration and chemotherapy using

ar less computation effort. The AL used in OC of Hybrid 2 relieved

he SI’s and EA’s from handling constraint via penalty strategy as

t was previously used in objective function of Hybrid 1. The out-

ome enabled Hybrid 2 to improve the closest point to the ori-

in and hence reduce tumor cell concentration and drug volume

n comparison to Hybrid 1. 

.2. Case study 2 

As mentioned in Section 2 , the source of immune cells sup-

osed to be outside the system, and it is represented by the value

f parameter s . The value of immune cells steady source rate s is

educed to become equal to 0.3 [17] in case study 2 compared with

hat in case study 1 while the values of other parameters are re-

ained the same as used in case study 1. 

The results of Pareto Optimal Front for case study 2 are pre-

ented in Fig. 7 for the three methodologies are explained in

ig. 2 with the SI and EA algorithms. Fig. 7 (A)–(D) shows Pareto
ptimal Front for the three methodologies that were obtained

y using M-MOPSO, MOPSO, MODE, MOEAD respectively. The red

oints represent the results of Pure SI&EA, green points represent

he results of Hybrid 1 and the blue points represent the results of

ybrid 2. 

As indicated, Hybrid 2 ′ s Pareto Front curve is nearest to the ori-

in compared to Pure SI&EA and Hybrid 1. Hybrid 1 ′ s Pareto Front

urve shows improved outcome compared to the Pareto Front of

ure SI&EA. The improved performance of Hybrid 2 compared to

he other two methodologies is dedicated to AL Approach that

andled the state constraint, enabling reduction of search space

or SI’s and EA’s optimization. Pure SI&EA and Hybrid 1 used the

enalty Approach in the objective function of SI and EA algorithms

o handle the state constraint and that causes increase in search

pace which leads to performance drop. The search space for Pure

I&EA and Hybrid 1 are larger than Hybrid 2 as many infeasible

olutions are generated. The infeasible solutions are subsequently

enalized by penalty scheme in objective function of Pure SI&EA

nd Hybrid 1. This process inevitably prolongs the optimization as

ore time is needed to increase chances of feasible solutions to

e found and optimized. Hybrid 2 produces only feasible solutions

s AL ensures infeasible solutions are eluded thus ensuring objec-

ive function of Hybrid 2 devoid of penalty scheme. Though the

erformance of Hybrid 1 is not as good as Hybrid 2, it is still bet-

er than Pure SI&EA. Hybrid 2 performed better than Hybrid 1 and
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Fig. 7. Pareto Optimal Front for Case Study 2 By Using: (A) M-MOPSO, (B) MOPSO, (C) MODE and (D) MOEAD. 

Fig. 8. Distance for the Closest Point to Origin in the Pareto Optimal Front for Case Study 2 vs Number of Iterations by Using: (A) M-MOPSO, (B) MOPSO, (C) MODE and (D) 

MOEAD. 
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pure SI&EA in terms of reduced tumor cell and drug volume as

well as shorter computational time. 

Fig. 8 shows the results of the closest point to the ori-

gin in the Pareto Optimal Front with the number of iterations

for the three methodologies that was explained in Fig. 2 . The

closest point to the origin in the Pareto Optimal Fronts for

the three methodologies are shown in Fig. 8 (A)–(D), using M-

MOPSO, MOPSO, MODE and MOEAD respectively. The results of

Pure SI&EA are represented by the red line, the results of Hy-
rid 1 by the green line and the results of Hybrid 2 by the blue

ine. 

As shown in Fig. 8 (A), Pure SI&EA using M-MOPSO takes more

han 110 iterations to find its closest point to the origin, Pure

I&EA based on MOPSO needed more than 140 iterations to sat-

rate at its closest point to the origin as shown in Fig. 8 (B). Pure

I&EA using MODE took more than 600 iterations to converge to

ts closest point to the origin whereas Pure SI&EA based on MOEAD

ook around 85 iterations to discover closest point to the origin. In
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Table 3 

The results summary for case study 2. 

Pure SI&EA Hybrid 1 Hybrid 2 

Algorithms M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD 

Distance of Closest Point to Origin 12.71 12.70 12.76 12.71 12.47 12.47 12.52 12.48 11.87 11.96 11.96 11.65 

Number of Iterations 118 146 640 87 2 2 2 2 2 2 2 2 

Tumor Cells Concentration 6.235 6.234 5.838 6.304 5.63 5.641 7.364 7.198 4.479 4.7 4.71 5.88 

Drug Volume 11.08 11.06 11.34 11.05 11.12 11.12 10.13 10.19 11 11 11 10 

Consumed Time (sec) 498 782 1576 537 549 1052 574 889 253 537 267 251 

HV 136.3 136.9 133.5 136.8 136.2 130.9 129.8 128.7 150.4 146.3 146.2 137.7 
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ontrast, Hybrid 1 and 2 for SI’s and EA’s used only two iterations

o achieve its closest point to the origin. 

