
14 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020 1556-603X/20©2020IEEE

Abstract—This paper defines a new combinatorial optimization
problem, namely General Combinatorial Optimization Prob-
lem (GCOP), whose decision variables are a set of parametric
algorithmic components, i.e. algorithm design decisions. The
solutions of GCOP, i.e. compositions of algorithmic compo-
nents, thus represent different generic search algorithms. The
objective of GCOP is to find the optimal algorithmic compo-
sitions for solving the given optimization problems. Solving the
GCOP is thus equivalent to automatically designing the best
algorithms for optimization problems. Despite recent advances,
the evolutionary computation and optimization research

 communities are yet to embrace formal standards that underpin
automated algorithm design. In this position paper, we establish
GCOP as a new standard to define different search algorithms
within one unified model. We demonstrate the new GCOP
model to standardize various search algorithms as well as selec-
tion hyperheuristics. A taxonomy is defined to distinguish sev-
eral widely used terminologies in automated algorithm design,
namely automated algorithm composition, configuration and
selection. We would like to encourage a new line of exciting
research directions addressing several challenging research issues
including algorithm generality, algorithm reusability, and auto-
mated algorithm design.

Corresponding Author: Rong Qu (rong.qu@nottingham.ac.uk)

Digital Object Identifier 10.1109/MCI.2020.2976182
Date of current version: 10 April 2020

The
General

Combinatorial
Optimization Problem: Towards

Automated Algorithm Design

Rong Qu
School of Computer Science, University of Nottingham, Nottingham, UK

Graham Kendall
University of Nottingham, Nottingham, UK; University of Nottingham Malaysia, Selangor, MALAYSIA

Nelishia Pillay
University of Pretoria, SOUTH AFRICA

©
IS

TO
C

K
P

H
O

TO
.C

O
M

/K
R

U
LU

A

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 15

I. Introduction
long with advances in optimization
research, a rich set of Combinatorial
Optimization Problems (COPs) has
been established. COPs represent a

subset of operational research [1]. They consist
of, subject to given constraints, assigning dis-
crete domain values to a finite set of decision
variables, so as to optimize an objective func-
tion which evaluates the solutions. The well-established
benchmark COPs (e.g., the OR Library [2] at http://people
.brunel.ac.uk/~mastjjb/jeb/info.html) have promoted the
design of effective algorithms in evolutionary computation
and computational intelligence. Problems addressed include
job shop scheduling, knapsack problem, personnel scheduling,
timetabling and traveling salesman problem, as well as many
others and their extensions with various real-world constraints
and features.

In optimization research, computational intelligence and
evolutionary computation are two of the recent advances in
automated algorithm design. That is, to automatically design
search algorithms or solvers which are able to solve COPs or
problem instances without extensive domain knowledge from
human involvement. In the scientific literature, several termi-
nologies have emerged in different contexts, sometimes being
used interchangeably without a clear definition.

In this paper we formally define a taxonomy of automated
algorithm design as follows.

 ❏ Automated algorithm configuration: to automatically con-
figure the parameters of pre-defined target algorithm(s)
upon a given set of training problem instances.

 ❏ Automated algorithm selection: to automatically select from
a portfolio of chosen algorithms with their associated
parameters upon a set of training problem instances.

 ❏ Automated algorithm composition: to automatically gener-
ate general algorithms by composing heuristics or compo-
nents of some algorithms to solve problems.

Automated algorithm configuration has been well studied.
The most studied algorithms include SAT solvers [3], [4],
multiobjective ant colony optimization [5], [6] and stochas-
tic local search [7] for flow shop scheduling problems and
traveling salesman problem, and mixed integer programming
solvers for traveling salesman problem and vehicle routing
problems with time windows [8]. The automated configura-
tion of parameters is usually conducted offline upon a set of
training instances. A number of frameworks have been built
to search in the configuration space of parameters for the
target algorithms, achieving highly promising results which
are superior to manually configured algorithms. These
include ParamILS [3] which uses iterated local search,
F-Race [5] which uses a racing mechanism, and the extend-
ed framework irace [9].

In automated algorithm selection, the portfolio of algo-
rithms includes different parametric SAT solvers [10] and evo-
lutionary algorithms [11], [12]. One important research issue

concerns the clustering of training instances according to their
features, thus to select the best algorithms or solvers for unseen
test instances of similar clusters [10]. Frameworks developed
include Population-based Algorithm Portfolios (PAP) [11] and
Hydra [13] (based on extended ParamILS) for optimization
functions [11], Boolean satisfiability problem and traveling
salesman problems [10].

In automated algorithm composition, a set of components
or heuristics are automatically combined online to generate
new generic algorithms. Some research concerns components
for a type of target algorithms, e.g., evolutionary algorithms
[14], [15]. Another line of research on hyperheuristics [16]
decides at a higher level which low-level heuristics to apply
[17]. By searching the given low-level heuristics, multiple
COPs can be solved online with the same or adaptive heuristic
compositions. Frameworks developed include HyFlex [18] and
EvoHyp [19], supporting automatic composition of general
algorithms across multiple COPs [16].

The fundamental difference between the three lines of
research in automated algorithm design is on the decision spac-
es. Automated algorithm configuration concerns a decision
space of parameters within a template of target algorithm(s),
rather than freely composing the algorithm components them-
selves. The resulting algorithms, which are likely variants of the
same target algorithms, are best configured for solving the
training and unseen testing instances offline. Automated algo-
rithm selection explores a decision space with a family of given
target algorithms, which are grouped against some features of
training instances for solving similar testing instances offline.
Automated algorithm composition explores a decision space of
components or heuristics to flexibly compose or combine
them. The resulting algorithms generated are new and generic
for solving different unseen COPs.

The three lines of research are different ways automating
algorithm design. Automated configuration and selection take a
top-down approach to configure within given algorithm tem-
plates and select from a portfolio of target algorithms, respec-
tively, resulting in variants of the same family of target
algorithms. Automated algorithm composition takes a bottom-
up approach, working with algorithm components, to flexibly
compose and generate new algorithms.

Current automated algorithm design research, how-
ever, still requires some human expertise and empirical
studies to manually select parameters, target algorithms/
solvers, or heuristics/components. Challenges remain to
gain the insights on effective algor ithms to underpin

A In this paper, a new model, namely General
Combinatorial Optimization Problem (GCOP), is
defined to model the problem of algorithm design
itself as a COP, solutions of which are new algorithms
automatically generated to solve cross-domain COPs.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

16 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

automated algorithm design [20]. Such advances require
models and standards to conduct systematic investigations
within coherent frameworks.

In this paper, a new model, namely General Combinatorial
Optimization Problem (GCOP), is defined to model the prob-
lem of algorithm design itself as a COP, solutions of which are
new algorithms automatically generated to solve cross-domain
COPs. By optimizing the compositions of basic algorithmic com-
ponents as decision variables in GCOP, new generic search
algorithms can be automatically generated.

The major aim of GCOP is to establish a standard in
algorithm design to model various search algorithms in one
framework with the most basic algorithmic components. It
is not our intention to model all existing algorithms with
GCOP. Other common and user-defined algorithmic com-
ponents could be added to GCOP to design new algo-
rithms addressing COPs as well as other optimization
problems. To our knowledge, there is no existing standard
in the literature which formally models the problem of
designing search algorithms. Further studies can potentially
provide additional insights on how various algorithms work
with the new standard, and thus underpin automated algo-
rithm design.

