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ABSTRACT The Master Surgery Scheduling Problem (MSSP) allocates operating theatre time to surgery
groups such as medical specialities or surgeons, which is essential for daily operational planners. Many
researchers have highlighted issues in the optimization of surgical scheduling problems. However, most
recent reviews limited the issues at the operational level and excluded the problem characteristics such as
surgery group type and schedule cyclicity. This study aims to review the state-of-the-art ofMSSP and identify
new trends in optimization strategies (problem characteristics and objective function), uncertainty scheduling
factors (types and approaches), and solution and evaluationmethods. These aspects are the key components in
developing an effective MSSP optimization model. This paper reviews articles published between 2000 and
2021 that addressed the MSSP, concentrating on papers between 2016 and 2021. We underlined the
popularity of medical specialities as the surgery group, one-week horizon length, a cyclic schedule, multi-
objective optimization and evaluation by benchmarking. The analysis shows that surgery duration is the
most prominent uncertainty type, whereas strategies for handling this are stochastic programming, robust
optimization, and fuzzy programming. We highlighted the role of heuristic approaches in addressing the
MSSP’s computational complexity. This review’s trends, challenges, and potential solutions are essential for
future researchers in developing optimization models for MSSP.

INDEX TERMS Combinatorial optimization, healthcare management, master surgery scheduling, operating
theatre planning, tactical level surgical scheduling.

I. INTRODUCTION
Surgical scheduling entails selecting surgeries for operations,
allocating resource time for the surgeries and sequencing
them within the allotted time [1]. Surgical scheduling is
crucial as it involvesmany stakeholders such as topmanagers,
operating room personnel (surgeons, nurses, and anaes-
thetists), bedmanagers, and patients [2]. Furthermore, operat-
ing theatres (OT), including operating rooms, are a hospital’s
primary source of income [3]. Therefore, optimization is
vital to ensure that the benefits to all stakeholders can be
maximized. Surgical scheduling can be divided into three
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decision levels [4]. Each decision level focuses on different
subproblems that make up a complete surgery plan and sched-
ule. More information on the three decision levels can also be
found in [5].

One of the decision levels is the tactical level which
involves the Master Surgery Scheduling Problem (MSSP).
MSSP involves the construction of amaster plan that specifies
the assignment of specialities or surgeons into the available
OT time [4]. Optimization of surgical scheduling has been
of interest to many researchers, as evidenced by 12 review
papers on the subject [1], [3], [4], [5], [6], [7], [8], [9],
[10], [11], [12], [13]. However, most of them did not focus
on the MSSP. Some reviews did not use decision levels
[1], [3], [6], [8], [12], whereas Cardoen et al. [9] defined
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the decision levels differently, excluding the MSSP. MSSP
was not discussed in several reviews [7], [11], whereas in
others, the discussions on the MSSP are very brief com-
pared to the operational problems [4], [5]. Only two papers
reviewed the MSSP in-depth [10], [13]. Oostrum et al. [13]
compared the MSSP approach to centralized and decentral-
ized planning systems, discussing the benefits and draw-
backs, addressing implementation challenges, and examining
the applicability. Guerriero and Guido [10] discussed the
criteria and stochasticity in the construction of the master
plan.

Our review differs from these reviews by focusing on the
optimization of the master plan where the problem char-
acteristics, objective functions, uncertainty, solution, and
evaluationmethods are reviewed. Furthermore, since the pub-
lications date back to 2010 and 2011, there is a need to refresh
the review literature in theMSSP and include recent advances
in the domain.

Optimization of the MSSP comprises several components
such as objectives, uncertainty, solution methods, and evalu-
ation methods. Previous reviews have highlighted the com-
mon types of these components. Zhu et al. [4] summed up
that all objective functions fundamentally lead to maximiz-
ing the efficiency of OT usage and minimizing the cost
of the resources involved. Besides, uncertainty is one of
the most significant OT planning and scheduling issues [3].
OT planning and scheduling may include stochastic vari-
ables (stochastic approach) or neglects them (deterministic
approach) [22]. The types of uncertainty identified are dura-
tion, arrival, resource and care requirement [5]. Zhu et al. [4]
categorized solution methods for the optimization problem
into exact algorithms, heuristic algorithms, simulations, and
Markov decision processes. The methods used in each study
are selected based on the researcher’s view of the method’s
strength [3]. Meanwhile, the evaluation methods have not
been reviewed before. Previous reviews only focus on the
type of dataset used in the testing phase [3], [9], [12]. Master
plan characteristics such as surgery group type and schedule
cyclicity have never been discussed.