The simulation was carried out 20 times and the outcome of

ase study 2 for the closest point to the origin as well as the aver-

ge HV results are shown in Table 3 . The results are shown as av-

rage tumor size, average drug volume, average consumed time for

he three methodologies used in this work. As shown, the results

f Hybrid 1 and 2 achieved the minimum results in terms of tumor

ell concentration and drug volume compared with Pure SI&EA.

he average distance of the four algorithms with origin point for

ybrid 2 is 11.68 and for Hybrid 1 is 12.49, while for Pure SI&EA

he average distance is 12.72. It is clear that Hybrid 2 achieved the

est results by using less time among the three methodologies.

ybrid 1 and 2 needed only 2 iterations which is far less com-

ared to Pure SI&EA. Hybrid 2 achieved reduction both in tumor

ell concentration and drug concentration using far less computa-

ion effort compared with the first methodology that used purely

I and EA and Hybrid 1 as shown in Table 3 . Hybrid 1 may not

ecessarily be computationally faster than pure SI&EA methodol-

gy as shown in Table 3 as it depends on the type of SI or EA used

n the hybridization. This results from the OC theory with penalty

cheme in the objective function cost high computational time. Hy-

rid 1 becomes computationally expensive to control the outcome

rom OC theory using weighting scheme and via penalty strategy

n the multi-objectives of SI or EA. However, Hybrid 2 is developed

o be computationally faster than Hybrid 1 and Pure SI&EA. The

L approach in Hybrid 2 relieved the SI’s and EA’s from handling

onstraint in comparison to penalty strategy used in the objective

unction of Hybrid 1, thus enabling Hybrid 2 to reduce the distance

f closest point to the origin with reduced tumor cell concentra-

ion and drug volume in comparison to Hybrid 1. In this case, HV

s calculated for the three methods with respect to a dominated

eference point (19,19). Again, as similar to Case 1, Hybrid 2 has

btained the largest values, followed by Pure SI&EA while Hybrid 1

as obtained the lowest results in Case 2. In general, optimization

ased on OC theory hybridized with SI and EA is more efficient

han optimization based on purely SI and EA despite the drawback

n terms of computational time for Hybrid 1. 

After reducing the immune source rate in case study 2 com-

ared with case study 1, the results of case study 2 shows an

ncrease in the amount of chemotherapy needed compared with

he chemotherapy in case study 1. The chemotherapy will assist

n killing the tumor cells until the immune system is able to deal

ith the tumor cells, hence reducing immune cells source rate

f the patient translates the patient into needing more assistance

rom chemotherapy. 

.3. Case study 3 

In case study 3, the value of immune response rate ρ increased

o become equal to 0.02 [17] while the values of the other param-

ters were maintained as in case study 1. 

Fig. 9 shows the results of the Pareto optimal front for the three

ethodologies that were explained in Fig. 2 with SI and EA algo-
ithms. Fig. 9 (A)–(D) presents the curves of Pareto optimal front

or the three methodologies by using M-MOPSO, MOPSO, MODE

nd MOEAD respectively. The red points represent the results for

ure SI&EA, green points show the results of Hybrid 1 and the re-

ults of Hybrid 2 is represented by the blue points. As indicated

n Fig. 9 , the results of Pareto Optimal Front of Hybrid 2 are clos-

st to the origin point compared to the results of Pure SI&EA and

ybrid 1 with the results of Hybrid 1 showing better performance

ompared with the results of Pure SI&EA. The state constraint in

ybrid 2 as discussed earlier is handled by the AL approach of

C theory. By this way, the difficulties facing SI and EA for han-

ling the constraint, such as increased search space is reduced.

ure SI&EA and Hybrid 1 employ penalty schemes within the SI

nd EA’s objective function to deal with state constraint. Penalty

cheme penalizes infeasible solutions and optimization is forced

o generate feasible solutions. This increases the search space of

I and EA optimization. Despite this, the results of the Hybrid 1

how a better performance compared with the first methodology

hat purely depends on SI and EA. It is clear by using OC theory

ombined with SI and EA, we can obtain improved optimization

esults. 

