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Abstract—This paper defines a new combinatorial optimization 
problem, namely General Combinatorial Optimization Prob-
lem (GCOP), whose decision variables are a set of parametric 
algorithmic components, i.e. algorithm design decisions. The 
solutions of GCOP, i.e. compositions of algorithmic compo-
nents, thus represent different generic search algorithms. The 
objective of GCOP is to find the optimal algorithmic compo-
sitions for solving the given optimization problems. Solving the 
GCOP is thus equivalent to automatically designing the best 
algorithms for optimization problems. Despite recent advances, 
the evolutionary computation and optimization research 

 communities are yet to embrace formal standards that underpin 
automated algorithm design. In this position paper, we establish 
GCOP as a new standard to define different search algorithms 
within one unified model. We demonstrate the new GCOP 
model to standardize various search algorithms as well as selec-
tion hyperheuristics. A taxonomy is defined to distinguish sev-
eral widely used terminologies in automated algorithm design, 
namely automated algorithm composition, configuration and 
selection. We would like to encourage a new line of exciting 
research directions addressing several challenging research issues 
including algorithm generality, algorithm reusability, and auto-
mated algorithm design.
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I. Introduction
long with advances in optimization 
research, a rich set of Combinatorial 
Optimization Problems (COPs) has 
been established. COPs represent a 

subset of operational research [1]. They consist 
of, subject to given constraints, assigning dis-
crete domain values to a finite set of decision 
variables, so as to optimize an objective func-
tion which evaluates the solutions. The well-established 
benchmark COPs (e.g., the OR Library [2] at http://people 
.brunel.ac.uk/~mastjjb/jeb/info.html) have promoted the 
design of effective algorithms in evolutionary computation 
and computational intelligence. Problems addressed include 
job shop scheduling, knapsack problem, personnel scheduling, 
timetabling and traveling salesman problem, as well as many 
others and their extensions with various real-world constraints 
and features.

In optimization research, computational intelligence and 
evolutionary computation are two of the recent advances in 
automated algorithm design. That is, to automatically design 
search algorithms or solvers which are able to solve COPs or 
problem instances without extensive domain knowledge from 
human involvement. In the scientific literature, several termi-
nologies have emerged in different contexts, sometimes being 
used interchangeably without a clear definition.

In this paper we formally define a taxonomy of automated 
algorithm design as follows.

 ❏ Automated algorithm configuration: to automatically con-
figure the parameters of pre-defined target algorithm(s) 
upon a given set of training problem instances.

 ❏ Automated algorithm selection: to automatically select from 
a portfolio of chosen algorithms with their associated 
parameters upon a set of training problem instances.

 ❏ Automated algorithm composition: to automatically gener-
ate general algorithms by composing heuristics or compo-
nents of some algorithms to solve problems.

Automated algorithm configuration has been well studied. 
The most studied algorithms include SAT solvers [3], [4], 
multiobjective ant colony optimization [5], [6] and stochas-
tic local search [7] for flow shop scheduling problems and 
traveling salesman problem, and mixed integer programming 
solvers for traveling salesman problem and vehicle routing 
problems with time windows [8]. The automated configura-
tion of parameters is usually conducted offline upon a set of 
training instances. A number of frameworks have been built 
to search in the configuration space of parameters for the 
target algorithms, achieving highly promising results which 
are superior to manually configured algorithms. These 
include ParamILS [3] which uses iterated local search, 
F-Race [5] which uses a racing mechanism, and the extend-
ed framework irace [9].

In automated algorithm selection, the portfolio of algo-
rithms includes different parametric SAT solvers [10] and evo-
lutionary algorithms [11], [12]. One important research issue 

concerns the clustering of training instances according to their 
features, thus to select the best algorithms or solvers for unseen 
test instances of similar clusters [10]. Frameworks developed 
include Population-based Algorithm Portfolios (PAP) [11] and 
Hydra [13] (based on extended ParamILS) for optimization 
functions [11], Boolean satisfiability problem and traveling 
salesman problems [10].

In automated algorithm composition, a set of components 
or heuristics are automatically combined online to generate 
new generic algorithms. Some research concerns components 
for a type of target algorithms, e.g., evolutionary algorithms 
[14], [15]. Another line of research on hyperheuristics [16] 
decides at a higher level which low-level heuristics to apply 
[17]. By searching the given low-level heuristics, multiple 
COPs can be solved online with the same or adaptive heuristic 
compositions. Frameworks developed include HyFlex [18] and 
EvoHyp [19], supporting automatic composition of general 
algorithms across multiple COPs [16].

The fundamental difference between the three lines of 
research in automated algorithm design is on the decision spac-
es. Automated algorithm configuration concerns a decision 
space of parameters within a template of target algorithm(s), 
rather than freely composing the algorithm components them-
selves. The resulting algorithms, which are likely variants of the 
same target algorithms, are best configured for solving the 
training and unseen testing instances offline. Automated algo-
rithm selection explores a decision space with a family of given 
target algorithms, which are grouped against some features of 
training instances for solving similar testing instances offline. 
Automated algorithm composition explores a decision space of 
components or heuristics to flexibly compose or combine 
them. The resulting algorithms generated are new and generic 
for solving different unseen COPs.

The three lines of research are different ways automating 
algorithm design. Automated configuration and selection take a 
top-down approach to configure within given algorithm tem-
plates and select from a portfolio of target algorithms, respec-
tively, resulting in variants of the same family of target 
algorithms. Automated algorithm composition takes a bottom-
up approach, working with algorithm components, to flexibly 
compose and generate new algorithms.