In order to establish a clear purpose for this review and
answer questions that were not answered by previous reviews,
a set of research questions was developed:

RQ1: How many studies have been conducted on MSSP
optimization between 2016 and 2021?

RQ2: What optimization strategies (problem characteris-
tics and objective function) are used in the MSSP?

RQ3: How are the uncertainty scheduling factors in the
MSSP addressed (types and approaches)?

RQ4: How have the previous solution and evaluation
approaches been implemented to deal with the MSSP?

RQ5: What are the challenges and recommendations for
future studies in the MSSP?

The contributions of this review are as follows:
• A comprehensive analysis of the scientific work in the
MSSP since 2000, with a particular focus on articles
published between 2016 and 2021.

• Insights of the current trend and observation for problem
characteristics (surgery group type, planning horizon
length, schedule cyclicity) and evaluationmethods of the
MSSP.

• A summary of the latest trend and critical discussion
of the objective function, uncertainty scheduling factors
and solutionmethods in developing optimizationmodels
for the MSSP.

• Highlights of the key challenges and potential directions
for tackling the unresolved issues in optimization of the
MSSP.

Section II describes the background of the MSSP. After-
wards, each main section in this review answers one research
question. Section III presents the steps taken in identifying
the primary studies addressing MSSP optimization between
2016 and 2021 (RQ1). Section IV then discusses the opti-
mization strategies, including the problem characteristics
and objective functions of the primary studies (RQ2). The
uncertainty scheduling factors, including their types and
approaches, are addressed in Section V (RQ3), whereas
Section VI analyses the solution and evaluation methods
for the MSSP (RQ4). Next, Section VII outlines the chal-
lenges faced by the primary studies and suggestions to over-
come these challenges (RQ5). This section also includes the
summary of the analysis from Section IV-VI and our rec-
ommendations for MSSP optimization components. Finally,
Section VIII concludes the review by summarizing the find-
ings and future studies.

II. BACKGROUND OF THE MASTER SURGERY
SCHEDULING PROBLEM
The MSSP involves block scheduling, where OT times are
divided into time blocks [14]. The availability of operat-
ing rooms in terms of quantity, type, and opening hours,
and the surgery group allocated to the OT time blocks,
are defined in a timetable called the master surgery sched-
ule, which is referred to as the master plan [10], [15].
A master plan is a cyclic schedule repeated after a prede-
termined cycle time, often one week [16], [17]. Scheduling
at the tactical level does not involve individual surgeries.
Instead, they treat them as a surgery group. A master plan
is essential as it links the long-term strategic and short-
term operational decisions [18]. The operational-level sched-
ules, which plan individual surgeries, are derived from the
master plan. These schedules are the ones that determine
the actual performance of the system [19]. A master plan
has its advantages, as highlighted by previous researchers.
Heider et al. [20] stated that amaster plan offers planning cer-
tainty and minimizes the complexity of operational schedul-
ing. Adan et al. [21] noted that a master plan brings a more
balanced utilization of beds, OTs, and nursing staff. Bal-
anced resource utilization is critical because surgeons and
nurses may be unable to take appropriate rest if they are
overutilized [22]. Sufficient breaks are essential in ensuring
that hospital staff can provide high-quality medical care to
patients [23].
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The MSSP is an optimization problem, specifically the
combinatorial variant. The solution of the MSSP is a two-
dimensional master plan of sizeM × N , whereM represents
the planning days, whereas N represents the OT at the hos-
pital. Examples of the solution can be found in the literature
[24], [25]. The MSSP involves assigning surgery groups to
the master plan following the block-scheduling strategy [3].
Then, in the operational surgery scheduling, individual surg-
eries are assigned to the block that matches their associated
surgery group [4]. Oostrum et al. [13] presented a seven-step
implementation of the MSSP approach. The flowchart for the
process is shown in Fig. 1.

FIGURE 1. Seven steps to implement the MSSP approach from van
Oostrum et al. [13].