Fig. 10 shows the results of the closest point to the origin in the

areto Optimal Front with the number of iterations for the three

ethodologies that are explained in Fig. 2 combined with the SI

nd EA algorithms. The closest point to the origin in the Pareto Op-

imal Fronts for the three methodologies are shown in Fig. 10 (A)–

D) using M-MOPSO, MOPSO, MODE and MOEAD respectively. The

esults of Pure SI&EA are represented by the red line, the results of

ybrid 1 by the green line and the results of Hybrid 2 by the blue

ine. 

As shown in Fig. 10 (A), Pure SI&EA using M-MOPSO takes more

han 100 iterations to find its closest point to the origin while Pure

I&EA using MOPSO needed more than 120 iterations to saturate

t its closest point to the origin as shown in Fig. 10 (B). Pure SI&EA

ased on MODE needed more than 85 iterations to converge to its

losest point to the origin whereas Pure SI&EA based on MOEAD

ust required around 80 iterations to discover the closest point to

he origin. In contrast, Hybrid 1 and 2 for SI’s and EA’s used only

wo iterations to achieve its closest point to the origin. The OC the-

ry in Hybrid 1 and 2 directs the optimization toward global opti-

um saving the considerable effort used to discover closest point

o the origin by Pure SI&EA. Hybrid 2 achieves the best results

mong the three methodologies. 

The simulation was carried out 20 times and the outcome of

ase study 3 such as average tumor size, average drug volume,

verage consumed time and average number of iterations for the

losest point as well as the average distance from origin for case

tudy 3 and the average HV results for the three methodologies

re shown in Table 4 . As shown, Hybrid 2 obtained the best min-

mum results using the least time among the three methodologies

ollowed by the results obtained by Hybrid 1 found to be superior

han the results of the Pure SI&EA. The average distance with ori-

in point of the four algorithms of Hybrid 2 is 9.5455 and for Hy-

rid 1 is 9.994, while for Pure SI&EA the average distance is 10.275.
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Fig. 9. Pareto Optimal Front for Case Study 3 By Using: (A) M-MOPSO, (B) MOPSO, (C) MODE and (D) MOEAD. 

Fig. 10. Distance for the Closest Point to Origin in the Pareto Optimal Front for Case Study 3 vs Number of Iterations by Using: (A) M-MOPSO, (B) MOPSO, (C) MODE and 

(D) MOEAD. 

Table 4 

The results summary for case study 3. 

Pure SI&EA Hybrid 1 Hybrid 2 

Algorithms M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD M-MOPSO MOPSO MODE MOEAD 

Distance of Closest Point to Origin 10.28 10.27 10.28 10.27 9.994 9.994 9.994 9.994 9.578 9.513 9.513 9.578 

Number of Iterations 101 122 88 81 2 2 2 2 2 2 2 2 

Tumor cells concentration 6.209 6.193 6.126 6.191 5.772 5.772 5.772 5.772 5.267 6.441 6.441 5.267 

Drug volume 8.199 8.199 8.265 8.199 8.159 8.159 8.159 8.159 8 7 7 8 

Consumed Time (sec) 689 429 682 441 1312 712 558 667 273 363 245 226 

HV 135.2 136.1 132.7 136.6 135.4 134.7 134.4 135.5 143.8 143.4 138.1 143.4 
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Fig. 11. Drug Concentration (B) and Cells Concentrations (A) for Case Study 3 Using Pure SI&EA and MOEAD. 

Fig. 12. Cells Concentrations (A) and Drug Concentration (B) for Case Study 3, Using Hybrid 1 and MOEAD. 

H  

r  

t  

w  

v  

s  

t  

s  

P  

i  

A  

t  

a  

t  

m  

r

 

a  

m  

t  

p  

e

 

t  

c  

t  

c  

i  

F  

t  

c  

F  

p  

c  

a  

a  
V calculated for the three methods with respect to a dominated

eference point (17,17). As shown in Table 4 , Hybrid 2 has obtained

he largest values, while the Pure SI&EA and Hybrid 1 HV results

as close to each other, establishing Hybrid 2 as method that pro-

ides improved set of solutions from both convergence and diver-

ity viewpoints. As the hybridization between the SI and EA with

he OC in Hybrid 1 and 2 shows an increase in the quality of re-

ults, it also used less iterations compared with that used by the

ure SI&EA that depended purely on SI and EA algorithms for solv-

ng CMOOP. In Hybrid 2, embedding the state constraint in OC via

L, the SI and EA deals with only feasible solutions in its objec-

ive function thus improving the results compared to Pure SI&EA

nd Hybrid 1 that used penalty scheme in its objective function

o satisfy the state constraint. The standard deviation of the hybrid

ethods (Hybrid 1 and Hybrid 2) are zero, in all SI and EA algo-

ithms tested. 