Current automated algorithm design research, how-
ever, still requires some human expertise and empirical 
studies to manually select parameters, target algorithms/
solvers, or heuristics/components. Challenges remain to 
gain the insights on effective algor ithms to underpin 

A In this paper, a new model, namely General 
Combinatorial Optimization Problem (GCOP), is 
defined to model the problem of algorithm design 
itself as a COP, solutions of which are new algorithms 
automatically generated to solve cross-domain COPs.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore.  Restrictions apply. 



16    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

automated algorithm design [20]. Such advances require 
models and standards to conduct systematic investigations 
within coherent frameworks.

In this paper, a new model, namely General Combinatorial 
Optimization Problem (GCOP), is defined to model the prob-
lem of algorithm design itself as a COP, solutions of which are 
new algorithms automatically generated to solve cross-domain 
COPs. By optimizing the compositions of basic algorithmic com-
ponents as decision variables in GCOP, new generic search 
algorithms can be automatically generated.

The major aim of GCOP is to establish a standard in 
algorithm design to model various search algorithms in one 
framework with the most basic algorithmic components. It 
is not our intention to model all existing algorithms with 
GCOP. Other common and user-defined algorithmic com-
ponents could be added to GCOP to design new algo-
rithms addressing COPs as well as other optimization 
problems. To our knowledge, there is no existing standard 
in the literature which formally models the problem of 
designing search algorithms. Further studies can potentially 
provide additional insights on how various algorithms work 
with the new standard, and thus underpin automated algo-
rithm design.

In the rest of the paper, Section II presents the formal defi-
nition and search spaces of the new GCOP model. With the 
most basic algorithmic components, Section  III demonstrates 
the application of GCOP as a standard to define various selec-
tion hyperheuristics in the literature for solving two COPs. 
Section IV discusses research issues and future directions, fol-
lowed by conclusions in Section V.

II. The General Combinatorial Optimization Problem

A. Definition of the GCOP
Definition 1: The General Combinatorial Optimization 
Problem (GCOP) is a combinatorial optimization problem 
with decision variables taking domain values from a finite set A  
of algorithmic components .a A!  The solution space of GCOP, 

,C  consists of algorithmic compositions c  upon the given .a  The 
objective function of GCOP, ,( )F c R"  ,c C!  measures the 
performance of c  for solving ,p  the optimization problem(s) 
under consideration.

In problem ,p  the decision variables take values from a 
finite set of problem-specific values. The solution space S  of p  
consists of the direct solutions ,s  each obtained by a corre-
sponding algorithmic composition ,c  i.e., .c s"  The objective 
function ( )f s R"  evaluates s S!  for .p  In this paper we con-
sider COPs as .p  This could be extended to other optimization 
problems as discussed in Section IV.

Let M  be a mapping function :M  
( ) ( ).f s F c"  The objective of GCOP is to 

search for the optimal c C!)  which produces 
the optimal s S!)  for ,p  so that ( )F c)  is opti-
mized, as defined in Objective (1). Without loss 
of generality, we assume p  is a minimisation 

problem in this paper.

 .( ) ( ) ( ( ))minF c c s f s f s" !; =) ) ) )  (1)

The following terminologies are defined in GCOP.
 ❏ Problem GCOP: a COP, whose decision variables take dis-
crete values from a finite domain A of algorithmic compo-
nents ,a  .a A!

 ❏ Domain A  for decision variables in GCOP: algorithmic 
components ,a A!  including basic operators with heuris-
tics, parameter settings, and acceptance criteria, etc. A can 
be extended with user-defined components. Examples of 
the most common basic a  in the literature are defined in 
Table I.

 ❏ Solution space C  of GCOP: consists of solutions c  for 
GCOP, i.e. algorithmic compositions c  upon .a A!  Each c  
is used to produce a solution s  for problem ,p  i.e. .c s"

 ❏ Objective function F  for GCOP: ( )F c R"  measures 
GCOP solutions .c C!  The objective is to find the optimal 
c)  which produces optimal s)  for ,p  i.e. .c s") )

 ❏ Problem :p  the optimization problem(s) under consider-
ation, whose decision variables are problem-specific.

 ❏ Solution space S  of :p  consists of solutions s  for .p
 ❏ Objective function f  for :p  ( )f s R"  evaluates solutions s  
for ,p  s S!  are obtained by using algorithmic composi-
tions .c C!

 ❏ Mapping function :M  ( ) ( ):F c f s!  maps each algorithmic 
composition c  for GCOP to a solution s  for ,p  i.e. ,c s"  
thus the generation of s  reflects the performance of .c
In [20], it has been suggested that the optimization research 

community should adopt a certain standard. The GCOP pro-
vides such a standard to define the design of search algorithms 
with a unified model. In the current research on automated 
algorithm composition, the search space is upon manually 
defined heuristics or components in a specific type of 
algorithm(s). For example, in hyperheuristics [16], the low-level 
heuristics are often manually determined, and fixed with pre-
defined parameter values. GCOP significantly extends the 
search space to concern the most basic elementary algorithmic 
components, thus requires no human involvement. Methods 
finding the optimal composition of a  for GCOP thus auto-
matically design new generic search algorithms.

B. Decision Variables of GCOP
In Table I, we establish .GCOP1 0  with a domain A .1 0  of a 
set of most basic and elementary algorithmic components 
.a  The underlying idea of the GCOP standard is to modu-

larise the existing widely used basic components a A .1 0!  
which are grouped into two categories, namely operators 

With GCOP, the newly generated generic algorithms 
are likely to be highly different from those manually 
designed algorithms.
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A . o1 0_  and acceptance criteria ,A . a1 0_  each 
with their associated heuristic and parametric 
settings. This categorisation has been widely 
used in the literature, although quite often 
manually “hard-wired” into integrated or 
compound operators or heuristics. Note that 
acceptance criteria a A a. _1 0!  are general for 
any problems, and are applicable with any 

.a A . o1 0_!  Different heuristic strategies and 
parameter settings can be associated with a A . o1 0_!  to 
define different components.