Firstly, the scope of the master plan is defined, includ-
ing the resources such as wards and organizational units
such as medical specialities. Next, data on the processes and
resources in the defined scope is collected. Capacity planning
involves defining the availability and allocation of resources.
Resources are either allocated to or shared among special-
ities or surgeons. Next, the surgeries with similar logistical
characteristics (length of stay or surgery duration) or medical
characteristics (diagnosis group or procedure type) are clus-
tered to form surgery groups that will be assigned to blocks
in the master plan. Then, the surgeries, including emergency,
semi-urgent, and elective, are scheduled in the master plan
subject to a set of hard constraints (which must be fulfilled)
and soft constraints (which incur a penalty to the objective
value if violated). The master plan is then executed, where
the operational schedules are generated for all surgeries. The
planning horizon length is determined based on a trade-off
between utilization and waiting time. Finally, the master plan
is revised as the timing for operation changes.

III. PROTOCOL FOR IDENTIFYING STUDIES ON MSSP
OPTIMIZATION
This review aims to revise the knowledge on the MSSP and
recognize trends in key components of master plan con-
struction. Components of the MSSP can be categorized into
strategies, uncertainty, and approaches, as shown in Fig. 2.

To answer RQ1, a literature searchwas conducted using the
systematic literature review technique by Denyer and Tran-
field [26]. We decided to focus on publications from 1 Jan-
uary 2016 until 22 October 2021, when the literature search
was done. We felt that a five-year time span would pro-
vide us with sufficient data to analyse the recent trends and
come to a conclusion. A summary of the papers on MSSP
published between 2000 and 2015 extracted from Rahimi &
Gandomi [5] and Zhu et al. [4] is shown in Table 1.

FIGURE 2. Topic areas of the MSSP that are discussed in this review.

Seven databases were chosen for the search: Scopus, WoS,
Dimensions.ai, SpringerLink, ACM Digital Library, IEEE
Xplore, and Google Scholar. The search phrases used are
‘‘master surgery schedule’’ and ‘‘tactical surgical schedul-
ing’’. The Boolean operators ‘‘AND’’ and ‘‘OR’’ are used
in the search string entered for the databases to ensure accu-
rate results. After retrieving papers from the search results,
the screening process starts with removing the duplicates,
yielding 513 unique papers out of the 686 initially compiled.
Next, the titles of the papers were evaluated to determine
whether they relate to surgical scheduling, returning 188
papers. The relevancy of papers is then identified by compar-
ing the information obtained from the abstract and keywords
to the selection criteria, which resulted in 65 papers. Finally,
the primary studies were obtained by further screening on the
relevance of the issues related to the research questions. The
final set of papers comprises 29 papers. The screening results
are represented in Fig. 3. A summary of the contribution,
limitations, and applicability of the findings of the primary
studies can be found in Table 2.

FIGURE 3. Number of articles from each database after each screening
process.

Based on Tables 1 and 2, we identified several stud-
ies that incorporate similar approaches. For example, two
papers implemented the rolling horizon approach [49], [50].
The rolling horizon approach by Spratt and Kozan [50]
is on the operational level, whereas Oliveira et al. [49]
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TABLE 1. Summary of MSSP studies published between 2000 and 2015.

are on the tactical level. Spratt and Kozan [50] mea-
sured the deviation of individual patients from the original
four-week plan generated. In contrast, Oliveira et al. [49]

were concerned with the weekly and monthly changes to
the master plan. Besides, several papers implement the
optimization-simulation approach [14], [32], [47], [49].
Cappanera et al. [32] and Oliveira et al. [49] used simula-
tion to incorporate uncertainty. In contrast, Testi et al. [47]
used simulation to analyse different sequences of surgeries
in operational-level scheduling. Bovim et al. [14] used the
simulation model to obtain feedback for the optimization
model, which is more beneficial in optimizing the MSSP.

On the other hand, Agnetis et al. [31] used a decompo-
sition approach rather than an integrated approach to solve
the combinedMSSP and Surgical Case Assignment Problem.
Spratt and Kozan [25] later implemented the opposite, using
an integrated instead of the decomposition approach. Apart
from that, schedule robustness to uncertainty was achieved
in different methods. Three papers have implemented robust
optimization where extreme values of the stochastic vari-
ables are considered [24], [51], [52]. Spratt and Kozan [50]
achieved robustness against stochastic surgery duration and
emergency arrivals using the rolling horizon approach.
Kheiri et al. [53] attained robustness by extending their opti-
mization model to be scenario-based. Other similarities and
differences in the optimization components of the MSSP for
the primary studies are discussed in Sections IV-VII.

IV. OPTIMIZATION STRATEGIES FOR MSSP
This section discusses the optimization strategies (problem
characteristics and goals) that encompass RQ2.