Figs. 11–13 show the chemotherapy and cell concentrations

gainst time for the closest point to the origin of the three
ethodologies using MOEAD of case study 3. As shown in Table 4 ,

he MOEAD algorithm used the least number of iterations com-

ared with other algorithms in Pure SI&EA to converge at the clos-

st point to the origin. 

Fig. 11 (A) shows the results of the drug and the cell concen-

rations against time using Pure SI&EA based on MOEAD. The cell

oncentration includes normal cells marked by the blue line, the

umor cells concentration marked by the red line and the immune

ells concentration marked by the yellow line. The chemo medicine

nput control obtained for Pure SI&EA using MOEAD is shown in

ig. 11 (B). The profile of the control variable and the cells concen-

rations for Hybrid 1 is shown in Fig. 12 . The results of the drug

oncentration and cells concentrations for Hybrid 2 are shown in

ig. 13 . Part (B) of the Figs. 11–13 show the drug concentration

rofile with the time and the results of this drug profile on the

ells concentration are shown in part (A). By killing the tumor cells

nd reducing the toxicity to save the normal cells concentrations

bove certain level, the main goals for this optimization problem
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Fig. 13. Drug Concentration (A) and Cells Concentrations (B) for Case Study 3, Using Hybrid 2 and MOEAD. 
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achieved by all the methodologies are shown in part (A) and (B) in

Figs. 11–13 . 

As shown in Fig. 12 (B) by Hybrid 1, the chemotherapy was ap-

plied continuously at the maximum level during the treatment pe-

riod similar to Fig. 11 (B) found by Pure SI&EA. Meanwhile, as for

the results obtained by Hybrid 2 as shown in Fig. 13 , the con-

centration of the normal cells dropped to the boundary of 0.75

and the state constraint Eq. (13) became active. The drug concen-

tration at that time is reduced to boundary level in order to de-

crease the toxicity and subsequently when the concentration of the

normal cells increased above the state constraint, the condition of

Eq. (13) becomes inactive where the drug concentration is banged

to the maximum level to resume killing of the tumor cells. From

this result, the drug concentrations obtained by Hybrid 2 shown in

Fig. 13 (B) depicts the schedule of the chemotherapy protocol Max-

imum Tolerated Dose (MTD) that is used in real life as it is clini-

cally accepted to treat the cancer. The chemotherapy applied is the

maximum allowable level and there is a break or drug off period

between after each round of the treatment, to give time for the

normal cells to recuperate and reduce the toxicity [45] , Hybrid 2 is

found to produce the best and most suited for clinical application

among the three methodologies developed in this work. 

To complement the validation through comparison with Pure

SI&EA methodology, SSC is obtained to proof optimality. The Hes-

sian of Lagrangian, L zz ( ̄z ) is computed using Vossen [36] given in

the SSC flowchart of Fig. 3: 

L zz ( z ) = 

⎡ 

⎣ 

0 . 7511 2 . 6984 0 . 0716 

2 . 6984 9 . 6939 0 . 2573 

0 . 0716 0 . 2573 0 . 0068 

⎤ 

⎦ 10 

53 
Table 5 

Comparison with present work. 

Hybrid 1 

Algorithms M-MOPSO MOPSO MODE

Case Study 1 Distance of Closest Point to Origin 10.39 10.39 10.39

Tumor cells concentration 6.44 6.44 6.44 

Drug volume 8.159 8.159 8.159

Case Study 2 Distance of Closest Point to Origin 12.47 12.47 12.52

Tumor cells concentration 5.63 5.641 7.364

Drug volume 11.12 11.12 10.13

Case Study 3 Distance of Closest Point to Origin 9.994 9.994 9.994

Tumor cells concentration 5.772 5.772 5.772

Drug volume 8.159 8.159 8.159
And the Jacobian of the terminal conditions 30–32 is obtained

s: 

z ( z ) = 

⎡ 

⎣ 

−0 . 0554 −0 . 010 0 . 0127 

0 . 0186 0 . 0325 0 . 0368 

0 . 2013 0 . 1998 0 . 2276 

⎤ 

⎦ 

While the Jacobian of the in-equality state constraint is given

y: 

 z ( ̄z ) = 

[
0 . 0554 0 . 010 −0 . 0127 

]
The Rank ( �z( ̄z ) ) = 3, full rank and the Rank ( Sz( ̄z ) ) = 1, which

eans it’s verified the first order sufficient condition, Rank( �z( ̄z ) )