In the rest of the paper, Section II presents the formal defi-
nition and search spaces of the new GCOP model. With the
most basic algorithmic components, Section III demonstrates
the application of GCOP as a standard to define various selec-
tion hyperheuristics in the literature for solving two COPs.
Section IV discusses research issues and future directions, fol-
lowed by conclusions in Section V.

II. The General Combinatorial Optimization Problem

A. Definition of the GCOP
Definition 1: The General Combinatorial Optimization
Problem (GCOP) is a combinatorial optimization problem
with decision variables taking domain values from a finite set A
of algorithmic components .a A! The solution space of GCOP,

,C consists of algorithmic compositions c upon the given .a The
objective function of GCOP, ,()F c R" ,c C! measures the
performance of c for solving ,p the optimization problem(s)
under consideration.

In problem ,p the decision variables take values from a
finite set of problem-specific values. The solution space S of p
consists of the direct solutions ,s each obtained by a corre-
sponding algorithmic composition ,c i.e., .c s" The objective
function ()f s R" evaluates s S! for .p In this paper we con-
sider COPs as .p This could be extended to other optimization
problems as discussed in Section IV.

Let M be a mapping function :M
() ().f s F c" The objective of GCOP is to

search for the optimal c C!) which produces
the optimal s S!) for ,p so that ()F c) is opti-
mized, as defined in Objective (1). Without loss
of generality, we assume p is a minimisation

problem in this paper.

 .() () (())minF c c s f s f s" !; =)))) (1)

The following terminologies are defined in GCOP.
 ❏ Problem GCOP: a COP, whose decision variables take dis-
crete values from a finite domain A of algorithmic compo-
nents ,a .a A!

 ❏ Domain A for decision variables in GCOP: algorithmic
components ,a A! including basic operators with heuris-
tics, parameter settings, and acceptance criteria, etc. A can
be extended with user-defined components. Examples of
the most common basic a in the literature are defined in
Table I.

 ❏ Solution space C of GCOP: consists of solutions c for
GCOP, i.e. algorithmic compositions c upon .a A! Each c
is used to produce a solution s for problem ,p i.e. .c s"

 ❏ Objective function F for GCOP: ()F c R" measures
GCOP solutions .c C! The objective is to find the optimal
c) which produces optimal s) for ,p i.e. .c s"))

 ❏ Problem :p the optimization problem(s) under consider-
ation, whose decision variables are problem-specific.

 ❏ Solution space S of :p consists of solutions s for .p
 ❏ Objective function f for :p ()f s R" evaluates solutions s
for ,p s S! are obtained by using algorithmic composi-
tions .c C!

 ❏ Mapping function :M () ():F c f s! maps each algorithmic
composition c for GCOP to a solution s for ,p i.e. ,c s"
thus the generation of s reflects the performance of .c
In [20], it has been suggested that the optimization research

community should adopt a certain standard. The GCOP pro-
vides such a standard to define the design of search algorithms
with a unified model. In the current research on automated
algorithm composition, the search space is upon manually
defined heuristics or components in a specific type of
algorithm(s). For example, in hyperheuristics [16], the low-level
heuristics are often manually determined, and fixed with pre-
defined parameter values. GCOP significantly extends the
search space to concern the most basic elementary algorithmic
components, thus requires no human involvement. Methods
finding the optimal composition of a for GCOP thus auto-
matically design new generic search algorithms.

B. Decision Variables of GCOP
In Table I, we establish .GCOP1 0 with a domain A .1 0 of a
set of most basic and elementary algorithmic components
.a The underlying idea of the GCOP standard is to modu-

larise the existing widely used basic components a A .1 0!
which are grouped into two categories, namely operators

With GCOP, the newly generated generic algorithms
are likely to be highly different from those manually
designed algorithms.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 17

A . o1 0_ and acceptance criteria ,A . a1 0_ each
with their associated heuristic and parametric
settings. This categorisation has been widely
used in the literature, although quite often
manually “hard-wired” into integrated or
compound operators or heuristics. Note that
acceptance criteria a A a. _1 0! are general for
any problems, and are applicable with any

.a A . o1 0_! Different heuristic strategies and
parameter settings can be associated with a A . o1 0_! to
define different components.

With the sets of basic generic components A o. _1 0 and
,A a. _1 0 GCOP proposes a new standard which defines a large

number of different algorithms in one common model. For
example, Tabu Search variants can be defined by imple-
menting , ,o k m h1w

t
xchg^ h associated with an acceptance crite-

ria , ,a n ltabu^ h where l (tabu length), n (number of neighbors
sampled), and ,k m (number of decision variables selected)
could be set as fixed or variable values. Associated with

, ,a n t rgd^ h and ,()a noi variants of Great Deluge and greedy
search can instead be defined, respectively. Section III demon-
strates that with the basic A .1 0 and some problem-specific
components ,Ap most selection hyperheuristics for two wide-
ly studied COPs in the literature can be defined with the
GCOP model.

With GCOP, the newly generated generic algorithms are
likely to be highly different from those manually designed
algorithms, which are likely subsets of GCOP solutions .c C!

These newly generated c potentially introduce new coherent
knowledge in algorithm design with the GCOP model.

The underlying idea of GCOP is to decompose algorithms
into elementary algorithmic components, which can then be
composed and optimized in a much more flexible way, and thus
design new generic algorithms automatically. This is different
from automated selection from a portfolio of target algorithms
and automated configuration of target algorithm(s), where the
resulting new algorithms usually belong to the same family or
are variants of the target algorithm(s). The decomposition of
algorithms into the most basic components allows the most
flexibility and provides a much larger scope to design new
generic algorithms.

The basic a when composed and configured in different
ways can define either new or existing search algorithms.

.GCOP1 0 can be seen as a problem instance of the GCOP
model, with a small domain of only the basic .a It is not possi-
ble, also not intended, to model in GCOP exclusively all algo-
rithmic components in the literature. We aim to establish the

TABLE I Domain a ! A1.0 of decision variables for GCOP1.0.

Domain A . o1 0_ a WITH HEURISTICS h1, h2. :/ /h h h h1 1 1 1w
t

b
t

w
r

b
r^ h TOURNAMENT (ROULETTE WHEEL) SELECTION OF THE WORST/BEST OF u RANDOMLY

CHOSEN DECISION VARIABLES , ;s s u s0,i j f! ! " , :/ /h h h h22 2 2w
t

b
t

w
r

b
r^ h TOURNAMENT (ROULETTE WHEEL) SELECTION OF THE WORST/

BEST TWO OF v RANDOMLY CHOSEN SOLUTIONS , .s P v P0f! ! ; ;" , P: AN ARCHIVE OF s. :/h h1 2 RANDOM STRATEGIES IF , .u v 0=

,,o k h h1 1w basg^ h USE h1b
t OR h1b

r TO ASSIGN VALUES TO k DECISION VARIABLES SELECTED BY h1w
t OR .h1w

r

,o k h1wrm^ h REMOVE VALUES OF k DECISION VARIABLES SELECTED BY h1w
t OR .h1w

r

,,o k h h1 1w bchg^ h USE h1b
t OR h1b

r TO CHANGE THE VALUES OF k DECISION VARIABLES SELECTED BY h1w
t OR .h1w

r

,,o mk h1wxchg^ h SWAP k AND m DECISION VARIABLES CHOSEN BY h1w
t OR .h1w

r :/o obw
xchg
in

xchg DECISION VARIABLES ARE FROM THE SAME/DIFFERENT ROUTES.