A. PROBLEM CHARACTERISTICS
Each hospital has different requirements for the master plan.
Three characteristics of the master plan are discussed: the
types of surgery group, planning horizon length, and schedule
cyclicity.

1) TYPES OF SURGERY GROUP
A surgery group is a cluster of patients grouped based on their
similar characteristics [54]. We identified that the most com-
mon type of surgery group is the medical specialities asso-
ciated with the surgeries, used in 19 papers [14], [25], [49],
[50], [51], [52], [53], [55], [56], [57], [58], [59], [60], [61],
[62], [63], [64]. In contrast, other researchers assigned sur-
geons, which enabled them to consider surgeons’ availability
and preferences [50], [65], [66], [67], [68], [69], [70], [71].
Meanwhile, Schneider et al. [54] and Abedini et al. [18]
schedule clustered surgery groups according to their length
of stay (LoS) and surgery duration. Kumar et al. [72] applied
classification and regression tree analysis on Intensive Care
Unit (ICU) LoS data to classify their patients. Dellaert and
Jeunet [73] categorizes patients based on consumption of
resources, including OT hours, ICU nursing hours, ICU beds,
and Medium Care Unit beds. Fig. 4 illustrates the frequency
distribution of surgery group types used by the primary
studies.
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TABLE 2. Summary of the contribution, limitations and applicability of the primary studies.
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TABLE 2. (Continued.) Summary of the contribution, limitations and applicability of the primary studies.

FIGURE 4. Surgery groups used by each primary studies.

2) PLANNING HORIZON LENGTH
Hospital planners decide the planning horizon, which is the
range of dates the master plan should cover. It could span as
short as three days or as long as several years. Most papers
(13 papers) implement a horizon length of seven to 27 days
[14], [18], [25], [51], [52], [54], [55], [60], [61], [64], [69],
[70], [71] followed by 28 to 90 days (four papers) [50], [65],
[66], [73]. Two papers have a horizon length of more than
365 days [49], [63]. The other settings are less common,
with only one paper each for one to six days [59] and 91 to
365 days [57]. Fig. 5 represents the frequency distribution of
the planning horizon length used in the primary studies.

3) SCHEDULE CYCLICITY
The cyclicity of a schedule refers to the recurrent use of the
master plan. A master plan can either be cyclic or non-cyclic.
For example, a cyclic schedule has a weekly timetable that
repeats throughout the year in a one-year planning horizon,
whereas a non-cyclic schedule has different plans each week.
All but two studies included in this review produced a cyclic
schedule [49], [63]. Oliveira et al. [63] measured the changes
in the master plan as monthly and weekly stability in their

non-cyclic master plan. Table 3 shows the problem charac-
teristics exhibited by each primary study.

FIGURE 5. Planning horizon length covered by the master plan in the
primary studies.

B. OBJECTIVE FUNCTION
We extracted the objective function of each mathemati-
cal model from the papers selected. The objectives were
classified into eight categories: throughput, waiting mea-
sure, patient scoring, OT utilization, emergency capacity,
costs, schedule assignment, and upstream and downstream
resources. Most studies (13 papers) focus on downstream
resources such as ward and ICU beds. Some authors tried
to minimize variation in bed usage instead of maximizing
bed utilization [24], [54]. This method can show the optimal
number of beds to be made available, which the hospital
can subsequently implement. Next, OT utilization, including
overtime and idleness, was used in 10 papers. Through-
put, which refers to the number of surgeries the hospital
serves, was incorporated in eight papers. Cancellations and
postponements are included in this category as they affect
throughput.

Schedule assignment objectives are featured in five papers.
This category includes objectives that are related to the
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TABLE 3. Problem characteristics of the primary studies.

assignment of the master plan, such as staff preference and
assignment variation. Next, the waiting measure, utilized
in four papers, is defined as the measure of time and cost
of waiting for surgeries to be done. Waiting time is often
measured in days, whereas the waiting cost is measured by
its impact on the patient’s satisfaction and health condition
[24], [51], [55]. Waiting time is influenced by the patient’s
age, comorbidity, ethnicity, physical status, financial status,
health insurance, hospital type, and the number of medical
personnel [74], [75], [76]. Meanwhile, patient scoring incor-
porates one or more factors related to the patient into a single
value, as was done in four of the primary study. Then, four
studies incorporate cost objectives, including overtime costs
or loss and profit from scheduling the surgeries. Finally, the
emergency capacity objective aims to minimize the reserved
capacity so that more elective surgeries can be carried out.
Only Spratt and Kozan [50] used this objective in a separate
model to reserve emergency capacity before constructing a
master plan. Fig. 6 shows the frequency distribution of studies
for each objective type, whereas Table 4 shows the detailed
definitions of objectives and the studies incorporating them.