 Rank( Sz( ̄z ) ) = s + 1. For the Hessian of Lagrangian it’s a posi-

ive definite. With the switching time vector [ ̄z 1 z̄ 2 z̄ 3 ] corre-

ponding to switching time [ 1 3 7 ] obtained from Fig. 13 (B),

he SSC obtained from SSC flowchart is positive definite implying

he switching time is optimal. This results further validates the op-

imal outcome of constrained OC with AL. 

esults comparison with previous work 

In previous work, Lobato et al. [17] combined MODE and NSGA

I with OC theory respectively for solving the chemotherapy prob-

em. Lobato et al. minimized tumor and chemotherapy of Pillis and

adunskaya [13] model using OC with MODE and NSGA II to satisfy

he Differential Algebraic Equation (DAE) as constraint. The con-

traints are satisfied with tumor and chemotherapy minimized us-

ng control input permutation generated by MODE and NSGA II.

ybrid 1 and 2 which embeds indirect method of OC theory with

I and EA are compared with Lobato et al. in Table 5 . The results of
Hybrid 2 Lobato et al. [ 17 ] . 

 MOEAD M-MOPSO MOPSO MODE MOEAD MODE NSGA II 

 10.39 9.875 9.82 9.82 9.875 14.43 15.31 

6.44 5.68 5.69 5.69 5.789 4.67 4.60 

 8.159 8 8 8 8 13.66 14.61 

 12.48 11.87 11.96 11.96 11.65 25.33 25.59 

 7.198 4.479 4.7 4.71 5.88 12.79 12.94 

 10.19 11 11 11 10 21.87 22.08 

 9.994 9.578 9.513 9.513 9.578 11.96 10.90 

 5.772 5.267 6.441 6.441 5.267 6.21 8.58 

 8.159 8 7 7 8 10.23 6.73 
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verage drug concentration, average tumor volume and the average

istance for nearest point to the origin of the present work for Hy-

rid 1 and 2 are given in Table 5 for the three cases study against

he results of Lobato et al. As shown in Table 5 , Hybrid 1 and Hy-

rid 2 give improved results compared to Lobato et al. [17] of all

he three cases study. Furthermore, the difference in the results

etween Hybrid 1 and 2 with Lobato in Table 5 is clear especially

or more challenging optimization problem such as case study 2.

he present work provides effective hybridization between the SI

nd EA with the OC in Hybrid 1 and 2 to avoid trapping in the lo-

al optimal solutions to obtain the improved non-dominant results

nd to overcome the problems of exploration and exploitation. 

0. Conclusion 

This paper proposed a hybrid optimal control swarm intelli-

ence optimization technique to address Constrained Multi Objec-

ives Optimization Problem using cancer chemotherapy mathemat-

cal model introduced by Pillis and Radunskaya [13] that aimed to

inimize the drug and tumor cells concentrations while keeping

he concentration of the normal cells above safe level. In this work,

hree methodologies were developed namely Pure SI&EA, Hybrid 1

nd Hybrid 2 which used M-MOPSO, MOPSO, MODE and MOEAD.

he results show that: 

1. The hybrid methodologies such as Hybrid 1 and 2 used much

fewer iterations compared with the Purely SI and EA. 

2. Hybrid 2 that included the constraints in optimal control theory

obtained the best results in comparison to Pure SI&EA and Hy-

brid 1 in terms of cancer cell and drug concentration reduction

as well as computational cost. 

3. Hybrid 2 chemotherapy results show close proximity to

chemotherapy protocol maximum tolerated dose (MTD) com-

pared to Pure SI&EA and Hybrid 1. 

4. Hybrid 1 results are improved compared to Pure SI&EA in all

the case studies but it came short against Hybrid 2 in terms of

cancer cell and drug concentration reduction. 