,,o k h h1 1w bins^ h INSERT K DECISION VARIABLES CHOSEN BY h1w
t OR h1w

r TO OTHER POSITIONS SELECTED BY h1b
t OR .h1b

r :/o obw
ins
in

ins s ,i j ARE FROM THE
SAME/DIFFERENT i.

,,o k h h1 1w brr^ h USE h1b
t OR h1b

r TO REASSIGN VALUES OF k DECISION VARIABLES SELECTED BY h1w
t OR .h1w

r

,,o mk h2bxo^ h SWAP k AND m RANDOMLY CHOSEN DECISION VARIABLES BETWEEN TWO SOLUTIONS IN P CHOSEN BY ./h h2 2b
t

b
r

Domain A . a1 0_ a WITH PARAMETERS n, t, r. NEIGHBOR sl OF s IS PRODUCED BY o A .. _o1 0! n: NUMBER NEIGHBORS SAMPLED.

aall ACCEPT ALL, NAÏVE ACCEPT: sl IS ALWAYS ACCEPTED, I.E. RANDOM STRATEGY.

()a noi ONLY IMPROVING: BETTER sl IS ACCEPTED.

()a nie IMPROVE AND EQUAL: A BETTER OR EQUAL sl IS ACCEPTED.

()a nlate LATE ACCEPTANCE: A sl BETTER THAN THE LAST n VISITED s IS ACCEPTED.

,()a n ltabu TABU: THE BEST sl NOT IN A TABU LIST OF LENGTH l IS ACCEPTED.

,,()t ra ngd GREAT DELUGE: A WORSE sl IS ACCEPTED BY A PROBABILITY .p e () ()u uf s f s= - -l BETTER s’ IS ALWAYS ACCEPTED.

,,()t ra nmc MONTE CARLO: A WORSE sl IS ACCEPTED BY A THRESHOLD t, t IS DECREASED BY r. BETTER sl IS ALWAYS ACCEPTED.

,,()t ra nsa SIMULATED ANNEALING: A WORSE sl IS ACCEPTED BY ,p e () () /u uf s f s t= - -l t IS DECREASED BY r. BETTER sl IS ALWAYS ACCEPTED.

The underlying idea of GCOP is to decompose
algorithms into elementary algorithmic components,
which can then be composed and optimized in a
much more flexible way, and thus design new generic
algorithms automatically.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

18 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

GCOP standard step by step to explore new effective algo-
rithms that are automatically designed.

Other GCOP instances can be built with extended A con-
sisting of more general or user-defined problem-specific Ap to
design new algorithms addressing new COPs. With extended

,A the solution space of GCOP increases exponentially, lead-
ing to many more new potentially effective algorithms which
have been designed automatically. Note that problem-specific
features and solution structures are left with users who are
familiar with .p The automated algorithm design is handled at
a higher level by solving GCOP.

In [21], a unified mathematical formulation for hyperheuris-
tics is proposed as a high-level controller. Elements of heuristic
design compete for resources within a shared repository work-
space to configure better heuristics. Heuristics interoperate
based on information shared from other heuristics. GCOP
presents a more general and coherent model and standard with
which a set of algorithmic components as the domain of a
COP is formally defined and automatically composed.

C. Objective Function of GCOP
With GCOP, new algorithms generated automatically may
cater for multiple p with improved level of generality. The
newly evolved algorithms c may also reflect a certain level of
reusability for other ,p saving algorithm development costs.

In GCOP, Objective (1) defines the performance measure
()F c on c for solving .p When addressing multiple ,p GCOP

can be seen as a multiobjective optimization problem
where c) is automatically composed to simultaneously opti-
mize the objective function fi for each ,pi , , ,i I1 f= I is
the number of p under consideration. Note that the same
c) is used to solve all ,p rather than configured individually
or manually to solve each ,p respectively, i.e., each p acts as
a specific problem instance for .c) Objective (2) can be
defined to measure performance ()F cm of c for solving
multiple .p

 { , , , } .() minF c f f fm I
T

1 2! f) (2)

In Objective (1) and Objective (2), F could be the same as ,f
which reflects direct evaluation of s S! for .p ()F c could also
be different measures of c producing the corresponding .s For
example, in hyperheuristics, rewards or aggregated scores have

been used to assess the performance of low-level heuristics
during the search. Such rewards, rather than direct solution
evaluation (),f s can be used in ()F c to provide informed
search for GCOP.

In addition to solution quality as the evaluation ()F cm in
Objective (2), further extensions and variants could be defined
to evaluate different aspects of the automatically designed ,c
details discussed in Section IV on future research directions.

D. Search Spaces of GCOP
The search space C for GCOP presents some interesting and
unique characteristics compared to that of S for ,p see Table II.
They can be defined based on the following three factors:

 ❏ Solution encoding: represents all solutions based on some
finite alphabet for the decision variables. The encoding of
c C! is highly different from that of ,s S! leading to dif-
ferent upper bounds of C for GCOP and S for .p

 ❏ Successor operator: modifies values of the decision variables
thus defines connections of the encoded solutions in the
search space. The successor operators in C and S operate
upon c and s of different encodings.

 ❏ Objective function: evaluates the solutions. In GCOP, ()F c
assesses the performance of ,c which produces .s S! ()F c
thus depends on (),f s however, may potentially be different
from (),f s see the examples in Section III.
In solving GCOP, assume c for the decision variables are

encoded as one-dimensional strings of a A! in Table I. With
the simple encoding c for GCOP, it is possible and highly use-
ful to analyze the landscape of ,C whose spatial structure can
be measured using a simple distance metric D on .c It is
shown to be very difficult, if not impossible, to analyze the
landscape of S for many complex p with d-dimensional solu-
tion encodings, ,d 2$ see the example COPs in Section III.

In [22], the concept of two search spaces, namely high-level
heuristic space and low-level solution space in hyperheuristics,
has been introduced into the scientific literature of search algo-
rithms. Fitness landscape analysis on local optimal solutions in
the heuristic space revealed interesting findings [22], [23]. The
search space of selection constructive hyperheuristics has also
been analyzed in [24] to reveal common landscape features of
this type of algorithms.

III. Example Methods for GCOP
With the GCOP model, a large number of algorithms could
be defined with a subset of a A .1 0! in Table I. Furthermore,
GCOP provides a standard toward automated algorithm design.
With ,a A! different high-level methods, e.g., local search,
tools, rules or models could be used to compose a flexibly and
design new algorithms automatically in a bottom-up way.
Hyperheuristics can be seen as one type of GCOP implemen-
tation which combines low-level heuristics, which are defined
and integrated based on a subset of basic a A .1 0! in Table I, to
design new algorithms automatically. That is, the low-level heu-
ristics are “hard-wired” with the basic a thus requiring a cer-
tain level of human knowledge.