With the sets of basic generic components A o. _1 0  and 
,A a. _1 0  GCOP proposes a new standard which defines a large 

number of different algorithms in one common model. For 
example, Tabu Search variants can be defined by imple-
menting , ,o k m h1w

t
xchg^ h associated with an acceptance crite-

ria , ,a n ltabu^ h  where l  (tabu length), n  (number of neighbors 
sampled), and ,k  m  (number of decision variables selected) 
could be set as fixed or variable values. Associated with 

, ,a n t rgd^ h and ,( )a noi  variants of Great Deluge and greedy 
search can instead be defined, respectively. Section III demon-
strates that with the basic A .1 0  and some problem-specific 
components ,Ap  most selection hyperheuristics for two wide-
ly studied COPs in the literature can be defined with the 
GCOP model.

With GCOP, the newly generated generic algorithms are 
likely to be highly different from those manually designed 
algorithms, which are likely subsets of GCOP solutions .c C!  

These newly generated c potentially introduce new coherent 
knowledge in algorithm design with the GCOP model.

The underlying idea of GCOP is to decompose algorithms 
into elementary algorithmic components, which can then be 
composed and optimized in a much more flexible way, and thus 
design new generic algorithms automatically. This is different 
from automated selection from a portfolio of target algorithms 
and automated configuration of target algorithm(s), where the 
resulting new algorithms usually belong to the same family or 
are variants of the target algorithm(s). The decomposition of 
algorithms into the most basic components allows the most 
flexibility and provides a much larger scope to design new 
generic algorithms.

The basic a  when composed and configured in different 
ways can define either new or existing search algorithms. 

.GCOP1 0 can be seen as a problem instance of the GCOP 
model, with a small domain of only the basic .a  It is not possi-
ble, also not intended, to model in GCOP exclusively all algo-
rithmic components in the literature. We aim to establish the 

TABLE I Domain a ! A1.0 of decision variables for GCOP1.0.

Domain A . o1 0_ a WITH HEURISTICS h1, h2. :/ /h h h h1 1 1 1w
t

b
t

w
r

b
r^ h  TOURNAMENT (ROULETTE WHEEL) SELECTION OF THE WORST/BEST OF u RANDOMLY 

CHOSEN DECISION VARIABLES , ;s s u s0,i j f! ! " ,  :/ /h h h h22 2 2w
t

b
t

w
r

b
r^ h  TOURNAMENT (ROULETTE WHEEL) SELECTION OF THE WORST/

BEST TWO OF v RANDOMLY CHOSEN SOLUTIONS , .s P v P0f! ! ; ;" ,  P: AN ARCHIVE OF s. :/h h1 2  RANDOM STRATEGIES IF , .u v 0=

,,o k h h1 1w basg^ h USE h1b
t  OR h1b

r  TO ASSIGN VALUES TO k DECISION VARIABLES SELECTED BY h1w
t  OR .h1w

r

,o k h1wrm^ h REMOVE VALUES OF k DECISION VARIABLES SELECTED BY h1w
t  OR .h1w

r

,,o k h h1 1w bchg^ h USE h1b
t  OR h1b

r  TO CHANGE THE VALUES OF k DECISION VARIABLES SELECTED BY h1w
t  OR .h1w

r

,,o mk h1wxchg^ h SWAP k AND m DECISION VARIABLES CHOSEN BY h1w
t  OR .h1w

r  :/o obw
xchg
in

xchg  DECISION VARIABLES ARE FROM THE SAME/DIFFERENT ROUTES.

,,o k h h1 1w bins^ h INSERT K DECISION VARIABLES CHOSEN BY h1w
t  OR h1w

r  TO OTHER POSITIONS SELECTED BY h1b
t  OR .h1b

r  :/o obw
ins
in

ins  s ,i j  ARE FROM THE 
SAME/DIFFERENT i.

,,o k h h1 1w brr^ h USE h1b
t  OR h1b

r  TO REASSIGN VALUES OF k DECISION VARIABLES SELECTED BY h1w
t  OR .h1w

r

,,o mk h2bxo^ h SWAP k AND m RANDOMLY CHOSEN DECISION VARIABLES BETWEEN TWO SOLUTIONS IN P CHOSEN BY ./h h2 2b
t

b
r

Domain A . a1 0_ a WITH PARAMETERS n, t, r. NEIGHBOR sl  OF s IS PRODUCED BY o A .. _o1 0!  n: NUMBER NEIGHBORS SAMPLED.

aall ACCEPT ALL, NAÏVE ACCEPT: sl  IS ALWAYS ACCEPTED, I.E. RANDOM STRATEGY.

( )a noi  ONLY IMPROVING: BETTER sl  IS ACCEPTED. 

( )a nie  IMPROVE AND EQUAL: A BETTER OR EQUAL sl  IS ACCEPTED.

( )a nlate  LATE ACCEPTANCE: A sl  BETTER THAN THE LAST n VISITED s IS ACCEPTED.

,( )a n ltabu TABU: THE BEST sl  NOT IN A TABU LIST OF LENGTH l IS ACCEPTED.

,,( )t ra ngd GREAT DELUGE: A WORSE sl  IS ACCEPTED BY A PROBABILITY .p e ( ) ( )u uf s f s= - -l  BETTER s’ IS ALWAYS ACCEPTED.

,,( )t ra nmc MONTE CARLO: A WORSE sl  IS ACCEPTED BY A THRESHOLD t, t IS DECREASED BY r. BETTER sl  IS ALWAYS ACCEPTED.