Overall, the performance of hybrid techniques based on optimal

ontrol theory and the swarm and evolutionary algorithms are ro-

ust and better than the performance of the methodology that is

ased purely on swarm and evolutionary algorithms. The present

tudy selected the cancer chemotherapy model that is independent

f cancer type as this work hopes to show the advantage of hy-

rid optimization techniques on general cancer treatment problem

n comparison to optimization technique that is purely based on

I or EA. These results will be helpful for oncologists and math-

maticians to further analyze the hybridization of optimal control

ith other optimization techniques to enhance the optimization.

he outcome would relieve the patient’s pain and reduce the cost

f chemotherapy treatment. In future work Hybrid Bare-Bones PSO

lgorithm [46] will used to handle the constraints. The authors

ould provide the Matlab codes of the work if requested via email

f the corresponding author. 

eclaration of Competing Interest 

The authors of this paper entitled “The Combined Effect of Op-

imal Control and Swarm Intelligence on Optimization of Cancer

hemotherapy” would like state there is no conflict of interest in 

ubmitting this work to the journal of Computer Methods and Pro-

rams in Biomedicine. 

cknowledgement 

This work is supported by Faculty Research Grant, GPF010A-

018, Faculty of Engineering, University Malaya, Malaysia 
upplementary materials 

Supplementary material associated with this article can be

ound, in the online version, at doi: 10.1016/j.cmpb.2020.105327 . 

eferences 

[1] W. H. Organization, Cancer - Key Facts, 2018 Available: http://www.who.int/

news-room/fact-sheets/detail/cancer . 
[2] R.L. Siegel , K.D. Miller , A. Jemal , Cancer statistics, 2018, CA Cancer J. Clin. 68

(2018) 7–30 . 
[3] D. Galmarini , C.M. Galmarini , F.C. Galmarini , Cancer chemotherapy: A critical

analysis of its 60 years of history, Crit. Rev. Oncol. Hematol. 84 (2012) 181–199 .

[4] J.M. Harrold , R.S. Parker , Clinically relevant cancer chemotherapy dose schedul-
ing via mixed-integer optimization, Comput. Chem. Eng. 33 (Dec 2009)

2042–2054 . 
[5] M. Itik , M.U. Salamci , S.P. Banks , Optimal control of drug therapy in cancer

treatment, Nonlinear Anal. Theory Methods Appl. 71 (2009) e1473–e1486 . 
[6] R.A. Ku-Carrillo , S.E. Delgadillo-Aleman , B.M. Chen-Charpentier , Effects of the

obesity on optimal control schedules of chemotherapy on a cancerous tumor,

J. Comput. Appl. Math. 309 (2017) 603–610 . 
[7] X. Wu , Q.D. Liu , K.J. Zhang , M. Cheng , X. Xin , Optimal switching control for

drug therapy process in cancer chemotherapy, Eur. J. Control 42 (Jul 2018)
49–58 . 

[8] J.H. Shi , O. Alagoz , F.S. Erenay , Q. Su , A survey of optimization models on can-
cer chemotherapy treatment planning, Ann. Oper.Res. 221 (Oct 2014) 331–356 .

[9] A. C. Society, Economic Impact of Cancer, 2018 Available: https://www.cancer.

org/cancer/cancer- basics/economic- impact- of- cancer.html . 
[10] J.C. Panetta , K.R. Fister , Optimal control applied to competing chemotherapeu-

tic cell-kill strategies, SIAM J. Appl. Math. 63 (2003) 1954–1971 . 
[11] R.B. Martin , Optimal control drug scheduling of cancer chemotherapy, Auto-

matica 28 (1992) 1113–1123 . 
[12] A .S. Matveev , A .V. Savkin , Optimal control applied to drug administration in

cancer chemotherapy: the case of several toxicity constraints, in: Proceedings
of the IEEE Conference on Decision and Control, 20 0 0, pp. 4 851–4 856 . 

[13] L.G. De Pillis , A. Radunskaya , The dynamics of an optimally controlled tumor

model: a case study, Math. Comput. Modell. 37 (2003) 1221–1244 . 
[14] S. Khadraoui , F. Harrou , H.N. Nounou , M.N. Nounou , A. Datta , S.P. Bhat-

tacharyya , A measurement-based control design approach for efficient cancer
chemotherapy, Inf. Sci. 333 (2016) 108–125 . 

[15] N. Sharifi, S. Ozgoli , A. Ramezani , Multiple model predictive control for optimal
drug administration of mixed immunotherapy and chemotherapy of tumours,

Comput. Methods Progr. Biomed. 144 (2017) 13–19 . 

[16] G. Dhiman , V. Kumar , Multi-objective spotted hyena optimizer: A multi-objec-
tive optimization algorithm for engineering problems, Knowl. Based Syst. 150

(2018) 175–197 . 
[17] F.S. Lobato , V.S. Machado , V. Steffen , Determination of an optimal control strat-

egy for drug administration in tumor treatment using multi-objective opti-
mization differential evolution, Comput. Methods Progr. Biomed. 131 (Jul 2016)

51–61 . 

