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for Dynamic Vehicle Routing Problems
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Abstract— This article addresses the dynamic vehicle routing
problem (DVRP). DVRP is a challenging variation of the classic
vehicle routing problem in which some customers are not known
in advance. The objective is to incorporate new customers into the
schedule as they become known while still attempting to minimize
the cost of serving all customers without violating the problem
constraints. This work proposes an effective population-based
approach that integrates various algorithmic components to
address DVRP. The approach combines a local search algorithm
with various evolutionary operators (crossover and mutation)
in an adaptive manner. To promote diversity, the proposed
approach utilizes a population of solutions and uses a quality-
and-diversity strategy to retain only promising solutions. The
well-known 21 DVRP benchmark instances are utilized to test
the performance of the proposed approach. An experimental
comparison is carried out to assess the contribution of the
integrated components. Results demonstrate that the integrated
components significantly improve search performance. It is also
shown that the proposed approach produces new best results for
several instances when compared with the best methods reported
in the literature.

Note to Practitioners—This work deals with dynamic vehicle
routing problems (DVRPs). In DVRP, only limited information is
available at the start, and new information is revealed over time.
It proposes an effective hybrid approach to tackle this problem.
The proposed approach combines evolutionary operators and
a local search approach in an adaptive manner to exploit the
benefits of each algorithmic component. The proposed approach
produces several new best-known solutions. The experimental
results demonstrate that the proposed approach is very effective
in dealing with DVRP and can help decision-makers in designing
best-routing solutions.

Index Terms— Dynamic optimization, evolutionary algorithm,
metaheuristic, vehicle routing problem (VRP).
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I. INTRODUCTION

THE vehicle routing problem (VRP) is one of the many
combinatorial optimization problems [1], [2]. It is known

as the hardest variant of transportation problem that has
been intensively studied in the scientific literature [3]. Many
real-world applications, particularly in logistics and trans-
portation, have a strong relationship with the VRP, which
motivates researchers and practitioners, across many com-
munities to investigate the problem [4], [5]. Problems, such
as the traveling salesman problem [6], are obviously closely
related to the VRP, but many other problems that may not,
at first sight, be related also to have a strong relationship
with the VRP. This includes the knapsack problem and bin
packing [7].

In the classic VRP, the goal is to derive a group of
routes to deliver goods to a group of customers, minimizing
the cost (e.g., time, fuel, and distance) while adhering to
the imposed constraints [8]. Many VRP models have been
introduced over the years. Each model involves different
constraints to represent real-world scenario [4], [8]–[10]. Both
the classic VRP and developed variants have been classified
as NP-hard problems [4], [8]. Exact methods have been
utilized to find the optimal solution for VRP instances [8].
However, their computational times grow exponentially as the
problem instance size increases. To tackle medium-/large-sized
instances, researchers and practitioners have often called upon
metaheuristic algorithms because they can often produce a
good quality solution in modest computational times, but at
the expense of the optimality [4], [11]. Examples of these
metaheuristic algorithms are simulated annealing [12], tabu
search [13], [14], variable neighborhood algorithms [15], [16],
genetic algorithms [17], and ant colony systems [18].

Many real-world problems involve a dynamic aspect or
must cope with the uncertain environment [19]. In some VRP
applications, logistics and transportation managers must deal
with dynamic situations. For example, a few customer orders
may appear or cancel their orders during the distribution
process [20]. Another critical aspect is the traffic condition
that often changes dramatically during the working time.
Thus, the dynamic vehicle routing problem (DVRP) was
introduced to cope with the dynamic aspect of a real-world
VRP variant [19]. In DVRP, at least one aspect of the problem
may change over time. These changes may affect the problem
constraint(s), the objective function(s), customer demands,
or vehicle workload [19].
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This work addresses the DVRP variant that involves
dynamic customer requests. In this DVRP, not all customers
are known in advance, and changes may occur at any time
[20]. That is, after designing the routing plan and the vehicles
have departed to deliver customer demands, new orders from
customers might appear. When this is the case, a solution
to the DVRP must now include the new customers in the
routing plan while still attempting to minimize the overall
travel cost. Hence, the goal of the optimization method is not
only to minimize the traveling cost of the routing plan but to
also accommodate these changes into the schedule. Despite its
real-world application, the DVRP has received little attention
from researchers [19]. The DVRP has been categorized as
an NP-hard problem, with metaheuristic algorithms being
successfully utilized [19].

Existing approaches use time slices (periods), a concept
introduced in [20] to handle DVRP. This concept divides the
day into periods of equal duration. Then, an optimization
approach is periodically executed to solve a static problem
corresponding to the current period. These approaches can
be categorized as periodic reoptimization approaches. Exam-
ples of metaheuristic periodic reoptimization approaches that
have been proposed for the DVRP are: greedy randomized
adaptive search procedure [21], tabu search [22], ant colony
optimization algorithms [21], [23], [24], genetic algorithms
[22], [25], variable neighborhood search algorithms [26],
memetic approach [27], monarch butterfly algorithm [28],
brain storm optimization algorithm [29], and particle swarm
optimization algorithms [30]–[32].