,,( )t ra nsa SIMULATED ANNEALING: A WORSE sl  IS ACCEPTED BY ,p e ( ) ( ) /u uf s f s t= - -l  t IS DECREASED BY r. BETTER sl  IS ALWAYS ACCEPTED.

The underlying idea of GCOP is to decompose 
algorithms into elementary algorithmic components, 
which can then be composed and optimized in a 
much more flexible way, and thus design new generic 
algorithms automatically.
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GCOP standard step by step to explore new effective algo-
rithms that are automatically designed.

Other GCOP instances can be built with extended A con-
sisting of more general or user-defined problem-specific Ap  to 
design new algorithms addressing new COPs. With extended 

,A  the solution space of GCOP increases exponentially, lead-
ing to many more new potentially effective algorithms which 
have been designed automatically. Note that problem-specific 
features and solution structures are left with users who are 
familiar with .p  The automated algorithm design is handled at 
a higher level by solving GCOP.

In [21], a unified mathematical formulation for hyperheuris-
tics is proposed as a high-level controller. Elements of heuristic 
design compete for resources within a shared repository work-
space to configure better heuristics. Heuristics interoperate 
based on information shared from other heuristics. GCOP 
presents a more general and coherent model and standard with 
which a set of algorithmic components as the domain of a 
COP is formally defined and automatically composed.

C. Objective Function of GCOP
With GCOP, new algorithms generated automatically may 
cater for multiple p  with improved level of generality. The 
newly evolved algorithms c  may also reflect a certain level of 
reusability for other ,p  saving algorithm development costs.

In GCOP, Objective (1) defines the performance measure 
( )F c  on c  for solving .p  When addressing multiple ,p  GCOP 

can be seen as a multiobjective optimization problem 
where c)  is automatically composed to simultaneously opti-
mize the objective function fi  for each ,pi  , , ,i I1 f=  I  is 
the number of p  under consideration. Note that the same 
c)  is used to solve all ,p  rather than configured individually 
or manually to solve each ,p  respectively, i.e., each p  acts as 
a specific problem instance for .c)  Objective (2) can be 
defined to measure performance ( )F cm  of c  for solving 
multiple .p

 { , , , } .( ) minF c f f fm I
T

1 2! f)  (2)

In Objective (1) and Objective (2), F  could be the same as ,f  
which reflects direct evaluation of s S!  for .p  ( )F c  could also 
be different measures of c  producing the corresponding .s  For 
example, in hyperheuristics, rewards or aggregated scores have 

been used to assess the performance of low-level heuristics 
during the search. Such rewards, rather than direct solution 
evaluation ( ),f s  can be used in ( )F c  to provide informed 
search for GCOP.

In addition to solution quality as the evaluation ( )F cm  in 
Objective (2), further extensions and variants could be defined 
to evaluate different aspects of the automatically designed ,c  
details discussed in Section IV on future research directions.

D. Search Spaces of GCOP
The search space C  for GCOP presents some interesting and 
unique characteristics compared to that of S  for ,p  see Table II. 
They can be defined based on the following three factors:

 ❏ Solution encoding: represents all solutions based on some 
finite alphabet for the decision variables. The encoding of 
c C!  is highly different from that of ,s S!  leading to dif-
ferent upper bounds of C  for GCOP and S  for .p

 ❏ Successor operator: modifies values of the decision variables 
thus defines connections of the encoded solutions in the 
search space. The successor operators in C  and S  operate 
upon c  and s  of different encodings.

 ❏ Objective function: evaluates the solutions. In GCOP, ( )F c  
assesses the performance of ,c  which produces .s S!  ( )F c  
thus depends on ( ),f s  however, may potentially be different 
from ( ),f s  see the examples in Section III.
In solving GCOP, assume c  for the decision variables are 

encoded as one-dimensional strings of a A!  in Table I. With 
the simple encoding c  for GCOP, it is possible and highly use-
ful to analyze the landscape of ,C  whose spatial structure can 
be measured using a simple distance metric D  on .c  It is 
shown to be very difficult, if not impossible, to analyze the 
landscape of S  for many complex p  with d-dimensional solu-
tion encodings, ,d 2$  see the example COPs in Section III.

In [22], the concept of two search spaces, namely high-level 
heuristic space and low-level solution space in hyperheuristics, 
has been introduced into the scientific literature of search algo-
rithms. Fitness landscape analysis on local optimal solutions in 
the heuristic space revealed interesting findings [22], [23]. The 
search space of selection constructive hyperheuristics has also 
been analyzed in [24] to reveal common landscape features of 
this type of algorithms.

III. Example Methods for GCOP
With the GCOP model, a large number of algorithms could 
be defined with a subset of a A .1 0!  in Table I. Furthermore, 
GCOP provides a standard toward automated algorithm design. 
With ,a A!  different high-level methods, e.g., local search, 
tools, rules or models could be used to compose a  flexibly and 
design new algorithms automatically in a bottom-up way. 
Hyperheuristics can be seen as one type of GCOP implemen-
tation which combines low-level heuristics, which are defined 
and integrated based on a subset of basic a A .1 0!  in Table I, to 
design new algorithms automatically. That is, the low-level heu-
ristics are “hard-wired” with the basic a  thus requiring a cer-
tain level of human knowledge.

TABLE II Characteristics of Search Spaces: GCOP versus. p.

C of GCOP S of P

ENCODING COMPOSITIONS c UPON 
a A!

DIRECT SOLUTIONS s FOR p

OPERATOR ANY METHODS COMBIN-
ING a

SEARCH OPERATORS ON 
s S!