Mathematical models may have single or multiple objec-
tives. In a single-objective optimization, only one specific
criterion is optimized. This form of optimization is simple as
it does not require additional steps to aggregate multiple eval-
uation metrics. Papers with a single-objective optimization
model (11 papers or 38%) are [18], [25], [49], [50], [52], [53],
[57], [62], [67], [69], and [70]. Multi-objective optimization

TABLE 4. Classification of objectives used in the primary studies.
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FIGURE 6. Frequency distribution of objective types (one paper can have
more than one type).

incorporates several objectives simultaneously. Most primary
studies use the multi-objective approach (18 papers or 62%)
[14], [24], [51], [54], [55], [56], [58], [59], [60], [61], [63],
[64], [65], [66], [68], [71], [72], [73]. There are various meth-
ods for implementing multi-objective optimization such as
hierarchical approach [65], weighted sum [68], goal program-
ming [58], Epsilon-constraint method [60], and LP-metric
method [51].

V. TYPES AND APPROACHES OF UNCERTAINTY
SCHEDULING FACTORS IN MSSP
Basic MSSP modelling uses deterministic variables, whereas
the stochastic approach considers uncertainties, discussed in
this section to answer RQ3. We identified five types of uncer-
tainties which are bed availability [52], [53], [67], emergency
arrivals [14], [24], [50], [51], patients’ LoS [14], [24], [65],
[66], [67], [72], number of patients per surgeon [67], and
surgery duration [14], [24], [25], [50], [51], [52], [57], [65],
[66], [69]. Several papers consider multiple uncertainties.
Fig. 7 shows the papers’ distribution incorporating each of
the uncertainties stated.

FIGURE 7. Types and frequency of uncertainty incorporated by primary
studies.

The approaches for dealing with uncertainty are stochastic
programming, robust optimization, and fuzzy programming.
Stochastic programming substitutes uncertain parameters
with a known probability distribution to find the opti-
mal solutions [77]. Schneider et al. [54] could not utilize
3-parameter lognormal distribution due to the failure to obtain
an exact result for the distribution. Spratt and Kozan [25]
used a lognormal approximation due to insufficient recent
historical data and problems in different reporting systems at

their hospital. Bovim et al. [14] and Spratt and Kozan [50]
are other papers using stochastic programming.

Robust optimization (RO) involves transforming a deter-
ministic model into a robust model, as was done by
Moosavi and Ebrahimnejad [24], Makboul et al. [52], and
Lalmazloumian [51].Moosavi and Ebrahimnejad [24] argued
that the robust optimization approach is better than stochas-
tic programming. They argued that RO is better at ensur-
ing feasibility and better when data availability is limited.
Another method to handle uncertainty is fuzzy program-
ming which uses fuzzy sets to express uncertain param-
eters [78]. Fuzzy sets are characterized as a collection
of elements with a range of membership levels [79].
Ghasemkhani et al. [57] adopted the fuzzy method by
Jiménez et al. [80], in which they use expected intervals
and expected values of fuzzy numbers for uncertain surgery
duration.

VI. SOLUTION AND EVALUATION APPROACHES TO DEAL
WITH MSSP
RQ4 aims to review the approaches used to address the
optimization model and the methodologies used to assess the
performance of the proposed solution.

A. SOLUTION METHODS
Two main approaches in obtaining the solution of MSSP
optimization models are exact and heuristic methods. Exact
methods were chosen by 16 papers (55%) [14], [18], [49],
[51], [52], [53], [57], [58], [60], [63], [64], [67], [68], [69],
[70], [72], whereas heuristics were implemented in 13 papers
(45%) [24], [25], [50], [54], [55], [56], [59], [61], [62], [65],
[66], [71], [73].

Exact methods always return a single optimal solution.
This approach is suitable for small problem instances where
the computation is feasible. Mixed-integer programming
models, including mixed-integer linear programs, are often
solved by a commercial solver. Many papers use IBM ILOG
CPLEX to solve their models [51], [52], [58], [60], [63],
[67], [70]. Other commercial solvers that were utilized are
FICO R© Xpress Optimization [14], [66], [68], GAMS soft-
ware [18], [57], [64], Gurobi [69], and COIN Cbc [53].
Kumar et al. [72] did not mention the name of their solver.
Two papers also used CPLEX besides implementing a heuris-
tic approach [54], [59].