This work proposes an effective periodic reoptimization
approach for DVRP. The proposed approach integrates a
local search (LS) algorithm with evolutionary operators in
an adaptive manner. Our contribution can be summarized as
follows.

1) We develop an effective hybrid approach for DVRP that
integrates an iterated local search (ILS) algorithm with
several algorithmic components. First, we utilize the
skewed variable neighborhood descent (SVND) as an LS
algorithm within ILS to search for a local optimum solu-
tion. Second, to effectively explore a new area around
the current local optimum, we propose an adaptive
multioperator perturbation procedure, which relies on
three different but complementary rules to evolve a new
solution. Finally, we use the exponential Monte Carlo
criterion (EMC) as an acceptance procedure for the ILS.

2) A traditional ILS and other LS algorithms rely only on
the best solution to center the search. Hence, the area
explored by previous good solutions is often forgot-
ten. However, these solutions might be very useful
to guide the search toward promising regions that
have not explored yet, especially in a dynamic envi-
ronment because the search landscape keeps chang-
ing. To address this phenomenon, we propose a
population-based ILS that uses a set of solutions to
handle the dynamic changes. The population contains
a group of high-quality and diverse solutions. These
solutions are utilized to construct a new starting solu-
tion for LS algorithm. To promote diversity, we use a

quality-and-diversity updating strategy to update the
solutions in the population.

3) We have tested the proposed approach on 21 DVRP
benchmark instances [20]. These instances have been
used by many researchers. The proposed approach com-
pares favorably with the best methods reported in the
literature. Our approach produces 17 new best-known
results in reasonable computational times. It obtained
better average results across all instances and is shown
to be statistically better than other methods.

The rest of this article is organized as follows. In Section II,
we present the VRP and DVRP formulations. The proposed
ILS is described in Section III. Section IV discusses the experi-
ment and parameter settings, while the results and comparisons
are reported in Section V. The conclusion of this work is given
in Section VI.

II. PROBLEM DESCRIPTION

This section first presents the description and formulation
of the classical VRP and then DVRP.

A. Vehicle Routing Problem

The classical VRP can be modeled using a graph
G(V , E) [8]. In this model, V is a set of vertices
and E is a group of edges. V represents the location
of customers V = {v0, v1, . . . , vn}, while edges
E = {(vi , v j ) : vi , v j ∈ V , i < j} indicate connection
between locations vi and v j . In addition, each edge has a
value indicating the travel time between vi and v j denoted as
ci j . A matrix C = (ci j) can be defined to store the travel time
between each pair of locations. In this model, v0 is used as
the depot and it has m vehicles of the same capacity, Q. All
vehicles start their route from v0, visit the allocated locations,
and then go back to v0. The set of vehicle routes is denoted
as R1, . . . , Rm . All v1, . . . , vn , except v0, requests qi goods
to be picked or delivered as well as a servicing time δi . The
goal is to generate R1, . . . , Rm routes to serve all customer
demands at minimal total travel distance while ensuring the
problem constraints have not been violated [8], [33].

1) Each vehicle starts it journey from v0, visits all the
assigned customer locations, and returns to v0.

2) The total demand allocated to the vehicle must not
exceed its capacity.

3) All customers must be visited once only.
4) The travel time duration of each vehicle route must not

be greater than the upper bound.
Each route Ri involves a set of locations and denoted as

Ri = {vπ(0), vπ(1), . . . , vπ(n+1)}, where vπ( j) ∈ V ( j ∈ [0;
ni + 1]), vπ(0) and vπ(ni+1) = 0 represent the depot and ni is
the number of locations in Ri . The cost (C) of Ri is calculated
as follows [8]:

C(Ri ) =
ni�

j=0

cπ( j),π( j+1). (1)

The total cost [or the objective function ( f )] for all routes
(a complete solution) is calculated as follows:

f =
m�

i=1

C(Ri). (2)
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Fig. 1. Example of DVRP [19].

The calculation in (2) should satisfy the vehicle capacity
constraint in the following equation:

Demand(Ri ) =
ni�

j=1

qπ ( j) ≤ Q (3)

where qπ ( j) is the demand of π( j) and Q represents the
maximum capacity of vehicle.

In addition to the capacity constraint, the prespecified trav-
eling time bound (T ) should not be violated

Time(Ri) =
ni�

j=0

cπ( j),π( j+1) +
ni�

j=1

δπ(i) ≤ T . (4)

B. Dynamic Vehicle Routing Problem

In this work, we deal with the DVRP model that was
introduced in [20] and further refined in [21]. In this DVRP
model, new orders are revealed over time [19], [34]. Hence,
these new orders should be added to the current schedule by
either adding them to current routes or creating a new one
for them. Like the classical VRP, the goal of the optimization
process is to incorporate new customers into the schedule as
they become known while still attempting to minimize the cost
of serving all customers without violating the problem con-
straints. An instance of DVRP scenario is given in Fig. 1 [19].
In this instance, we have known customers (A, B , C , D,
and E) and customers that appear over the time. Initially,
the vehicle departs the depot at time t0 to serve A, B , C ,
D, and E . While the vehicle on the route, two new customers
X and Y appear at time t1. Thus, the vehicle must include
them into the current routing plan. Consequently, at time t f ,
the vehicle routing plan changed to visit customers A, B ,
C , D, Y , E , and X . This instance illustrates how the DVRP
vehicle routing plan changes over time to accommodate new
customers, which shows the real-time communication between
the depot and vehicle driver [19].