UPPER 
BOUND

DEPENDS ON |A| AND 
 PARAMETERS OF a

DEPENDS ON THE NO. OF 
VARIABLES IN s

OBJECTIVE 
FUNCTION

PERFORMANCE OF c  
THAT PRODUCES s

QUALITY MEASURE  
OF s FOR p
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This section presents how GCOP with a A .1 0!  in Table I 
defines various selection hyperheuristics. Two representative 
COPs, namely the Vehicle Routing Problem (VRP) [25] in 
Section A, and Nurse Rostering Problems (NRP) [26] in Sec-
tion B are selected as the p  in GCOP. The aim is not to pro-
vide an exclusive review on all existing selection 
hyperheuristics, but to demonstrate the modeling of various 
search algorithms in one GCOP standard toward automated 
algorithm design.

A. GCOP Methods for Vehicle Routing Problems
As one of the most studied COPs, VRP and its variants have 
been used to model a range of real-world applications, e.g., 
transport logistics in supply chain with different constraints. 
The basic VRP involves constructing a set of closed routes 
from and to a depot, each route delivering the required 
demands to an ordered list of customers by a vehicle of limited 
capacity. The objective is to minimize the total costs (e.g., dis-
tance and/or vehicles), while satisfying the capacity constraints. 
Evolutionary algorithms and computational intelligence tech-
niques have been extensively studied for VRP variants with 
complex constraints [25], [27]–[29].

In GCOP, c  upon the configured a  operates on s  for VRP. 
In the most commonly used solution encoding in the VRP lit-
erature, customers or tasks are modeled as nodes (i.e., decision 
variables s ,i j  for )p  in a directed routing network. A large num-
ber of operators in VRP algorithms can be modeled using the 
basic generic ,a A .1 0!  as shown in Table III. For example, 
swap, interchange or k-opt can be defined by , ,( )o k m h1wxchg

in  or 
, ,( )o k m h1bw

wxchg  in Table I to swap values between k  and m  
decision variables within the same route or between different 
routes, respectively.

In Table IV, various selection hyperheuristics can be defined 
using the GCOP standard with subsets of a A .1 0!  in Table III 
for different ,p  e.g., capacitated VRP (CVRP), distance based 
VRP (DbVRP), dynamic VRP (DVRP), open VRP (OVRP), 
and VRP with time windows (VRPTW). Some frameworks, 
e.g., HyFlex [33], POEMS [34] and ALNS [35], have been 
adopted to develop the hyperheuristics, i.e., GCOP composition 
methods. A number of problem-specific components (e.g., saving, 

TABLE III Operators for VRP modeled as a ! A1.0 in GCOP.

a A1.0!  IN GCOP FOR VRP 
, :h h1 1w b  SELECTION CRITERIA/HEURISTICS

,,o k h h1 1w bins^ h GREEDY, INSERTION [30]: INSERT k NODES CHO-
SEN BY h1w  TO A ROUTE CHOSEN BY .h1b

,,o k h h1 1w bchg^ h SHIFT [31]: USE h1b  TO CHANGE k NODES 
SELECTED BY .h1w

,,o mk h1wxchg^ h k-OPT [31], INTERCHANGE, VAN BREEDAM 
[32]: SWAP k AND m NODES SELECTED BY .h1w

,,o mk h2xo b^ h CROSSOVER: EXCHANGE SUB-ROUTES OF k AND m 
NODES BETWEEN TWO SOLUTIONS CHOSEN BY .h2b

,,o k h h1 1w brr^ h DESTROY AND REPAIR: REMOVE k NODES CHOSEN 
BY ,h1w  AND RE-ASSIGN THEM USING .h1b

TABLE IV Selection hyperheuristics defined as GCOP 
methods for VRP.

A .1 0  GCOP METHODS, F, p 

,,o k h h1 1rr w
r

b
r^ h

,,a t rnsa^ h
ADAPTIVE LARGE NEIGHBORHOOD SEARCH [36]. 
F: SCORE OF o. p: VRP VARIANTS.

( )o 1asg

,,o k h h1 1w bins^ h
,, mo k h1bw

wxchg^ h

EVOLUTIONARY APPROACH [32], 
h1: ORDERING HEURISTICS [31].

.( )sF f=  p: DVRP

,,o h h1 1 1w basg^ h
,,o k h h1 1rr w

r
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r^ h

,,o h h1 1 1bw
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,,o h11 1bw
wxchg^ h

,,o h h2 1 1bw
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,,o h22 1bw

wxchg^ h

COALITION-BASED METAHEURISTIC [37] WITH 
 LEARNING MECHANISMS.
F: CREDIT/REWARD FROM LEARNING.
p: DbVRP, CVRP

,,o k h h1 1w bins^ h
,,o h h1 1 1w basg^ h

,, mo k h1wxchg^ h

EVOLUTIONARY-BASED SEARCH [38] IN 
POEMS, 
h1: ORDERING HEURISTICS.

.( )sF f=  p: CVRP

, ,, mo k h h1 1w bxchg^ h  
,,o k h h1 1rr w

r
b
r^ h

,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

,,o mk h2xo b^ h
( )a noi

CLASSIFIER TRAINED BY APPRENTICESHIP 
LEARNING [39] IN HyFlex. VARIOUS h1 USED 
WITH o.

.: ( )F f schange of  p: VRPTW

( )a nmc

,o h2 1wchg^ h
,,o h11 1wxchg

in ^ h
,,o h11 1bw

wxchg^ h
( )a nmc

MULTI-ARMED-BANDIT MECHANISM [40], 
h1: RANDOM SELECTION.
F: ACCUMULATED REWARD FOR o.
p: VRPTW

,,o h11 1wxchg
in ^ h

,,o h h1 1 1bw
w bins^ h

,,o h11 1bw
wxchg^ h

,,( )t ra nsa

COOPERATION COEVOLUTION APPROACH [41], 
h1: GREEDY STRATEGY.