In the heuristic approach, the solution presented is an
approximation of a problem’s optimal solution. However,
heuristics can balance the solution quality and the compu-
tational effort required [5]. Table 5 summarizes the heuristic
approaches implemented by the primary studies.

There are two basic types of heuristics, which are con-
structive and perturbative. Basic heuristics are specific to a
problem. Hence, some researchers prefer to use it for more
complex problems [24], [53], [62]. Meanwhile, metaheuris-
tics are an extension of basic heuristics designed to be inter-
changeable with different problems. In metaheuristics, the
algorithm provides a general outline for searching. It has been
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TABLE 5. The heuristic approach implemented by the primary studies.

applied in nine papers [25], [54], [55], [59], [61], [65], [66],
[71], [73], where four of them hybridized metaheuristics to
improve their performance [25], [55], [65], [71]. On the other
hand, hyper-heuristics can be defined as ‘‘heuristics to choose
heuristics’’ [81]. In hyper-heuristics, a set of heuristics acts
as the search space [82]. Only one study implemented hyper-
heuristic [50]. Finally, matheuristics are the hybrid between
metaheuristics and mathematical programming techniques
[83], [84]. It uses metaheuristics as the primary strategy to
obtain high-quality solutions, which are then improved with
exact methods by solving subproblems [85]. Only one paper
used this technique [56].

B. EVALUATION METHODS
Nineteen papers applied benchmarking where the proposed
methods are compared to the state-of-the-art methods [14],
[18], [24], [25], [50], [54], [55], [56], [57], [59], [61], [62],
[65], [67], [70], [71], [73]. Other methods of evaluation,
such as sensitivity analysis [24], [50], [58], [60], [64], [66],
[68], [70], robustness analysis [18], [24], [49], [52], [56],
Pareto Frontier analysis [18], [24], [49], [52], [56], and model
variant analysis [54], can gain an insight into the proposed
methods. Simulations were conducted in five primary studies
[14], [18], [53], [66], [72]. Fig. 8 shows the distribution of
papers implementing each evaluation method in their studies.

1) BENCHMARKING
Benchmarking can be classified into three main types. Firstly,
the proposed MSSP model can be benchmarked against
another model, either to models from previous literature
[18], [65] or to different versions of proposed models [70].
Secondly, several studies chose to benchmark their solution
methods against other methods. Solutions from commercial
solvers were used as benchmarks in several studies. Others

FIGURE 8. Frequency distribution of evaluation methods implemented by
primary studies.

benchmark their proposed solution methods to benchmark
algorithms. Table 6 shows the proposed and benchmark algo-
rithms from the primary studies papers. In addition, Moosavi
and Ebrahimnejad [24] evaluated the approaches under cer-
tain and uncertain conditions. Dellaert and Jeunet [73] tested
two settings of the initial solution, i.e., random initializa-
tion and CPLEX solution. Meanwhile, Schneider et al. [54]
explored the potential of Simulated Annealing in improving
the solution obtained from commercial solvers. Thirdly, the
generated schedule can be compared against the schedule in
use at the hospital under study [24], [54], [59].

2) SENSITIVITY ANALYSIS
Sensitivity analysis can assess how far the problem instance
can change before the optimal solution changes. For example,
Spratt and Kozan [50] investigated the effects of planning
horizon length and maximum total iteration on the mean total
number of scheduled patients.

3) ROBUSTNESS ANALYSIS
Robustness refers to the capability to adapt to changes in
variables [53]. Makboul et al. [52] compared their two ver-
sions of mathematical models, i.e., deterministic and robust
formulations. Results show that the deterministic model per-
formed better than the robust formulation regarding computa-
tional time and utilization rate. However, the expected surgery
duration will likely deviate and cause overtime. Hence, robust
optimization provides a buffer for these uncertainties by plan-
ning a lower utilization rate. Moosavi and Ebrahimnejad [24]
determined the price of robustness defined as the impact of
robustness on the objective function. The authors claimed
that the robust optimization strategy pays a nominal price
of robustness to considerably improve solution and model
robustness. Oliveira et al. [49] analysed the robustness of
their solutions against overtime. They concluded that plan-
ning surgeries to 80% of actual length could bring the over-
time rate close to zero.