The model we utilize in this work first divides the DVRP
into a sequence of static VRPs and then solves the static VRPs
using the proposed algorithm. Each working day D is split into
a set of discrete periods nts of the same length D/nts. Each
period represents one static VRP. The idea of using periods
is to assign a fixed time for each static problem [21]. This
model can be classified as a dynamic periodic reoptimization
routing problem [19]. The model has two parameters: 1) a
cutoff time, Tco, which is used to allow the system to postpone
orders that have been received after Tco to the following day
to limit the percentage of the advance requests over a day,
and 2) an advanced commitment time (Tac), which allows the
system to communicate with the driver before leaving the most
recently serviced customer to give the driver enough time to

Fig. 2. Event scheduler of DVRP.

react before handling the new order. Tac = 0 indicates that all
requests are allocated at the last possible moment. The settings
of the DVRP parameters are presented in Section IV-B1.

Fig. 2 shows the proposed DVRP solver, which has two
parts (the event scheduler and the proposed approach). The
event scheduler manages customer requests (place orders),
assigns customers to vehicles (commits), and generates a static
VRP problem as an input for the proposed approach. The role
of the proposed approach is to solve the static VRP problem
by generating the least cost routing plans. The event scheduler
works as follows. First, it generates a static problem for the
first period using the orders that were not serviced in the
previous working day. It then calls the proposed approach
to solve the generated static problem. Next, the generated
solution (routing plan) by the proposed approach is committed
to the vehicle to serve the current customers. If a new
customer order appears during the current period, then it must
be postponed to the end of the current period. After that,
the event scheduler generates a static VRP problem for the
next period, which consists of the orders that missed the
service in the previous period. It should be noted that when
the event scheduler commits orders to a vehicle, this vehicle is
either serving customers or traveling to a location. The event
scheduler will also update the state and the position of vehicles
and customers after finishing the commitment phase.

III. PROPOSED APPROACH

Hybrid approaches combine several interacting modules
(heuristics or algorithmic components) in a unified frame-
work to efficiently solve computational search problems
[35]–[39]. Combining several different components of var-
ious algorithms in a complementary manner can result in
an effective solution methodology. This work proposes a
population-based approach to effectively deal with DVRP.
The proposed approach makes use of various algorithmic
components in a complementary manner to attain high-quality
solutions. More precisely, we integrate evolutionary operators
and a population of solutions within ILS algorithm to devise
an effective approach that can generate high-quality solutions
for DVRP.

Fig. 3 shows the flowchart of the proposed approach. It con-
sists of ILS components, population of solutions, and the
population update procedure. The approach starts by setting
the parameters (Section III-A) and initializing the population
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Fig. 3. Flowchart of the proposed approach.

of solutions (Section III-B). Then, it successively calls ILS
components to improve the given solution and the update
procedure to update the population of solutions until the
predefined stopping condition is reached.

The components of the proposed approach are presented in
the following.

A. Set the Parameters

The parameters of the proposed approach are set in this step.
These are the total number of iterations, population size, and
the termination condition of the search. The utilized values are
discussed in Section IV-B.

B. Initializing the Population of Solutions

To effectively solve DVRP, the optimization approach
should be able to cope with the dynamic aspect of the problem
and continuously seek for the best solution. To this end, using
a population of solutions within the optimization approach
appears highly appropriate for DVRP because solutions can
be allocated in different regions of the search space to track
the DVRP changes [40]. In addition, a solution for a new
change can be created using existing ones. This work utilizes
a population of solutions to search the solution space of the
DVRP model. The population involves a set of diverse solu-
tions. We use the random permutation procedure to generate
the initial set of solutions that randomly add all customer
orders from the previous working day into the current plan,
as in [21]. By using this method, we can generate several
solutions that are spread across the search space. The solutions

Algorithm 1 Basic ILS

1 Set T − I ter; I t = 0 ;
2 Si ← GenerateIni tialSolution();
3 Sc ← Localsearch(Si);
4 while It < T-Iter do
5 Sp ← Perturbation procedure (Sc) ;
6 Sn ← Local search procedure (Sp) ;
7 Sc ← Acceptance criterion procedure

(Sc, Sn, history) ;
8 I t = I t + 1 ;
9 end

10 Return the best solution;

in the population are then sorted based on their quality, which
is represented by the objective function [see (2)].

C. ILS Components

ILS is a single-solution-based optimization algorithm, pro-
posed in [41]. Like most LS algorithms, ILS starts with
an initial solution and then carries out an LS, seeking a
local optimum. It then modifies this solution to explore a
new area in the neighborhood of the current one. Next, ILS
carries out another LS. This is repeated until the termination
condition is satisfied. ILS can be viewed as iterative calls of
the following three procedures: 1) LS; 2) a perturbation to
provide a new solution for the next LS round; and 3) the
acceptance criterion to decide to accept or reject the resultant
solution. The pseudocode of the basic ILS algorithm is shown
in Algorithm 1 [41], [42].