.( )sF f=  p: REAL VRP
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ADAPTIVE ITERATED LOCAL SEARCH [42] IN 
HyFlex.
F: PERFORMANCE SCORE OF o.
p: VRPTW
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TIME DELAY NEURAL NETWORK CLASSIFIER 
[43] IN HyFlex.
F: PERFORMANCE OF o. p: OVRP

, ,, mo k h h1 1w bxchg^ h  
,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

aall  ,,o mk h2xo b^ h

ITERATED LOCAL SEARCH WITH DYNAMIC 
MULTI-ARMED BANDITS [44] IN HyFlex.  
h1: LOCATION/TIME BASED HEURISTICS.  
F: EXTREME VALUE CREDIT  ASSIGNMENT  
TO o. p: VRPTW

VRP a Avr p!  VRP a IN GCOP METHODS 

opt-m  [45] EXCHANGE m  EDGES IN A ROUTE [32].

SWEEP [38] [46], 
[47]

CLUSTER NODES FROM THE DEPOT, EACH SOLVED 
AS A TSP TO FORM ONE ROUTE [32], [37].

opt2- )  [48] ,o h1 1bw
wxchg^ h [40], [42], [43], [44] 

SAVING [31] MERGE TWO ROUTES INTO ONE BASED ON 
SAVED COSTS [32], [38], [40], [44]

GENI , ,o h h1 1 1bw
w bins^ h FOLLOWED BY A RE-OPTIMI-

ZATION [38], [39], [42], [44].
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sweep, ,opt-m  opt2- )  and GENI) in the VRP literature can be 
defined as a plug-in Avrp  in Table IV in the extended GCOP.

In Table IV, the GCOP composition methods in selection 
hyperheuristics for VRP range from various search methods to 
classifiers trained using machine learning. Of particular interest 
is the research on c  for different COPs developed in the 
HyFlex framework with a set of built-in low-level heuristics. 
With the consistent GCOP standard, further investigations on 
c  composed more flexibly with the automatically selected 
a A .1 0!  could gain useful insights on the effectiveness of com-
plicated as well as simple c  for various COPs.

In Table IV, in addition to using the direct evaluation on s  
for ,p  i.e., ( ),f s  ( )F c  for GCOP has also used various assess-
ment metrics to evaluate the effectiveness of a  in .c  Instead of 

assessing the final solution, such measurements reflect the 
short-term performance of a  in c  during problem solving, thus 
providing more informed decision making composing a  into 
the generated algorithm .c

Some of the components in Table IV can be seen as com-
pound operators, integrating more than one a  in Table I. For 
example, oxchg  can be seen as applying oasg  twice, and orr  can be 
seen as applying orm  followed by .oasg  A large number of heu-
ristics h1 and h2 have been used in the literature. For example, 
in [36], seven different removal criteria have been used to remove 
requests (nodes) from the routes using different measures (e.g., 
time-oriented, history-based, cluster, worst, and related remov-
als). Two insertion criteria (i.e., greedy and regret) are also used 
to reassign requests back to routes.

In the literature, some decisions of algorithm design (e.g., 
the acceptance criteria A .1 0a , or the number of n  neighbors 
explored) are not always provided or take some default settings. 
This leads to some ambiguity in reproducing the published 
algorithms. With A .1 0  defined with consistent parametric and 
heuristic settings within the GCOP standard, these details can 
be clearly defined with ,a  thus supporting consistent research 
in the literature.

B. GCOP Methods for Nurse Rostering Problems
The NRP has received extensive research attention in the last 
five decades [26] due to the high demands of quality health-
care, limited resources, and various legislation around the world. 
The problem consists of assigning a set of nurses of different 
skills to a set of different shifts on each day of a scheduling 
period. A set of hard constraints must be satisfied, including the 
legislation (e.g., maximum consecutive shifts) and coverage (i.e., 
all demands must be covered). The objective is to minimize the 
violations of soft constraints, e.g., personal preferences, free 
weekend, and preferred shift patterns. Algorithms investigated 
include exact methods, evolutionary algorithms and hyper-
heuristics, and many more [26].

With the GCOP standard, most of the low-level heuris-
tics in hyperheuristics and components in other algorithms 
in the NRP literature can be modeled as a A .1 0!  in Table V. 
They all operate on shifts assigned to selected nurses 
working on particular days (i.e., decision variables in ).p  
For example, ( , , )o k k h1bw

wxchg  swaps k  shifts of two nurses 
selected by .h1w  If shifts of one of the nurses are empty 
(no shift assigned), it defines the move shift operator in the 
NRP literature.

The GCOP composition methods in Table VI employed 
various local search algorithms and different techniques for 
NRP. As for VRP, F  in GCOP for NRP measures either the 
quality of the resulting s  or the performance of .a  Com-
pared to VRP, there are not many problem-specific a  in 
NRP, i.e., most of the a  in Table V are in .A .1 0  Also, various 
acceptance criteria have been studied for NRP, which is not 
the case for VRP. Note that most widely used acceptance 
criteria in A .1 0  are not problem-specific, and can be used 
across different COPs.

TABLE V Low-level heuristics in hyperheuristics for NRP 
modeled as basic a ! A1.0 in GCOP.

a A .1 0! A IN GCOP FOR SOLVING NRP :h1w  SELECTION 
CRITERIA SUCH AS THE COST OF CONSTRAINT  
VIOLATIONS, SHIFT TYPE BALANCE, ETC.