TABLE II Characteristics of Search Spaces: GCOP versus. p.

C of GCOP S of P

ENCODING COMPOSITIONS c UPON
a A!

DIRECT SOLUTIONS s FOR p

OPERATOR ANY METHODS COMBIN-
ING a

SEARCH OPERATORS ON
s S!

UPPER
BOUND

DEPENDS ON |A| AND
 PARAMETERS OF a

DEPENDS ON THE NO. OF
VARIABLES IN s

OBJECTIVE
FUNCTION

PERFORMANCE OF c
THAT PRODUCES s

QUALITY MEASURE
OF s FOR p

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 19

This section presents how GCOP with a A .1 0! in Table I
defines various selection hyperheuristics. Two representative
COPs, namely the Vehicle Routing Problem (VRP) [25] in
Section A, and Nurse Rostering Problems (NRP) [26] in Sec-
tion B are selected as the p in GCOP. The aim is not to pro-
vide an exclusive review on all existing selection
hyperheuristics, but to demonstrate the modeling of various
search algorithms in one GCOP standard toward automated
algorithm design.

A. GCOP Methods for Vehicle Routing Problems
As one of the most studied COPs, VRP and its variants have
been used to model a range of real-world applications, e.g.,
transport logistics in supply chain with different constraints.
The basic VRP involves constructing a set of closed routes
from and to a depot, each route delivering the required
demands to an ordered list of customers by a vehicle of limited
capacity. The objective is to minimize the total costs (e.g., dis-
tance and/or vehicles), while satisfying the capacity constraints.
Evolutionary algorithms and computational intelligence tech-
niques have been extensively studied for VRP variants with
complex constraints [25], [27]–[29].

In GCOP, c upon the configured a operates on s for VRP.
In the most commonly used solution encoding in the VRP lit-
erature, customers or tasks are modeled as nodes (i.e., decision
variables s ,i j for)p in a directed routing network. A large num-
ber of operators in VRP algorithms can be modeled using the
basic generic ,a A .1 0! as shown in Table III. For example,
swap, interchange or k-opt can be defined by , ,()o k m h1wxchg

in or
, ,()o k m h1bw

wxchg in Table I to swap values between k and m
decision variables within the same route or between different
routes, respectively.

In Table IV, various selection hyperheuristics can be defined
using the GCOP standard with subsets of a A .1 0! in Table III
for different ,p e.g., capacitated VRP (CVRP), distance based
VRP (DbVRP), dynamic VRP (DVRP), open VRP (OVRP),
and VRP with time windows (VRPTW). Some frameworks,
e.g., HyFlex [33], POEMS [34] and ALNS [35], have been
adopted to develop the hyperheuristics, i.e., GCOP composition
methods. A number of problem-specific components (e.g., saving,

TABLE III Operators for VRP modeled as a ! A1.0 in GCOP.

a A1.0! IN GCOP FOR VRP
, :h h1 1w b SELECTION CRITERIA/HEURISTICS

,,o k h h1 1w bins^ h GREEDY, INSERTION [30]: INSERT k NODES CHO-
SEN BY h1w TO A ROUTE CHOSEN BY .h1b

,,o k h h1 1w bchg^ h SHIFT [31]: USE h1b TO CHANGE k NODES
SELECTED BY .h1w

,,o mk h1wxchg^ h k-OPT [31], INTERCHANGE, VAN BREEDAM
[32]: SWAP k AND m NODES SELECTED BY .h1w

,,o mk h2xo b^ h CROSSOVER: EXCHANGE SUB-ROUTES OF k AND m
NODES BETWEEN TWO SOLUTIONS CHOSEN BY .h2b

,,o k h h1 1w brr^ h DESTROY AND REPAIR: REMOVE k NODES CHOSEN
BY ,h1w AND RE-ASSIGN THEM USING .h1b

TABLE IV Selection hyperheuristics defined as GCOP
methods for VRP.

A .1 0 GCOP METHODS, F, p

,,o k h h1 1rr w
r

b
r^ h

,,a t rnsa^ h
ADAPTIVE LARGE NEIGHBORHOOD SEARCH [36].
F: SCORE OF o. p: VRP VARIANTS.

()o 1asg

,,o k h h1 1w bins^ h
,, mo k h1bw

wxchg^ h

EVOLUTIONARY APPROACH [32],
h1: ORDERING HEURISTICS [31].

.()sF f= p: DVRP

,,o h h1 1 1w basg^ h
,,o k h h1 1rr w

r
b
r^ h

,,o h h1 1 1bw
w bins^ h

,,o h11 1bw
wxchg^ h

,,o h h2 1 1bw
w bins^ h
,,o h22 1bw

wxchg^ h

COALITION-BASED METAHEURISTIC [37] WITH
 LEARNING MECHANISMS.
F: CREDIT/REWARD FROM LEARNING.
p: DbVRP, CVRP

,,o k h h1 1w bins^ h
,,o h h1 1 1w basg^ h

,, mo k h1wxchg^ h

EVOLUTIONARY-BASED SEARCH [38] IN
POEMS,
h1: ORDERING HEURISTICS.

.()sF f= p: CVRP

, ,, mo k h h1 1w bxchg^ h
,,o k h h1 1rr w

r
b
r^ h

,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

,,o mk h2xo b^ h
()a noi

CLASSIFIER TRAINED BY APPRENTICESHIP
LEARNING [39] IN HyFlex. VARIOUS h1 USED
WITH o.

.: ()F f schange of p: VRPTW

()a nmc

,o h2 1wchg^ h
,,o h11 1wxchg

in ^ h
,,o h11 1bw

wxchg^ h
()a nmc

MULTI-ARMED-BANDIT MECHANISM [40],
h1: RANDOM SELECTION.
F: ACCUMULATED REWARD FOR o.
p: VRPTW

,,o h11 1wxchg
in ^ h

,,o h h1 1 1bw
w bins^ h

,,o h11 1bw
wxchg^ h

,,()t ra nsa

COOPERATION COEVOLUTION APPROACH [41],
h1: GREEDY STRATEGY.

.()sF f= p: REAL VRP

, ,, mo k h h1 1w bxchg^ h
,,o k h h1 1rr w

r
b
r^ h

,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

,,o mk h2xo b^ h
()a noi

ADAPTIVE ITERATED LOCAL SEARCH [42] IN
HyFlex.
F: PERFORMANCE SCORE OF o.
p: VRPTW

, ,, mo k h h1 1w bxchg^ h
,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

,,o k h h1 1rr w
r

b
r^ h

,,o mk h2xo b^ h
aall

TIME DELAY NEURAL NETWORK CLASSIFIER
[43] IN HyFlex.
F: PERFORMANCE OF o. p: OVRP

, ,, mo k h h1 1w bxchg^ h
,,o k h h1 1w bins^ h
,,o h h1 1 1w bchg^ h

aall ,,o mk h2xo b^ h

ITERATED LOCAL SEARCH WITH DYNAMIC
MULTI-ARMED BANDITS [44] IN HyFlex.
h1: LOCATION/TIME BASED HEURISTICS.
F: EXTREME VALUE CREDIT ASSIGNMENT
TO o. p: VRPTW

VRP a Avr p! VRP a IN GCOP METHODS

opt-m [45] EXCHANGE m EDGES IN A ROUTE [32].