[18] Z. Fan , W. Li , X. Cai , H. Li , C. Wei , Q. Zhang , et al. , Push and pull search for solv-
ing constrained multi-objective optimization problems, Swarm Evolut. Comput.

44 (2018) 665–679 . 
[19] Y. Zhang , S. Cheng , Y. Shi , D.-w. Gong , X. Zhao , Cost-sensitive feature selection

using two-archive multi-objective artificial bee colony algorithm, Expert Syst.
Appl. 137 (2019) 46–58 . 

20] Y. Zhang , D. Gong , J. Cheng , Multi-Objective particle swarm optimization ap-

proach for cost-based feature selection in classification, IEEE/ACM Trans. Com-
put. Biol. Bioinf. 14 (2017) 64–75 . 

[21] Y. Zhang , D.-.W. Gong , Z. Ding , A bare-bones multi-objective particle swarm
optimization algorithm for environmental/economic dispatch, Inf. Sci. 192

(2012) 213–227 . 
22] Y. Zhang , D.-.W. Gong , N. Geng , Multi-Objective optimization problems using

cooperative evolvement particle swarm optimizer, J. Comput. Theor. Nanosci.

10 (3) (2013) 655–663 . 
23] Y. Zhang , C. Xia , D. Gong , X. Sun , Multi-Objective PSO Algorithm for Feature

Selection Problems with Unreliable Data, 2014 . 
[24] M.Z.b Mohd Zain , J. Kanesan , J.H. Chuah , S. Dhanapal , G. Kendall , A multi-

objective particle swarm optimization algorithm based on dynamic boundary
search for constrained optimization, Appl. Soft Comput. 70 (2018) 680–700 . 

25] K. Deb , A. Pratap , S. Agarwal , T. Meyarivan , A fast and elitist multiobjective

genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2002) 182–197 . 
26] C.A. Coello Coello , Theoretical and numerical constraint-handling techniques

used with evolutionary algorithms: a survey of the state of the art, Comput.
Methods Appl. Mech. Eng. 191 (2002) 1245–1287 . 

[27] L.G. de Pillis , W. Gu , K.R. Fister , T. Head , K. Maples , A. Murugan , et al. ,
Chemotherapy for tumors: an analysis of the dynamics and a study of

quadratic and linear optimal controls, Math. Biosci. 209 (2007) 292–315 . 
28] U. Ledzewicz , H. Schättler , Optimal bang-bang controls for a two-compart-

ment model in cancer chemotherapy, J. Optim. Theory Appl. 114 (September

01 2002) 609–637 . 
29] U. Ledzewicz , H. Schattler , Optimal control for a bilinear model with recruit-

ing agent in cancer chemotherapy, in: Proceedings of the Forty-Second IEEE
International Conference on Decision and Control (IEEE Cat. No.03CH37475), 3,

2003, pp. 2762–2767 . 

https://doi.org/10.1016/j.cmpb.2020.105327
http://www.who.int/news-room/fact-sheets/detail/cancer
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0002
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0003
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0003
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0003
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0003
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0004
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0005
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0005
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0005
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0005
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0006
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0007
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0008
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0008
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0008
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0008
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0008
https://www.cancer.org/cancer/cancer-basics/economic-impact-of-cancer.html
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0010
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0011
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0011
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0012
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0013
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0014
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0015
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0016
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0017
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0017
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0017
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0017
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0018
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0019
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0020
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0021
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0022
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0022
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0022
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0022
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0023
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0024
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0025
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0026
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0027
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0028
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0028
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0028
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0029
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0029


16 O. Shindi, J. Kanesan and G. Kendall et al. / Computer Methods and Programs in Biomedicine 189 (2020) 105327 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[  

 

 

 

 

 

[30] U. Ledzewicz , H. Schättler , Optimal controls for a model with pharmacokinetics
maximizing bone marrow in cancer chemotherapy, Math. Biosci. 206 (2007)

320–342 . 
[31] U. Ledzewicz , H. Schattler , A synthesis of optimal controls for a model of tu-

mor growth under angiogenic inhibitors, in: Proceedings of the Forty-Fourth
IEEE Conference on Decision and Control, 2005, pp. 934–939 . 

[32] H. Maurer , G. Vossen , Sufficient conditions and sensitivity analysis for optimal
bang-bang control problems with state constraints, in: System Modeling and

Optimization, 2009, pp. 82–99 . 