First, ILS sets the total number of iterations (T − I ter )
and the current iteration indicator I t (line 1). In line 2, ILS
calls GenerateIni tialSolution() (Section III-B) to generate
Si as an initial solution. In line 3, Si will be improved by the
LS algorithm. The new one will be saved as Sc. Then, at each
iteration (lines 4–9), it applies the perturbation procedure (line
5) to construct a new starting solution, Sp , via perturbing Sc.
Next, it calls the LS procedure to improve Sp and saves the
improved solution as Sn (line 6). In line 7, based on utilized the
acceptance criterion, Sn is either accepted and replaced with
Sc or rejected. Finally, in line 8, ILS updates I t and checks
the halting condition. If satisfied, ILS will stop and print the
best-found solution. Otherwise, it will start a new iteration.

Though ILS has successfully addressed many optimization
problems, its performance is highly affected by the three
procedures: LS procedure, perturbation procedure, and the
acceptance criterion procedure. This is because different prob-
lems often require an ILS that has been tuned to the specific
instance. To address these issues, the proposed approach
adaptively combines various evolutionary operators with the
ILS. First we employ the SVND [43] within ILS to search
for local optima solutions. SVND uses several neighborhood
structures to explore the search space. The main idea behind
SVND is that distinct neighborhood structures generate differ-
ent search paths; thus, it can help the search to explore various
areas in the search space. Second, to effectively explore a
new location around the current local optimum, we propose
an adaptive multioperator perturbation procedure that relies
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on three different but complementary rules to generate a
new starting solution. Among these rules, two of them use
a crossover operator. We devise a quality-diverse crossover
operator and multisolution crossover operator to search for a
new area in the solution space. Finally, we utilize the EMC
as an acceptance criterion. The proposed components for ILS
are presented in the following.

1) LS Procedure: The basic ILS utilizes the steepest descent
algorithm in the LS phase. Although being simple to imple-
ment, it has the disadvantage of quickly becoming trapped in
a local optimum, due to its greedy acceptance criterion. This
often generates uncompetitive results, especially for hard, con-
strained optimization problems such as the DVRP. In addition,
and more importantly, the type of neighborhood structures
employed within the LS has a critical effect on algorithmic
performance. Even when the neighborhood structure has been
carefully selected for the instance at hand, its performance
might change during the search process and is unlikely to be
well suited to all problem instances. This is because not all
problem instances have the same characteristics and the search
landscape might change during the search.

To address this issue, our proposed approach employs an
SVND algorithm as an LS procedure [43] within ILS. SVND
integrates the distance between solutions within the objective
function in order to visit distant valleys in the search space.
SVND has three features that motivate us to integrate it with
the ILS. First, it uses various neighborhood structures to
avoid the basin of attraction points. As different neighborhood
structures evolve different search paths, SVND can change the
employed neighborhood structure to escape from the current
local optimum point. Second, it uses several neighborhood
structures, which might help the search to explore different
regions and cope with the dynamic changes. Third, it uses the
distance measure to move the search into other valleys.

SVND iteratively improves the given solution as follows.
First, it randomly generates a sequence of neighborhood
structures and then starts the search process with the first
neighborhood in the sequence. When SVND finds a local
optimum solution, it will try to escape from it by utilizing the
following neighborhood structure in the generated sequence.
SVND will stop if the current solution is a local optimum, and
the last structure in the sequence has been called. Algorithm 2
gives the pseudocode of the SVND [43].

Initially, SVND sets, Kn , the number of neighborhood
structures and the index of neighborhood structure (i ) and
constructs an initial starting solution (Si ) (lines 1–3). Next,
at each SVND iteration (lines 4–12), it uses N Si to generate
a neighborhood solution S1 (line 5). In SVND, the quality of
the solution (S1) is calculated as follows:

f (S1)− α ∗ dist(s1, s2) (5)

where α a is a parameter and dist(s1, s2) is the distance
between s1 and s2 as follows:

dist(s1, s2) = |E(s1)
�

E(s2)| − |E(s1)
�

E(s2)|
|E(s1)

�
E(s2)| (6)

where E represent the number of edges. The distance function
(dist) calculates dissimilarity between s1 and s2. dist counts

Algorithm 2 SVND Algorithm

1 Let Kn be the total number of the neighborhood
structures (N S);

2 Set i ← 1;
3 Si ← GenerateIni tialSolution();
4 while i < Kn do
5 Sn ← Generate a neighbor of Si using N Si ;
6 if f (Sn)− α ∗ dist (Si , Sn) < f (Si ) then
7 Si = Sn ;
8 i = 1;
9 else

10 i = i + 1;
11 end
12 end
13 Return the best solution;

the number of customers assigned to different positions in
s1 and s2. If the quality of Sn generated by N Si is better
than Si ( f (Sn) − α ∗ dist(Si , Sn) < f (Si )) (line 6), then
replace Si with Sn (line 7) and set i = 1 (line 8). If not,
we increment i to run the next N S in the sequence (line 10).
SVND will be terminated if the current local optimum of the
Kn neighborhood structures cannot be improved any further.

This work uses various neighborhood structures within the
SVND to effectively deal with DVRP instances. A neigh-
borhood structure performs one change on a given solution
to evolve a new solution. The operators that we used as
neighborhood structures are as follows.