SWEEP [38] [46],
[47]

CLUSTER NODES FROM THE DEPOT, EACH SOLVED
AS A TSP TO FORM ONE ROUTE [32], [37].

opt2-) [48] ,o h1 1bw
wxchg^ h [40], [42], [43], [44]

SAVING [31] MERGE TWO ROUTES INTO ONE BASED ON
SAVED COSTS [32], [38], [40], [44]

GENI , ,o h h1 1 1bw
w bins^ h FOLLOWED BY A RE-OPTIMI-

ZATION [38], [39], [42], [44].

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

20 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

sweep, ,opt-m opt2-) and GENI) in the VRP literature can be
defined as a plug-in Avrp in Table IV in the extended GCOP.

In Table IV, the GCOP composition methods in selection
hyperheuristics for VRP range from various search methods to
classifiers trained using machine learning. Of particular interest
is the research on c for different COPs developed in the
HyFlex framework with a set of built-in low-level heuristics.
With the consistent GCOP standard, further investigations on
c composed more flexibly with the automatically selected
a A .1 0! could gain useful insights on the effectiveness of com-
plicated as well as simple c for various COPs.

In Table IV, in addition to using the direct evaluation on s
for ,p i.e., (),f s ()F c for GCOP has also used various assess-
ment metrics to evaluate the effectiveness of a in .c Instead of

assessing the final solution, such measurements reflect the
short-term performance of a in c during problem solving, thus
providing more informed decision making composing a into
the generated algorithm .c

Some of the components in Table IV can be seen as com-
pound operators, integrating more than one a in Table I. For
example, oxchg can be seen as applying oasg twice, and orr can be
seen as applying orm followed by .oasg A large number of heu-
ristics h1 and h2 have been used in the literature. For example,
in [36], seven different removal criteria have been used to remove
requests (nodes) from the routes using different measures (e.g.,
time-oriented, history-based, cluster, worst, and related remov-
als). Two insertion criteria (i.e., greedy and regret) are also used
to reassign requests back to routes.

In the literature, some decisions of algorithm design (e.g.,
the acceptance criteria A .1 0a , or the number of n neighbors
explored) are not always provided or take some default settings.
This leads to some ambiguity in reproducing the published
algorithms. With A .1 0 defined with consistent parametric and
heuristic settings within the GCOP standard, these details can
be clearly defined with ,a thus supporting consistent research
in the literature.

B. GCOP Methods for Nurse Rostering Problems
The NRP has received extensive research attention in the last
five decades [26] due to the high demands of quality health-
care, limited resources, and various legislation around the world.
The problem consists of assigning a set of nurses of different
skills to a set of different shifts on each day of a scheduling
period. A set of hard constraints must be satisfied, including the
legislation (e.g., maximum consecutive shifts) and coverage (i.e.,
all demands must be covered). The objective is to minimize the
violations of soft constraints, e.g., personal preferences, free
weekend, and preferred shift patterns. Algorithms investigated
include exact methods, evolutionary algorithms and hyper-
heuristics, and many more [26].

With the GCOP standard, most of the low-level heuris-
tics in hyperheuristics and components in other algorithms
in the NRP literature can be modeled as a A .1 0! in Table V.
They all operate on shifts assigned to selected nurses
working on particular days (i.e., decision variables in).p
For example, (, ,)o k k h1bw

wxchg swaps k shifts of two nurses
selected by .h1w If shifts of one of the nurses are empty
(no shift assigned), it defines the move shift operator in the
NRP literature.

The GCOP composition methods in Table VI employed
various local search algorithms and different techniques for
NRP. As for VRP, F in GCOP for NRP measures either the
quality of the resulting s or the performance of .a Com-
pared to VRP, there are not many problem-specific a in
NRP, i.e., most of the a in Table V are in .A .1 0 Also, various
acceptance criteria have been studied for NRP, which is not
the case for VRP. Note that most widely used acceptance
criteria in A .1 0 are not problem-specific, and can be used
across different COPs.

TABLE V Low-level heuristics in hyperheuristics for NRP
modeled as basic a ! A1.0 in GCOP.

a A .1 0! A IN GCOP FOR SOLVING NRP :h1w SELECTION
CRITERIA SUCH AS THE COST OF CONSTRAINT
VIOLATIONS, SHIFT TYPE BALANCE, ETC.

, ,o k h h1 1w bchg^ h CHANGE SHIFT: USE h1b TO CHANGE THE
SHIFT TYPE OF k NURSES CHOSEN BY .h1w

, ,o k k h1bw
wxchg ^ h SWAP SHIFTS: SWAP k SHIFTS BETWEEN TWO

NURSES CHOSEN BY .h1w

, ,o k h h1 1rr w b^ h RUIN AND RECREATE: USE h1b TO REASSIGN
ALL k SHIFTS OF A SET OF NURSES CHOSEN
BY .h1w

TABLE VI Selection hyper-heuristics defined as GCOP
methods for NRP.

A .1 0 GCOP METHODS, F, p

, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h
()a 1oi

CHOICE FUNCTION [49]. F: SCORE OF o. p:
UK DATASET

, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h
()a 1oi aall

TABU SEARCH [50]. ()F f s= MEASURES
THE FEASIBILITY AND BALANCED SHIFTS.
p: UK DATASET

, ,o h h1 1 1w bchg^ h
, , ho 1 1 1w

bw
xchg ^ h

aall ()a 1oi

SIMULATED ANNEALING [51].
F: MEASURES CONSTRAINT VIOLATIONS.
P: UK DATASET

, , ho 1 1 1wxchg
bw ^ h
()a ngd ()a noi

()a nie

RANDOM, CHOICE FUNCTION, DYNAMIC
STRATEGY [52]. F: SCORES OF o. p:
INRC2010

,,o k h h1 1rr w b^ h ()a noi

()a nsa ()a nlate

,, mo k h1bw
wxchg^ h

()a nie aall ()a ngd

ADAPTIVE DYNAMIC METHOD [53].
VARIOUS HEURISTICS WITH o.
F: PERFORMANCE METRIC.
P: INRC2010 DATASET

,,o k h h1 1rr w b` j aall

, , ,o k m h h1 1bw
w bxchg^ h

, ,o h hk 1 1w bins^ h
, ,o h h1 1 1chg w b^ h

,,o mk h2xo b^ h ()a nie

ITERATED LOCAL SEARCH WITHIN A
FOUR-STAGE APPROACH BASED ON
TENSOR ANALYSIS [54].

.()sF f= p: NOTTINGHAM DATASET

NRP a Anrp! NRP a in GCOP methods

o upon pre-defined shift
patterns for specific p

BAYESIAN NETWORK [55] LEARNS TO
SELECT A SET OF GOOD SHIFT PATTERNS
FOR p. p: UK DATASET

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 21

Only three benchmark datasets (i.e., the
INRC2010 competition [56], Nottingham and
UK [55] datasets) have been widely tested in
NRP, the first two with extensive NRP variants.
An interesting study on INRC2010 [52] focuses
on choosing a compact set of low-level heuris-
tics. The methods developed showed to be highly effective on
the benchmark as well as two real-world scheduling problems.
Such analysis can also be conducted automatically with the
GCOP model. In [22], it is found that simple configuration
methods work as effective as complicated algorithms on effective
low-level heuristics. Such studies provide useful insights on
a A .1 0! for further research in GCOP.