[33] H. Maurer , First and second order sufficient optimality conditions in math-
ematical programming and optimal control, in: H. König, B. Korte, K. Ritter

(Eds.), Mathematical Programming at Oberwolfach, Springer Berlin Heidelberg,
Berlin, Heidelberg, 1981, pp. 163–177 . 

[34] V. Zeidan , The riccati equation for optimal control problems with mixed state–
control constraints: necessity and sufficiency, SIAM J. Control Optim. 32 (1994)

1297–1321 . 

[35] H. Maurer , S. Pickenhain , Second-order sufficient conditions for control prob-
lems with mixed control-state constraints, J. Optim. Theory Appl. 86 (1995)

649–667 . 
[36] G. Vossen , Switching time optimization for bang-bang and singular controls, J.

Optim. Theory Appl. 144 (2010) 409–429 . 
[37] J. Kennedy , R. Eberhart , Particle swarm optimization, in: Proceedings of

the ICNN’95 - International Conference on Neural Networks, 4, 1995,

pp. 1942–1948 . 
[38] Y. d. Valle , G.K. Venayagamoorthy , S. Mohagheghi , J. Hernandez , R.G. Harley ,
Particle swarm optimization: basic concepts, variants and applications in

power systems, IEEE Trans. Evol. Comput. 12 (2008) 171–195 . 
[39] C.A.C. Coello , M.S. Lechuga , MOPSO: a proposal for multiple objective parti-

cle swarm optimization, in: Proceedings of the 2002 Congress on Evolutionary
Computation. CEC’02 (Cat. No.02TH8600), 2, 2002, pp. 1051–1056 . 

[40] B.T. ck , H. Schwefel , An overview of evolutionary algorithms for parameter op-
timization, Evol. Comput. 1 (1993) 1–23 . 

[41] C.M. Fonseca , P.J. Fleming , An overview of evolutionary algorithms in multiob-

jective optimization, Evol. Comput. 3 (1995) 1–16 . 
[42] D. Souza , F. Lobato , R. Gedraite , Robust multiobjective optimization applied to

optimal control problems using differential evolution, Chem. Eng. Technol. 38
(2015) . 

[43] F. Xue , A.C. Sanderson , R.J. Graves , Pareto-based multi-objective differential
evolution, in: Proceedings of the Congress on Evolutionary Computation, 2003.

CEC ’03., 2, 2003, pp. 862–869 . 

44] E. Zitzler , D. Brockhoff, L. Thiele , The hypervolume indicator revisited: on the
design of pareto-compliant indicators via weighted integration, in: Evolution-

ary Multi-Criterion Optimization, 2007, pp. 862–876. Berlin, Heidelberg . 
[45] U. Ledzewicz , H. Schattler , M.R. Gahrooi , S.M. Dehkordi , On the mtd paradigm

and optimal control for multi-drug cancer chemotherapy, Math. Biosci. Eng. 10
(Jun 2013) 803–819 . 

[46] Y. Zhang , D.-w. Gong , N. Geng , X.-y. Sun , Hybrid bare-bones pso for dynamic

economic dispatch with valve-point effects, Appl. Soft Comput. 18 (2014)
248–260 . 

http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0030
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0031
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0032
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0032
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0032
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0033
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0033
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0034
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0034
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0035
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0036
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0036
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0037
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0037
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0037
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0038
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0039
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0039
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0039
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0040
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0040
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0040
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0041
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0041
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0041
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0042
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0042
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0042
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0042
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0043
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0043
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0043
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0043
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0044
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0044
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0044
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0044
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0045
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0045
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0045
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0045
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0045
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0046
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0046
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0046
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0046
http://refhub.elsevier.com/S0169-2607(19)31030-2/sbref0046

	The combined effect of optimal control and swarm intelligence on optimization of cancer chemotherapy
	1 Literature review
	2 The tumor model
	3 Multi-objective optimization problem
	4 Optimization methodologies for solving CMOOP
	5 Optimal controller design and necessary conditions
	6 Constraint handling
	7 Second order sufficient condition
	8 Algorithm description
	8.1 Particle swarm optimization (PSO)
	8.2 Evolutionary algorithms

	9 Results and discussion
	9.1 Case study 1
	9.2 Case study 2
	9.3 Case study 3
	Results comparison with previous work

	10 Conclusion
	Declaration of Competing Interest
	Acknowledgement
	Supplementary materials
	References