, ,o k h h1 1w bchg^ h  CHANGE SHIFT: USE h1b  TO CHANGE THE 
SHIFT TYPE OF k NURSES CHOSEN BY .h1w

, ,o k k h1bw
wxchg ^ h  SWAP SHIFTS: SWAP k SHIFTS BETWEEN TWO 

NURSES  CHOSEN BY .h1w

, ,o k h h1 1rr w b^ h  RUIN AND RECREATE: USE h1b  TO REASSIGN 
ALL k SHIFTS OF A SET OF NURSES CHOSEN  
BY .h1w

TABLE VI Selection hyper-heuristics defined as GCOP 
methods for NRP.

A .1 0  GCOP METHODS, F, p 

, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h
( )a 1oi

CHOICE FUNCTION [49]. F: SCORE OF o. p: 
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, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h
( )a 1oi  aall

TABU SEARCH [50]. ( )F f s=  MEASURES 
THE FEASIBILITY AND BALANCED SHIFTS. 
p: UK DATASET

, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h

aall  ( )a 1oi  

SIMULATED ANNEALING [51].
F: MEASURES CONSTRAINT VIOLATIONS.
P: UK DATASET

, , ho 1 1 1wxchg
bw ^ h
( )a ngd  ( )a noi

( )a nie

RANDOM, CHOICE FUNCTION, DYNAMIC 
STRATEGY [52]. F: SCORES OF o. p: 
INRC2010

,,o k h h1 1rr w b^ h  ( )a noi

( )a nsa  ( )a nlate

,, mo k h1bw
wxchg^ h

( )a nie  aall  ( )a ngd

ADAPTIVE DYNAMIC METHOD [53]. 
VARIOUS HEURISTICS WITH o.
F: PERFORMANCE METRIC.
P: INRC2010 DATASET

,,o k h h1 1rr w b` j  aall

, , ,o k m h h1 1bw
w bxchg^ h

, ,o h hk 1 1w bins^ h
, ,o h h1 1 1chg w b^ h

,,o mk h2xo b^ h  ( )a nie

ITERATED LOCAL SEARCH WITHIN A 
FOUR-STAGE APPROACH BASED ON  
TENSOR ANALYSIS [54].

.( )sF f=  p: NOTTINGHAM DATASET

NRP a Anrp!  NRP a in GCOP methods 

o upon pre-defined shift 
patterns for specific p

BAYESIAN NETWORK [55] LEARNS TO 
SELECT A SET OF GOOD SHIFT PATTERNS 
FOR p. p: UK DATASET
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Only three benchmark datasets (i.e., the 
INRC2010 competition [56], Nottingham and 
UK [55] datasets) have been widely tested in 
NRP, the first two with extensive NRP variants. 
An interesting study on INRC2010 [52] focuses 
on choosing a compact set of low-level heuris-
tics. The methods developed showed to be highly effective on 
the benchmark as well as two real-world scheduling problems. 
Such analysis can also be conducted automatically with the 
GCOP model. In [22], it is found that simple configuration 
methods work as effective as complicated algorithms on effective 
low-level heuristics. Such studies provide useful insights on 
a A .1 0!  for further research in GCOP.

In this paper, we define the most basic a A .1 0!  across 
COPs, aiming to establish the fundamentals of the GCOP 
standard. More advanced research will be conducted as dis-
cussed in Section IV, and also strongly encouraged from the 
research communities, to further enhance the GCOP stan-
dard toward automated algorithm design. Following the 
recommended good practice in OR [20], updates of exten-
sions and resources on GCOP will be provided at a dedi-
cated GCOP website at https://sites.google.com/view/
general-cop.

IV. Discussions and Future Directions
As a fast emerging topic in computational intelligence, evolu-
tionary computation and optimization research, automated 
algorithm design has recently attracted increasing research 
attention. In this paper, GCOP is formally established as a new 
standard to define various search algorithms in one model, pro-
viding the fundamentals and opening a number of potential 
new research directions in automated algorithm design.

New knowledge toward automated algorithm 
design: The new GCOP model provides a standard for system-
atic analysis on the basic a  of different behaviors in the opti-
mized .c  Some studies in hyperheuristics identified a compact 
subset of effective low-level heuristics and revealed synergy 
among them, enabling effective methods to be built [53]. In 
[57], a runtime analysis on a selection hyperheuristic shows that 
online reinforcement learning for configuring operators may 
perform poorer than a fixed distribution of operators. These 
analyses could also be conducted within the consistent GCOP 
model. The balanced intensification and diversification may be 
modeled in c  considering synergy among .a  New findings on 
new effective algorithms with different categories of algorith-
mic components may also lead to new knowledge and deeper 
understanding in algorithm design and introduce new effective 
algorithms to the literature.

Generality and reusability of algorithms: In GCOP, 
the automatically designed new algorithms evolve to perform 
well for solving different ,p  thus may cater for similar types of 
new p  with a certain level of generality and reusability. 
Recent research has made some progress on the generality of 
algorithms. However, the reusability of algorithms remains 
underexplored. With the GCOP standard, the optimized 

components may be analyzed to derive new knowledge 
potentially transferable to solve unseen .p  GCOP may con-
tribute to addressing the challenging research issue of generali-
ty and reusability of algorithms.

 ❏ Generality: Recent hyperheuristics have shown to be 
able to address cross-domain COPs [58]. There is to our 
knowledge, however, not yet a formal definition of algo-
rithm generality in the literature. In [59], a new assessment 
method has been proposed to evaluate hyperheuristics 
against four levels of generality, in terms of solving different 
problem domains, problems, problem instances and bench-
marks, respectively. The automatically generated new algo-
rithms with GCOP can be evaluated against these four 
levels of generality for solving different .p  Note that the 
assessment of algorithm optimality is different from that of 
algorithm generality. The latter may also measure the 
robustness and speed, in addition to solution quality for 
multiple problems/domains.