In this paper, we define the most basic a A .1 0! across
COPs, aiming to establish the fundamentals of the GCOP
standard. More advanced research will be conducted as dis-
cussed in Section IV, and also strongly encouraged from the
research communities, to further enhance the GCOP stan-
dard toward automated algorithm design. Following the
recommended good practice in OR [20], updates of exten-
sions and resources on GCOP will be provided at a dedi-
cated GCOP website at https://sites.google.com/view/
general-cop.

IV. Discussions and Future Directions
As a fast emerging topic in computational intelligence, evolu-
tionary computation and optimization research, automated
algorithm design has recently attracted increasing research
attention. In this paper, GCOP is formally established as a new
standard to define various search algorithms in one model, pro-
viding the fundamentals and opening a number of potential
new research directions in automated algorithm design.

New knowledge toward automated algorithm
design: The new GCOP model provides a standard for system-
atic analysis on the basic a of different behaviors in the opti-
mized .c Some studies in hyperheuristics identified a compact
subset of effective low-level heuristics and revealed synergy
among them, enabling effective methods to be built [53]. In
[57], a runtime analysis on a selection hyperheuristic shows that
online reinforcement learning for configuring operators may
perform poorer than a fixed distribution of operators. These
analyses could also be conducted within the consistent GCOP
model. The balanced intensification and diversification may be
modeled in c considering synergy among .a New findings on
new effective algorithms with different categories of algorith-
mic components may also lead to new knowledge and deeper
understanding in algorithm design and introduce new effective
algorithms to the literature.

Generality and reusability of algorithms: In GCOP,
the automatically designed new algorithms evolve to perform
well for solving different ,p thus may cater for similar types of
new p with a certain level of generality and reusability.
Recent research has made some progress on the generality of
algorithms. However, the reusability of algorithms remains
underexplored. With the GCOP standard, the optimized

components may be analyzed to derive new knowledge
potentially transferable to solve unseen .p GCOP may con-
tribute to addressing the challenging research issue of generali-
ty and reusability of algorithms.

 ❏ Generality: Recent hyperheuristics have shown to be
able to address cross-domain COPs [58]. There is to our
knowledge, however, not yet a formal definition of algo-
rithm generality in the literature. In [59], a new assessment
method has been proposed to evaluate hyperheuristics
against four levels of generality, in terms of solving different
problem domains, problems, problem instances and bench-
marks, respectively. The automatically generated new algo-
rithms with GCOP can be evaluated against these four
levels of generality for solving different .p Note that the
assessment of algorithm optimality is different from that of
algorithm generality. The latter may also measure the
robustness and speed, in addition to solution quality for
multiple problems/domains.

 ❏ Reusability: Recent research has made some progress on
reusing algorithms, although the main research focus may
not be exactly on reusability. For example, the automatically
selected algorithms on training instances [10], [11] could be
reused to solve testing instances of certain similar features.
In generation hyperheuristics [60], new heuristics can be
automatically generated by using genetic programming
based on problem state features [61], [62], thus could be
potentially reusable for problems of similar features. Howev-
er, the problem of code bloat may lead to the issues of read-
ability and interpretability [63].
Fundamentals of GCOP: Advanced theoretical investiga-

tions are needed to underpin the fundamentals of the new
GCOP model in operational research.

 ❏ Evaluation of GCOP: In solving GCOP, the objective func-
tion can be extended with multiple objectives including
generality, reusability and computational time. The new per-
formance measure in [59] can be adopted in the objective
function to measure different levels of generality. In GCOP,
instead of designing algorithms using human expertise, as
happens in most of the research, the time is spent on auto-
matically searching for or composing the optimal c) for .p
The trade-off between solving a number of p and the
increased computational time presents another interesting
research issue. The c for each p can be further evaluated in
F to assess its convergence, the number of operations and
number of fitness evaluations used, using different statistical
measures as shown in [64].

 ❏ No Free Lunch Theorem (NFL): Another interesting
research issue is how NFL applies in solving GCOP, that is
to explore the scope of generality for the generated new .c

Recent research has made some progress on the
generality of algorithms. However, reusability
of algorithms remains underexplored.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

22 IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE | MAY 2020

In [65], the conditions under which the NFL applies to
hyperheuristics are discussed. It is concluded that there
may be a free lunch developing general methods for a set
of problems with fitness functions which are not closed
under permutation.

 ❏ Landscape analysis: Interesting features of the GCOP search
space may reveal more findings for automated algorithm
design. A theoretical study on selection constructive
hyperheuristics for COPs [24] revealed that there were
often large plateau and high correlation between local and
global optimal heuristic combinations in the heuristic land-
scapes. In GCOP, each of the generated c leads to a differ-
ent S for .p Solving GCOP is thus equivalent to exploring
multiple S compared to traditional search algorithms
employing manually fixed a for solving .p It is interesting
to investigate the increased exploration ability and effective-
ness of GCOP exploring multiple .c
Extensions of GCOP: GCOP facilitates automated algo-

rithm design, aiming to reduce the development costs and
barriers of expertise required for designing algorithms.
Researchers and practitioners can focus on establishing and
exchanging a better understanding of algorithm developments
to address different .p

 ❏ Extensions of :A Based on more findings in evolutionary
computation, A .1 0 could be extended with more effective
common .a Those a used in the literature (Table III for
VRP and Table V for NRP) represent only a subset of A .1 0
in Table I. The library of general and basic a can be easily
extended with problem-specific Ap and is portable to solve
a wider range of .p Such efforts are highly valuable and
strongly encouraged to promote future advances of auto-
mated algorithm design. Resources will be updated at the
GCOP web site.

 ❏ Other optimization problems: Recent research has devel-
oped effective selection hyperheuristics for continuous opti-
mization problems [66], [67]. The GCOP model can also
be extended to solve other optimization problems in addi-
tion to COPs.

V. Conclusions
This position paper introduces the General Combinatorial
Optimization Problem (GCOP) as a new standard for algo-
rithm design. The objective of GCOP is to optimize the com-
positions of basic algorithmic components, i.e., the decision
variables, to automatically design new algorithms for solving
different optimization problems. A taxonomy of automated
algorithm design, i.e., automated algorithm configuration,
automated algorithm selection and automated algorithm com-
position, has been formally defined. GCOP which standardizes

various search algorithms within one model
underpins the fundamentals of automated
algorithm design.

With the new GCOP model, we define a
set A .1 0 of the mostly used basic elementary
algorithmic components for widely studied

combinatorial optimization problems in the literature. This set
can be extended to include more common components, as
well as user-defined problem-specific components Ap for dif-
ferent optimization problems. With the new standard, we also
demonstrate the application of the GCOP model with A .1 0
and Ap to formally define a large number of selection
hyperheuristics for solving two benchmark combinatorial opti-
mization problems, namely vehicle routing and nurse rostering
problems. This can be seen as the implementation of the
GCOP standard, demonstrating its effectiveness for modeling a
large number of existing algorithms. To our knowledge, this is
the first standard in the literature defining a large number of
search algorithms in one common model.