1) NS1: Randomly move one customer to a different fea-
sible route.

2) NS2: Select two different customers at random and then
change their routes.

3) NS3: Randomly pick one route and then reverse a
segment of a tour between two chosen customers.

4) NS4: Select three customers at random and then
exchange their routes.

5) NS5: Apply the 2-opt operator on all routes.
6) NS6: Pick two different routes at random and then

exchange the first route segment with the first segment
of the second route.

7) NS7: Pick two different routes at random and then
exchange the first segment with the last segment.

2) Perturbation Procedure: When the LS procedure termi-
nates (SVND in this work), the perturbation procedure takes
this solution as an input and perturbs it to generate a new
solution. The perturbation strength can either be weak or
strong. Weak perturbation usually performs a small modifi-
cation. This perturbation strength is preferred when the search
should focus on the current area of the search, but it has the
risk that the search may revisit previously visited solutions.
Strong perturbation performs a larger modification. However,
while providing a high degree of diversification, it has the
disadvantage of making the algorithm behave the same as a
random restart method. Neither weak nor strong perturbation
is preferred over the other, and it is not known in advance
which one is preferred for a given problem instance. Different
perturbation strengths are required at different times in order
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to generate a good starting solution. Consequently, there is
a need for a perturbation procedure that can evolve a good
starting solution based on the current search state and strike
the necessary balance between weak and strong perturbation.

This work proposes a new adaptive perturbation procedure
that utilizes three different rules (denoted as R1–R3) to provide
a new starting solution based on the solutions stored in the
population. R1 uses a crossover operator to mix high quality
with high diversity solutions. The idea behind R1 is to generate
a new starting solution that is not very far from the current
best one. This can help the search to effectively explore all
areas around the current search landscape before moving to
a new area. R2 uses a multisolution crossover operator that
combines the good features (high-quality set of routes) of
all solutions stored in the population of solutions. The main
idea behind R2 is to explore new and diverse locations in
the search space by using all existing solutions to generate
a highly diverse solution. R3 performs large neighborhood
search using the ruin-recreate principle that tries to make a big
jump in the search space. By using various rules, the search
can effectively deal with huge and constrained search space,
thus generating high-quality solutions and handling various
instances with different characteristics.

In this work, when ILS calls the perturbation procedure
to evolve a new starting solution, the perturbation procedure
uses the solutions in the population to generate a new one
by selecting one rule (R1, R2, or R3). We devise an adaptive
strategy to pick the best performing rule using the �-greedy
strategy. Given the initial empirical performance means for all
rules (R1(0), . . . , R3(0)), pR(i), the probability of selecting
Rth rule at iteration i is calculated as follows:

pa(g + 1) =
⎧⎨
⎩

1− � + �/R, if arg max
j=1,...,3

R(g)

�/R, otherwise.
(7)

Initially, we set a high value for � and then decrease
it during the search progress. This can help the selection
to focus on exploration at the beginning of the search and
then progressively move toward exploitation at a later state.
The empirical mean of each rule R records the performance
achieved by Rth rule when applied on the i th instance in the
past. The proposed rules (R1–R3) are given in the following.

1) R1: Select two different solutions, one of high quality
and one of high diversity, and then perform a crossover
between them to construct a new solution. The new
solution might be infeasible as there are either missed
customers or duplicated customers. Missed customers
are added to the best available routes that lead to
minimal increase in the solution cost, whereas duplicated
customers are removed from the routes with the highest
costs.

2) R2: Generate a new starting solution by considering
all solutions stored in population. First, identify the
promising components for each solution. In DVRP, each
solution comprises a set of vehicle routes and a promis-
ing solution refers to the best route in this solution. That
is, the route that has the minimal traveling cost. Next,
the extracted components (routes) from all solutions are

merged to form a new solution. This might lead to the
situation where there are either missed customers or
duplicated customers. Missed customers are added to
the best available routes that lead to minimal increase
in the solution cost, whereas duplicated customers are
removed from the routes with the highest costs.

3) R3: Randomly select one solution from the population
and remove a subset of customers, RC and reassign them
to different routes.

3) Acceptance Criterion Procedure: The acceptance crite-
rion’s role is to decide whether to accept or reject the generated
solution. It compares the final solution’s quality with the
solution used as the input to the current LS. The solution with
better quality is always accepted. To promote more diversity,
and to make sure that the population contains high-quality
and diverse solutions, worse solutions are also accepted to be
included in the population according to the acceptance rule
and the population update procedure. This work employs the
EMC [44]. EMC uses the probability condition (Pro) to accept
worse solutions as follows:

Rand < exp(−δ) (8)

where Rand is a function that returns a random number
between “0” and “1” and δ is the difference between the
fitness of the current solution and the input solution. Pro will
be decreased when δ is increased. In this work, the solution
that has been accepted by EMC will be sent to the population
update procedure (Section III-D) to decide whether to include
it in the population according to the updating rule or not.