4) MODEL VARIATION ANALYSIS
Schneider et al. [54] explored variants of the proposed model
to demonstrate its potential. A total of four variants with
minor modifications were discussed in the paper.
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TABLE 6. The benchmark algorithms chosen by the primary studies.

5) PARETO FRONTIER ANALYSIS
In multi-objective optimization, Pareto optimal front is anal-
ysed to determine the best compromise between objectives

based on the preference of schedule makers. Moosavi and
Ebrahimnejad [24] investigated the effect of optimizing only
one objective function at a time. Results show that the
combined objective function performed best. Li et al. [58]
examined the effects of different priority levels and weight
preferences on the objective functions. Results showed that
by varying objectives weightings, the quality of the sched-
ule obtained also differs. However, the two approaches to
defining objective weightings (weighted and lexicographical)
produced identical schedules.

6) SIMULATION
Simulations are a valuable tool as they can emulate real-
world settings to verify the effectiveness of the proposed
schedules. Furthermore, the simulation output can be fed
back to the optimization model, enabling it to learn and
improve. Britt [66] developed a discrete event simulation to
simulate a 28-day planning horizon. The results in terms of
OT utilization were analysed in their study.

VII. CHALLENGES AND RECOMMENDATIONS FOR
FUTURE STUDIES IN THE MSSP
To answer RQ5, we compile the challenges highlighted in
the primary studies. We identified seven challenges that we
believe should be addressed. Researchers are then pointed to
interesting directions to undertake in future studies. Besides,
the recommendations for each component ofMSSP optimiza-
tion discussed in this review are based on the recent trend.
This will help future researchers to produce good master
plans.

A. CHALLENGES IN THE PRIMARY STUDIES
The primary studies highlighted the challenges they faced.
We highlight seven potential areas of study for resolving these
issues.

1) IGNORING OBJECTIVES
Consideration of a single objective may reduce the complex-
ity of the model. However, optimizing a single objective may
negatively affect other performance measures not incorpo-
rated into the model. For example, Sigurpalsson et al. [69]
found that when their model was set to maximize patient
throughput, shorter surgeries were prioritized due to other
factors such as the patients’ waiting time and the surgery
urgency being ignored. Oliveira et al. [49] argue that the
model loses practicability in real-world hospitals without
incorporating surgeon preference and availability in the
model. Future studies onMSSP optimization should consider
these factors.

2) PRIORITY OF OBJECTIVES
The model formulated by Su and Hu [70] produces several
different solutions in some runs. The responsibility falls to the
hospital manager to select which schedule to use. The authors
suggested enhancing the model by utilizing hierarchical goal
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programming. Future works can also explore other methods
for assigning priorities to multiple objectives.

3) IGNORING UNCERTAINTY
Several studies did not incorporate uncertainty in their model
formulation [56], [58], [62], [64], [68], [71]. Surgery dura-
tion is the most common uncertainty because it is affected
by many variables. Lu et al. [59] highlighted that surgery
duration is affected by surgeons’ skill and fatigue levels and
patients’ physical condition. Britt [66] also argues that sur-
geons have different levels of competency affecting surgery
duration. Therefore, future studies can explore the factors
affecting surgery duration to minimize its uncertainty.

4) ASSUMPTIONS IN HOSPITAL PRACTICE
Models with many assumptions do not reflect the real-world
situation. For example, Almaneea and Hosny [55] assumed
that the bed capacity in the recovery ward is unlimited. Fur-
thermore, Kheiri et al. [53] highlighted an assumption in the
LoS calculation, where patients discharged in themorning are
counted as occupying the bed for the whole day. In reality,
another patient can occupy the empty space. Fewer assump-
tions in the model will increase the accuracy of the model
output, although at the cost of increased complexity. Future
studies are recommended to find the balance between these
factors.

5) DATA AVAILABILITY
The limited availability of data is highlighted by Moosavi
and Ebrahimnejad [24]. Surgery scheduling involves sensi-
tive data of patients. Hence, the hospital’s authority may
be reluctant to provide data access to the public. Several
authors resorted to generating random test instances [49],
[62], [67], [70]. This demonstrates the problem of not using
real-world instances in the evaluation. Besides, Dellaert and
Jeunet [73] conducted the computational experiments using
data from only one department. Future studies should use
actual and diverse data instances for their evaluation.