The established new GCOP opens a new line of interest-
ing research directions in optimization research. Further stud-
ies will investigate theoretical issues including landscape
analysis on the search spaces of GCOP. The objective function
can be extended to measure the generality, reusability and
computational time of the newly generated algorithms. The
new automatically designed algorithms introduced to the lit-
erature brings new knowledge which can be used to design
new effective algorithms, and reused for solving other optimi-
zation problems. In addition to combinatorial optimization
problems, continuous optimization problems and multiobjec-
tive optimization problems could also be addressed with
extended GCOP models.

With the new GCOP standard, this position paper calls for
further investigations on the emerging topic of automated
algorithm design to stimulate more advances in evolutionary
computation and optimization research. We strongly encourage
future research in the research communities to adopt and
extend the GCOP standard. Resources and latest developments
will be continuously updated at the GCOP website.

References
[1] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complex-
ity. Dover, 1982.
[2] J. Beasley, “OR-library: Distributing test problems by electronic mail,” J. Oper. Res.
Soc., vol. 41, no. 11, pp. 1069–1072, Nov. 1990. doi: 10.2307/2582903.
[3] F. Hutter, H. Hoos, and T. Stützle, “Automatic algorithm configuration based on local
search,” in Proc. Nat. Conf. Artificial Intelligence, Vancouver, July 22–26, 2007, pp. 1152–1157.
[4] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: An automatic
algorithm configuration framework,” J. Artificial Intell. Res., vol. 36, pp. 267–306, Oct.
2009. doi: 10.1613/jair.2861.
[5] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and iterated F-race: An
overview,” in Proc. Experimental Methods for the Analysis of Optimization Algorithms, Oct.
2010, pp. 311–336. doi: 10.1007/978-3-642-02538-9_13.
[6] M. López-Ibáñez and T. Stützle, “The automatic design of multi-objective ant colony
optimization algorithms,” IEEE Trans. Evol. Comput., vol. 16, no. 6, pp. 861–875, Feb.
2012. doi: 10.1109/TEVC.2011.2182651.
[7] F. Pagnozzi and T. Stützle, “Automatic design of hybrid stochastic local search algo-
rithms for permutation f lowshop problems,” Eur. J. Oper. Res., vol. 276, pp. 409–421, July
2019. doi: 10.1016/j.ejor.2019.01.018.
[8] T. Adamo, G. Ghiani, A. Grieco, E. Guerriero, and E. Manni, “MIP neighborhood
synthesis through semantic feature extraction and automatic algorithm configuration,”
Comput. Oper. Res., vol. 83, pp. 106–119, July 2017. doi: 10.1016/j.cor.2017.01.021.

To our knowledge, this is the first standard in the
literature defining a large number of search algorithms
in one common model.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

MAY 2020 | IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE 23

[9] M. López-Ibáñez, J. Dubois-Lacoste, L. P. Cáceres, T. Stützle, and M. Birattari, “The
irace package: Iterated racing for automatic algorithm configuration,” Oper. Res. Perspect.,
vol. 3, pp. 43–58, Sept. 2016. doi: 10.1016/j.orp.2016.09.002.
[10] S. Liu, K. Tang, and X. Yao, “Automatic construction of parallel portfolios via ex-
plicit instance grouping,” in Proc. AAAI Conf. Artificial Intelligence, New Orleans, Feb. 2–7,
2018. doi: 10.1609/aaai.v33i01.33011560.
[11] K. Tang, F. Peng, G. Chen, and X. Yao, “Population-based algorithm portfolios with
automated constituent algorithms selection,” Inf. Sci., vol. 279, pp. 94–104, Sept. 2014.
doi: 10.1016/j.ins.2014.03.105.
[12] R. Akay, A. Basturk, A. Kalinli, and X. Yao, “Parallel population-based algorithm
portfolios: An empirical study,” Neurocomputing, vol. 247, pp. 115–125, July 2017. doi:
10.1016/j.neucom.2017.03.061.
[13] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configuring algo-
rithms for portfolio-based selection,” in Proc. AAAI Conf. Artificial Intelligence, Atlanta,
July 11–15, 2010.
[14] L. Bezerra, M. Lòpez-Ibáñez, and T. Stützle, “Automatic design of evolutionary
algorithms for multi-objective combinatorial optimization,” in Proc. Parallel Problem
Solving from Nature, Ljubljana, Sept. 13–17, 2014, pp. 508–517. doi: 10.1007/978-3-319-
10762-2_50.
[15] M. Oltean, “Evolving evolutionary algorithms using linear genetic programming,”
Evol. Comput., vol. 13, no. 3, pp. 387–410, Sept. 2005. doi: 10.1162/1063656054794815.
[16] N. Pillay and R. Qu, Eds., Hyper-heuristics: Theory and Applications. Springer-Verlag, 2019.
[17] E. Burke et al., “Hyper-heuristics: A survey of the state of the art,” J. Oper. Res. Soc.,
vol. 64, pp. 1695–1724, July 2010. doi: 10.1057/jors.2013.71.
[18] E. Burke et al., “The cross-domain heuristic search challenge: An international re-
search competition,” in Proc. Intelligent Conf. Learning and Intelligent Optimization, Rome,
Jan. 17–21, 2011, pp. 631–634. doi: 10.1007/978-3-642-25566-3_49.
[19] N. Pillay and D. Beckedahl, “EvoHyp: A Java toolkit for evolutionary algorithm
hyper-heuristics,” in Proc. IEEE Congr. Evolutionary Computation, San Sebastian, June 5–8,
2017, pp. 2707–2713. doi: 10.1109/CEC.2017.7969636.
[20] G. Kendall et al., “Good laboratory practice for optimization research,” J. Oper. Res.
Soc., vol. 67, no. 4, pp. 676–689, Apr. 2016. doi: 10.1057/jors.2015.77.
[21] J. Swan, J. Woodward, E. Özcan, G. Kendall, and E. Burke, “Searching the hyper-
heuristic design space,” Cogn. Comput., vol. 6, no. 1, pp. 66–73, 2014. doi: 10.1007/s12559-
013-9201-8.
[22] R. Qu and E. Burke, “Hybridisations withing a graph based hyper-heuristic frame-
work for university timetabling problems,” J. Oper. Res. Soc., vol. 60, pp. 1273–1285,
Sept. 2009. doi: 10.1057/jors.2008.102.
[23] G. Ochoa, R. Qu, and E. Burke, “Analyzing the landscape of a graph based hyper-
heuristic for timetabling problems,” in Proc. Genetic and Evolutionary Computation Conf.,
Montreal, July 8–12, 2009, pp. 341–348. doi: 10.1145/1569901.1569949.
[24] R. Qu, N. Pillay, and D. Beckedahl, “A fundamental study on selection constructive
hyper-heuristics,” IEEE Trans. Evol. Comput., to be published.
[25] P. Toth and D. Vigo, “An overview of vehicle routing problems,” in The Vehicle Rout-
ing Problem, 2002, pp. 1–26.
[26] E. Burke, P. D. Causmaecker, G. Berghe, and H. Landeghem, “The state of the art
of nurse rostering,” J. Schedul., vol. 7, no. 6, pp. 441–499, Nov. 2004. doi: 10.1023/B:JO
SH.0000046076.75950.0b.
[27] O. Bräysy and M. Gendreau, “Vehicle routing problem with time windows, part II: Meta-
heuristics,” Transportation Sci., vol. 39, no. 1, pp. 119–139, Feb. 2005. doi: 10.1287/trsc.1030.0057.
[28] M. Gendreau, G. Laporte, and J.-Y. Potvin, “Metaheuristics for the capacitated VRP,”
in The Vehicle Routing Problem (SIAM Monographs Discrete Mathematics and Applications), 2002,
pp. 129–154.
[29] U. Ritzinger, J. Puchinger, and R. Hartl, “A survey on dynamic and stochastic ve-
hicle routing problems,” Int. J. Prod. Res., vol. 54, no. 1, pp. 215–231, Jan. 2016. doi:
10.1080/00207543.2015.1043403.
[30] R. Mole and S. Jameson, “A sequential route-building algorithm employing a gen-
eralised savings criterion,” Oper. Res. Quart., vol. 27, no. 2, pp. 503–511, June 1976. doi:
10.1057/jors.1976.95.
[31] G. Laporte, M. Gendreau, J. Potvin, and F. Semet, “Classical and modern heuristics
for the vehicle routing problem,” Int. Trans. Oper. Res., vol. 7, nos. 4–5, pp. 285–300, Sept.
2000. doi: 10.1111/j.1475-3995.2000.tb00200.x.
[32] P. Garrido and M. Riff, “DVRP: A hard dynamic combinatorial optimisation prob-
lem tackled by an evolutionary hyper-heuristic,” J. Heuristics, vol. 16, no. 6, pp. 795–834,
Dec. 2010. doi: 10.1007/s10732-010-9126-2.
[33] G. Ochoa et al., “HyFlex: A benchmark framework for cross-domain heuristic
search,” in Proc. Evolutionary Computational Combinatorial Optimization, Málaga, Apr. 11–
13, 2012, pp. 136–147. doi: 10.1007/978-3-642-29124-1_12.
[34] J. Kubalik and J. Faigl, “Iterative prototype optimisation with evolved improve-
ment steps,” in Proc. European Conf. Genetic Programming, Budapest, Apr. 10–12, 2006,
p. 154–165. doi: 10.1007/11729976_14.
[35] S. Ropke and D. Pisinger, “An adaptive large neighborhood search heuristic for the
pickup and delivery problem with time windows,” Transp. Sci., vol. 40, no. 4, pp. 455–
472, Nov. 2006. doi: 10.1287/trsc.1050.0135.
[36] D. Pisinger and S. Ropke, “A general heuristic for vehicle routing problems,” Com-
put. Oper. Res., vol. 34, no. 8, pp. 2403–2435, Aug. 2007. doi: 10.1016/j.cor.2005.09.012.
[37] D. Meignan, A. Koukam, and J. Créput, “Coalition-based metaheuristic: A self-
adaptive metaheuristic using reinforcement learning and mimetism,” J. Heuristics, vol. 16,
no. 6, pp. 859–879, Dec. 2010. doi: 10.1007/s10732-009-9121-7.
[38] J. Mlejnek and J. Kubalik, “Evolutionary hyperheuristic for capacitated vehicle rout-
ing problem,” in Proc. Annu. Conf. Genetic and Evolutionary Computation, Amsterdam, July
6–10, 2013, pp. 219–220. doi: 10.1145/2464576.2464684.