 ❏ Reusability: Recent research has made some progress on 
reusing algorithms, although the main research focus may 
not be exactly on reusability. For example, the automatically 
selected algorithms on training instances [10], [11] could be 
reused to solve testing instances of certain similar features. 
In generation hyperheuristics [60], new heuristics can be 
automatically generated by using genetic programming 
based on problem state features [61], [62], thus could be 
potentially reusable for problems of similar features. Howev-
er, the problem of code bloat may lead to the issues of read-
ability and interpretability [63].
Fundamentals of GCOP: Advanced theoretical investiga-

tions are needed to underpin the fundamentals of the new 
GCOP model in operational research.

 ❏ Evaluation of GCOP: In solving GCOP, the objective func-
tion can be extended with multiple objectives including 
generality, reusability and computational time. The new per-
formance measure in [59] can be adopted in the objective 
function to measure different levels of generality. In GCOP, 
instead of designing algorithms using human expertise, as 
happens in most of the research, the time is spent on auto-
matically searching for or composing the optimal c)  for .p  
The trade-off between solving a number of p  and the 
increased computational time presents another interesting 
research issue. The c  for each p  can be further evaluated in 
F  to assess its convergence, the number of operations and 
number of fitness evaluations used, using different statistical 
measures as shown in [64].

 ❏ No Free Lunch Theorem (NFL): Another interesting 
research issue is how NFL applies in solving GCOP, that is 
to explore the scope of generality for the generated new .c  

Recent research has made some progress on the 
generality of algorithms. However, reusability  
of algorithms remains underexplored.
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In [65], the conditions under which the NFL applies to 
hyperheuristics are discussed. It is concluded that there 
may be a free lunch developing general methods for a set 
of problems with fitness functions which are not closed 
under permutation.

 ❏ Landscape analysis: Interesting features of the GCOP search 
space may reveal more findings for automated algorithm 
design. A theoretical study on selection constructive 
hyperheuristics for COPs [24] revealed that there were 
often large plateau and high correlation between local and 
global optimal heuristic combinations in the heuristic land-
scapes. In GCOP, each of the generated c  leads to a differ-
ent S  for .p  Solving GCOP is thus equivalent to exploring 
multiple S  compared to traditional search algorithms 
employing manually fixed a  for solving .p  It is interesting 
to investigate the increased exploration ability and effective-
ness of GCOP exploring multiple .c
Extensions of GCOP: GCOP facilitates automated algo-

rithm design, aiming to reduce the development costs and 
barriers of expertise required for designing algorithms. 
Researchers and practitioners can focus on establishing and 
exchanging a better understanding of algorithm developments 
to address different .p

 ❏ Extensions of :A  Based on more findings in evolutionary 
computation, A .1 0  could be extended with more effective 
common .a  Those a  used in the literature (Table III for 
VRP and Table V for NRP) represent only a subset of A .1 0  
in Table I. The library of general and basic a  can be easily 
extended with problem-specific Ap  and is portable to solve 
a wider range of .p  Such efforts are highly valuable and 
strongly encouraged to promote future advances of auto-
mated algorithm design. Resources will be updated at the 
GCOP web site.

 ❏ Other optimization problems: Recent research has devel-
oped effective selection hyperheuristics for continuous opti-
mization problems [66], [67]. The GCOP model can also 
be extended to solve other optimization problems in addi-
tion to COPs.

V. Conclusions
This position paper introduces the General Combinatorial 
Optimization Problem (GCOP) as a new standard for algo-
rithm design. The objective of GCOP is to optimize the com-
positions of basic algorithmic components, i.e., the decision 
variables, to automatically design new algorithms for solving 
different optimization problems. A taxonomy of automated 
algorithm design, i.e., automated algorithm configuration, 
automated algorithm selection and automated algorithm com-
position, has been formally defined. GCOP which standardizes 

various search algorithms within one model 
underpins the fundamentals of automated 
algorithm design.

With the new GCOP model, we define a 
set A .1 0  of the mostly used basic elementary 
algorithmic components for widely studied 

combinatorial optimization problems in the literature. This set 
can be extended to include more common components, as 
well as user-defined problem-specific components Ap  for dif-
ferent optimization problems. With the new standard, we also 
demonstrate the application of the GCOP model with A .1 0  
and Ap  to formally define a large number of selection 
hyperheuristics for solving two benchmark combinatorial opti-
mization problems, namely vehicle routing and nurse rostering 
problems. This can be seen as the implementation of the 
GCOP standard, demonstrating its effectiveness for modeling a 
large number of existing algorithms. To our knowledge, this is 
the first standard in the literature defining a large number of 
search algorithms in one common model.

The established new GCOP opens a new line of interest-
ing research directions in optimization research. Further stud-
ies will investigate theoretical issues including landscape 
analysis on the search spaces of GCOP. The objective function 
can be extended to measure the generality, reusability and 
computational time of the newly generated algorithms. The 
new automatically designed algorithms introduced to the lit-
erature brings new knowledge which can be used to design 
new effective algorithms, and reused for solving other optimi-
zation problems. In addition to combinatorial optimization 
problems, continuous optimization problems and multiobjec-
tive optimization problems could also be addressed with 
extended GCOP models.

With the new GCOP standard, this position paper calls for 
further investigations on the emerging topic of automated 
algorithm design to stimulate more advances in evolutionary 
computation and optimization research. We strongly encourage 
future research in the research communities to adopt and 
extend the GCOP standard. Resources and latest developments 
will be continuously updated at the GCOP website.
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