6) SIMULATION VS REAL WORLD
Real-world implementation is still an obstacle for research in
the MSSP. Almost all studies do not apply their schedule in
the hospitals being studied. The closest approximation to real-
world implementation is using simulation or computational
experiments with real-world data. Penn et al. [68] underlined
two reasons for not testing their model on an actual hospital,
which are time constraints and pressures on hospital staff.
We would like to highlight the importance of real-world
implementation, where possible, in future studies.

7) SOFTWARE COST
The issue of software cost is highlighted by Penn et al. [68].
In healthcare, the utilization of technology depends on cost-
effectiveness, which can influence decision makers’ willing-
ness to use it [86]. Some hospitals are reluctant to spend
their revenue on running software required to generate the
schedule, mainly when the schedule only provides minimal

benefits. However, it has been shown that by allowing minor
changes to the master plan, considerable improvements in
average patients’ waiting time and due date performance can
be achieved [39]. Therefore, future studies should be able to
convince hospital planners to invest in the software needed.
Furthermore, social influence, benefits, and effort expectancy
can influence hospital staff’s desire to use information sys-
tems [87]. Thus, it is crucial to convince the planners of the
benefits of the proposed system.

B. RECOMMENDATIONS FOR MSSP OPTIMIZATION
COMPONENTS
Besides analysing the trends, we have also identified the
advantages and disadvantages of each setting of MSSP opti-
mization components. We provide six recommendations for
future researchers for each aspect based on the comparison of
the settings. Firstly, clustering surgeries by their requirement
of OT time and downstream beds has advantages. Due to
their higher probability of deferrals, long surgeries can be
assigned earlier in the week. Furthermore, assigning longer
LoS surgeries earlier in the week can clear capacity for
next week’s operations. Since surgery duration and LoS are
estimated values, machine learning approaches applied to
patients’ diagnosis information can be explored to improve
accuracy, resulting in more accurate clusters.

A shorter planning horizon enables more accurate surgery
scheduling since changes in resource availability can be
considered [59]. Most papers incorporate cyclicity due to
increased schedule predictability and personnel coordina-
tion [88]. However, previous studies have shown seasonal-
ity in emergency and elective demands throughout the year
[89], [90]. Therefore, future works should balance schedule
cyclicity and the seasonality of surgery demand.

Most papers have more than one objective since multi-
objective optimization allows the consideration of various
stakeholders. Future works are highly encouraged to include
multi-objective optimization with objectives that can benefit
the hospital and patients.

Uncertainty in LoS must be considered in models that aim
to improve downstream resources performance since it affects
bed occupancy levels. As for the approach, robust optimiza-
tion should be considered more often. Besides, a common
assumption is that every case for one surgery group has the
same surgery duration and LoS. However, this is inaccu-
rate in reality, as each medical speciality has multiple types
of surgeries with different requirements. Therefore, future
researchers are encouraged to segregate patients by surgery
types, duration or LoS.

Computational complexity is often cited as the reason for
heuristic implementation over exact methods as the prob-
lem size grows. Hyper-heuristics should be investigated fur-
ther, as only one paper investigated this methodology for
the MSSP in the last five years, despite being effective
in other optimization problems [91], [92]. Furthermore,
hyper-heuristics’ advantages are their generalizability and
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simplicity, making them applicable to different instances or
problem domains [93].

In our opinion, benchmarking is essential in evaluating
solutions. Besides, we recommend that researchers conduct
a robustness analysis of the master plan produced. A robust
schedule is desirable as it can withstand small changes to the
schedule without affecting performance.

VIII. CONCLUSION
This paper reviewed the studies on MSSP published from
2000 to 2021, emphasizing articles between 2016 and 2021.
We identified the trends in the key components of the MSSP
optimization model, such as objectives, uncertainties and
solution methods. We reviewed the problem characteristics,
types and methods for uncertainty. Methods to handle uncer-
tainty are identified as stochastic programming, robust opti-
mization, and fuzzy programming. The recent trend showed
that uncertainty is still a prevalent issue in MSSP. Exact and
heuristic approaches are identified as the solution methods,
and it is argued that heuristic methods are better due to
the size and complexity of the MSSP. We summarized the
evaluation by previous studies considering sensitivity and
robustness analysis, uncertainty in surgery duration and LoS,
which shows little attention to uncertainty in surgery demand.
However, some areas of the domain remain unreviewed such
as strategies to improve performance, optimization model’s
output implementation, effects of multiple decision levels,
factors that influence objectives usage, and complexity of the
MSSP.
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