D. Population Update Procedure

To ensure that the current solutions are well-scattered over
the search space, a new solution will be included in the
population by considering its quality and diversity, that is,
the population will contain both high-quality and diverse
solutions. The quality (ψ) is calculated using (2), whereas the
dissimilarity function represents the diversity (dist) measure
[see (9)]. In the population update procedure, the diversity
(dist) function is used as a matching procedure to find out how
many customers in both solutions are not assigned to the same
position and same route. If the value returned by dissimilarity
function is zero, this means that the compared solutions are
identical. This work treats these two measures [quality (ψ)
and diversity (dist)] as two objectives according to the Pareto
dominated principle. A solution a is Pareto dominated by a
solution b if

ψ(b) < ψ(a) and
PS�

i=1

dist(b, ci) ≥
PS�

i=1

dist(a, di) (9)

where ci (resp. di ) represents a solution in the population and
PS is the total number of solutions. If the new solution’s
quality is better than the best one in the population, it will
be added to the population. Then, for each solution in the
population, calculate the number of solutions that this solution
has dominated. The most dominant solution will be removed
from the current population. If no solution is dominated,
the population is updated according to first in, first out (FIFO).
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TABLE I

DVRP BENCHMARK

TABLE II

PARAMETERS OF THE DVRP MODEL

Using this idea ensures that the stored solutions are allocated
in different locations in the search space while keeping both
diverse and high-quality solutions.

IV. EXPERIMENTAL SETUP

In the following, we present the DVRP benchmark instances
and the parameter settings.

A. DVRP Benchmark Instances

We use 21 DVRP instances introduced in [20] and fur-
ther refined in [21] to test the performance of the proposed
approach. These instances are derived from three well-known
capacitated VRPs as follows: 13 instances from the Taillard
benchmark, seven instances from the Christofides benchmark,
and two instances from the Fisher benchmark (see [20], [21]
for more details). The main differences between them are the
size of each instance and customer distribution. The main
characteristics of the utilized DVRP instances are presented
in Table I.

B. Parameter Set-Up

This section involves two sections. The first one discusses
the DVRP model parameters, whereas the second subsection
presents the parameter settings of the proposed approach.

1) DVRP Parameter Settings: Table II presents the utilized
parameter values of the DVRP model.

For the sake of comparability with the state-of-the-art meth-
ods, we have adopted the DVRP parameter values that were
used in [21] and the compared methods. To study the effec-
tiveness of these parameters on the algorithm’s performance,
various values for nst and Tco have been tested, as shown
in Tables III and IV, respectively. Both nst and Tco have a
direct impact on the DVRP model and performance of ILS.
Eight different instances were selected to examine various
parameter values by executing ILS for 31 times using different
combinations of parameter values. Generally, the nst parameter
decides how often the event scheduler commits a new version
of DVRP to the proposed approach. Consequently, having
many nst helps ILS to react faster to DVRP changes. However,

TABLE III

RESULTS OF ILS USING DIFFERENT nst VALUES

TABLE IV

RESULTS OF ILS USING DIFFERENT Tco VALUES

TABLE V

PARAMETER SETTINGS

due to the limited number of iterations, ILS might not have
enough time to optimize the current DVRP instance effectively.
This clearly justifies the results in Table III in which ILS
performs the best when nst = 25, which is consistent with
state-of-the-art methods. Tco controls the degree of the problem
dynamism. As can be seen from Table IV, when Tco increases,
the quality of solution decreases. This is mainly because the
problem becomes more difficult when there are too many
changes that need to be accommodated within the current
solving period.

2) Proposed Approach Parameter Settings: The proposed
approach has four tunable parameters. We have conducted
preliminary tests to determine the value of these parameters,
taking into consideration the quality of the generated solution
as well as computational time. We have performed a prelim-
inary investigation to set the parameter values. For this pur-
pose, we randomly selected ten different instances to examine
different parameter values. These are: c100b, c199, tai100d,
f71, tai150b, tai75a, tai100c, f134, tai150a, and tai150c. The
proposed approach has been executed 31 times using different
parameter values combinations. To this end, we have utilized
the Irace package (a parameter tuning tool) [45] to tune the
parameters of the proposed approach. Table V summarizes
the parameter values that were used in our computational
experiments, along with the tested range for each parameter.

V. RESULTS AND COMPARISONS

The purpose of our simulations is twofold. 1) evaluate
the effectiveness of the integrated components on the search
performance (Section V-A) and 2) compare the computational
results of the proposed approach with other methodologies
reported in the scientific literature (Section V-B). Due to
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TABLE VI

RESULTS OF ILS, NS1, NS2, NS3, NS4, NS5, NS6, AND NS7

the stochastic nature of the proposed approach, we run each
simulation for each instance for 31 independent runs using
different random seeds.

A. Effectiveness Evaluation

This section first investigates the impact of the employed
neighborhood structures on the performance of ILS. We have
tested the traditional ILS using all neighborhood structures
and each neighborhood structure separately (denoted as NS1–
NS7). The compared variants (ILS, NS1, NS2, NS3, NS4,
NS5, NS6, and NS7) use the same random seeds, start-
ing solution, termination condition, the number of runs and
computer resources. In this experimental test, eight differ-
ent instances are randomly chosen to test ILS, NS1, NS2,
NS3, NS4, NS5, NS6, and NS7. In particular, we selected
two instances from the Fisher benchmark, three instances
from the Taillard benchmark, and three instances from the
Christofides benchmark. These instances were chosen to avoid
being biased to one benchmark as well as avoiding over
generalizing. Each variant is executed 31 times over the eight
DVRP instances. The results are presented in Table VI. The
best-achieved results are highlighted in a bold font. From the
table, we can see that ILS produced the best results for all
the tested DVRP instances. This clearly justifies the benefit of
using all neighborhood structures on the search performance
compared to each neighborhood structure separately. From
the table, we can see that no one neighborhood structure
can be considered the best across all instances. Indeed, each
neighborhood structure excels on certain instances only. This
finding is also consistent with the no free lunch theorem, which
states that no single method with a unique configuration can
excel over all problem instances. To summarize, the findings
from the results clearly demonstrate the benefit of using several
neighborhood structures within ILS, so they can complement
each other and excel on all the tested instances.

We now analyze the effect of our proposed extensions to
ILS, that is, the LS, perturbation procedure, and the population
of solutions. We compare the proposed approach with the
following variants.

1) ILS: The proposed approach that uses both procedures,
that is, the proposed SVND LS, perturbation procedure,
and the population of solutions.

2) ILS1: The general ILS approach that uses a simple
steepest descent algorithm and a simplified perturbation
procedure. In this variant, a solution is generated by
moving a few customers to distinct routes. The number
of customers is randomly set between 5% and 10%

TABLE VII

RESULTS OF ILS COMPARED TO OTHER VARIANTS

TABLE VIII

p-VALUE OF ILS VERSUS ILS1, ILS2, ILS3, AND ILS4

of the total customers in a given instance. In this
variant, the simple descent algorithm terminates after
100 nonimproving iterations.

3) ILS2: Same as ILS1 but use the proposed SVND LS.
4) ILS3: Same as ILS1 but utilize the population of solu-

tions.
5) ILS4: Same as ILS1 but utilize the proposed perturbation

procedure.

All algorithms (ILS, ILS1, ILS2, ILS3, and ILS4) use
the same random seeds, initial solution, stopping condition,
the number of runs, and computer resources. Each variant
is executed 31 times over the eight DVRP instances. The
obtained results of all variants are tabulated in Table VII. ILS
outperformed other variants on all instances. This comparison
shows that the proposed components have positive impacts on
search performance.

We further verify the performance of ILS using the
Wilcoxon test with a 0.05 significance level. Table VIII shows
the P-values of ILS versus ILS1, ILS2, ILS3, and ILS4. In this
table, we use “+”to indicate that ILS is statistically better
than the competing variant (P-value < 0.05), “-”if ILS was
outperformed by the compared variant (P-value > 0.05), and
“∼ ”if both have the same performance (P-value = 0.05).

Based on the P-values shown in Table VIII, for all the
DVRP instances, the results of ILS are statistically signifi-
cant compared to the competing variants (ILS1, ILS2, ILS3,
and ILS4). The better performance achieved by ILS can be
due to the following features: 1) the ability of SVND to
explore diverse areas of the search space by using several
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TABLE IX

BEST RESULTS OF ILS AND OTHER METHODS FOR THE 21 DVRP INSTANCES

neighborhood structures where each one navigates through the
search space in a slightly different way; 2) ILS integrates
a population of solutions with a perturbation procedure to
generate a new starting solution; and 3) ILS employs an
adaptive multioperator perturbation procedure that relies on
three different but complementary rules to develop a new
starting solution.

B. Comparisons With the State-of-the-Art Methodologies

This section compares ILS against the best methodologies
reported in the scientific literature. We compare against the
best and average results. The algorithms we compare against
are as follows.

1) ANT: Ant colony optimization algorithm [21].
2) GRASP: Greedy randomized adaptive search procedure

[21].
3) GA: Genetic algorithms [22].
4) TS: Tabu search algorithm [22].
5) GA-HH: Genetic algorithm-based hyperheuristic [46].
6) PSO: Particle swarm optimization algorithm [30].
7) VNS: Variable neighborhood search algorithm [26].
8) PSO-2: Particle swarm optimization algorithm [31].
9) GA-2: Genetic algorithm [25].

10) M-VRPDR: Memetic approach [27].
11) ACO-CD: Diversity-based ant colony optimization [23].
12) ContDVRP: Metaheuristic approach [32].
13) E-ACO: Enhanced ant colony optimization [24].
14) MBO: Monarch butterfly algorithm [28].
15) BSO: Brain storm optimization algorithm [29].

The best results of ILS compared to ANT, GRASP, GA,
TS, GA-HH, PSO, VNS, GA-2, PSO-2, ContDVRP, E-ACO,
MBO, BSO, and M-VRPDR are presented in Table IX. In the
table, we present the best known solutions (BKSs) for static
VRP.1 We report the instance ranking and the percentage
deviation �(%), �(%) = ((best1 − best2)/best2)*100, where
best1 is the best result of ILS and best2 is the best result
reported in the scientific literature. “−” indicates no results
reported by the corresponding algorithm. The best-achieved
results are highlighted in bold font. As shown in Table IX,
ILS produced the new best results for 17 of the 21 instances.
ILS obtained the second-best results for the other instances.
One can remark that the percentage deviations [�(%)] from

1http://vrp.atd-lab.inf.puc-rio.br/index.php/en/

the best results for these instances are relatively small (0.36%
and 0.48%), which indicates that ILS is very competitive.
If we consider the individual comparison between ILS and
the other algorithms, ILS outperformed ANT, GRASP, GA,
TS, GA-HH, PSO, VNS, GA-2 PSO-2, ContDVRP, E-ACO,
MBO, BSO, and M-VRPDR 21, 21, 21, 21, 21, 21, 21, 21,
21, 21, 20, 21, 21, and 18 out of 21 instances, respectively.

Table X compares the average results of ILS with GA-HH,
GRASP, ANT, TS, GA, PSO, VNS, GA-2, PSO-2, ACO-CD,
ContDVRP, E-ACO, and MVRPDR. “−” indicates no results
reported by the corresponding algorithm. Please note that,
in this comparison, we only included those who reported the
average results. On all tested instances, ILS achieved better
average results compared to GA-HH, GRASP, ANT, TS, GA,
PSO, VNS, GA-2, PSO-2, ACO-CD, ContDVRP, E-ACO, and
MVRPDR.

The performances of ILS, ANT, GRASP, GA, TS, GA-
HH, PSO, VNS, GA-2, PSO-2, ContDVRP, MBO, BSO ACO-
CD, and M-VRPDR are compared statistically using multiple
Friedman statistical tests [47]. We first conducted Friedman
and Iman–Davenport statistical test using a 0.05 significance
level. Both Friedman and Iman–Davenport statistical test P-
values are less than the critical level of 0.05. Thus, Holm
and Hochberg post hoc statistical tests are conducted to
compare the difference between these methods [47]. Table XI
summarizes the average ranking produced by the Friedman
statistical test of ILS, ANT, GRASP, GA, TS, GA-HH, PSO,
VNS, GA-2, PSO-2, ContDVRP, MBO, BSO ACO-CD, and
M-VRPDR, which indicates that ILS ranked first followed
by M-VRPDR, MBO, ContDVRP, PSO-2, GA-2, GA, ACO-
CD, GA-HH, TS, VNS, PSO, ANT, and GRASP. Therefore,
the Holm and Hochberg statistical tests will be performed
using ILS as the controlling algorithm.

Table XII gives the P-values of the Holm and Hochberg
statistical tests. As shown in Table XII, the results of
ILS are statistically better than that of PSO-2, GA-2, GA,
ACO-CD, GA-HH, TS, VNS, PSO, ANT, and GRASP (10 out
of 13 methods) with a critical level of 0.05 (P-value <
0.05). If we use 0.010 critical level (P-value < 0.010),
the results of ILS are statistically better than that of MBO and
ContDVRP. If we consider the unadjusted P-values, the results
of ILS are statistically better than all the compared algorithms.
The P-value in Table XII shows that ILS is not statistically
better than M-VRPDR; nevertheless, ILS obtained better best
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TABLE X

AVERAGE RESULTS OF ILS AND OTHER METHODS FOR THE 21 DVRP INSTANCES

TABLE XI

FRIEDMAN TEST RESULTS

TABLE XII

HOLM AND HOCHBERG ADJUSTED p-VALUES

results for 18 instances and better average results for 21 out
of 21 tested instances compared to ContDVRP.

In Table XIII, we report the computational time (seconds)
for ILS, ANT, GRASP, GA, TS, PSO-2, GA-HH, MBO, and
ContDVRP. In this comparison, PSO-2 and ContDVRP employ
parallel optimization processes. Note that PSO, GA-2, and
VNS reported the normalized computational times only and
therefore are not considered in this comparison. The results
in Table XIII demonstrate that the computational time of ILS
is relatively small compared to other methods. Please note that
the computational resources comparison can only be indica-
tive. This is mainly due to the fact that different researchers
often use different types of computer resources. In addition,
most of the researchers have not mentioned the used operating
systems, the programming language, the programmer’s skill
level, and type of compilers.

TABLE XIII

COMPUTATIONAL TIME (SECONDS) OF ILS COMPARED
TO OTHER ALGORITHMS

Even though ILS did not produce the best solutions for
all DVRP instances, it was the best for 17 out of 21 tested
instances, and when it was outperformed, it ranked second.
Furthermore, the computational time of ILS is relatively small,
which demonstrates that the proposed ILS is an efficient
methodology for DVRP.

VI. CONCLUSION

This article proposed a population-based approach for the
DVRP. The proposed approach combines evolutionary opera-
tors and a population of solutions with ILS algorithm in an
adaptive manner. It uses an SVND algorithm that incorporates
various neighborhood structures as an LS algorithm. A new
perturbation procedure that uses a population of solutions
and three different solution generation rules was proposed.
A quality-and-diversity population updating strategy is devised
to handle the dynamic changes and to promote diversity in
the search. We verified the proposed approach’s effectiveness
using the 21 DVRP instances that other researchers in the lit-
erature have used. The proposed approach produced excellent
results compared to its counterparts. Compared with the state-
of-the-art methods, the proposed approach outperformed them
on several instances using shorter computational times. Future
work intends to integrate the proposed approach with genetic
algorithms and test it on the VRP with loading constraints.
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