[39] S. Asta and E. Özcan, “An apprenticeship learning hyper-heuristic for vehicle routing
in HyFlex,” Dec. 9–12, 2014, pp. 1474–1481. doi: 10.1109/EALS.2014.7009505.
[40] N. Sabar, X. Zhang, and A. Song, “A math-hyper-heuristic approach for large-scale
vehicle routing problems with time windows,” in Proc. IEEE Congr. Evolutionary Computa-
tion, Sendai, May 25–28, 2015. doi: 10.1109/CEC.2015.7256977.
[41] P.-Y. Yin, S.-R. Lyu, and Y.-L. Chuang, “Cooperative coevolutionary approach for
integrated vehicle routing and scheduling using cross-dock buffering,” Eng. Appl. Artif.
Intell., vol. 52, pp. 40–53, June 2016. doi: 10.1016/j.engappai.2016.02.006.
[42] J. Walker, G. Ochoa, M. Gendreau, and E. Burke, “Vehicle routing and adaptive iter-
ated local search within the HyFlex hyper-heuristic framework,” in Proc. Int. Conf. Learning
and Intelligent Optimization, Paris, Jan. 16–20, 2012, pp. 265–276. doi: 10.1007/978-3-642-
34413-8_19.
[43] R. Tyasnurita, E. Özcan, and R. John, “Learning heuristic selection using a time
delay neural network for open vehicle routing,” in Proc. IEEE Congr. Evolutionary Com-
putation, San Sebastian, June 5–8, 2017, pp. 1474–1481. doi: 10.1109/CEC.2017.7969477.
[44] J. Soria-Alcaraz, G. Ochoa, M. Sotelo-Figeroa, and E. Burke, “A methodology for
determining an effective subset of heuristics in selection hyper-heuristics,” Eur. J. Oper.
Res., vol. 260, no. 3, pp. 972–983, Aug. 2017. doi: 10.1016/j.ejor.2017.01.042.
[45] S. Lin, “Computer solutions of the traveling salesman problem,” Bell Labs Tech. J.,
vol. 44, no. 10, pp. 2245–2269, Dec. 1965. doi: 10.1002/j.1538-7305.1965.tb04146.x.
[46] B. Gillett and L. Miller, “A heuristic algorithm for the vehicle dispatch problem,”
Oper. Res., vol. 22, no. 2, pp. 340–349, Apr. 1974. doi: 10.1287/opre.22.2.340.
[47] A. Wren and A. Holliday, “Computer scheduling of vehicles from one or more depots
to a number of delivery points,” J. Oper. Res. Soc., vol. 23, no. 3, pp. 333–344, Sept. 1972.
doi: 10.1057/jors.1972.53.
[48] G. Clarke and J. Wright, “Scheduling of vehicles from a central depot to a number
of delivery points,” Oper. Res., vol. 12, no. 4, pp. 568–581, July–Aug. 1964. doi: 10.1287/
opre.12.4.568.
[49] P. Cowling, G. Kendall, and E. Soubeiga, “Hyper-heuristics: A robust optimization
method applied to nurse scheduling,” in Proc. Parallel Problem Solving from Nature, Granada,
Sept. 7–11, 2002, pp. 851–860. doi: 10.1007/3-540-45712-7_82.
[50] E. Burke, G. Kendall, and E. Soubeiga, “A tabu-search hyperheuristic for time-
tabling and roster ing,” J. Heuristics, vol. 9, no. 6, pp. 451–470, Dec. 2003. doi:
10.1023/B:HEUR.0000012446.94732.b6.
[51] R. Bai, E. Burke, G. Kendall, J. Li, and B. McCollum, “A hybrid evolutionary ap-
proach to the nurse rostering problem,” IEEE Trans. Evol. Comput., vol. 14, no. 4, pp.
580–590, July 2011. doi: 10.1109/TEVC.2009.2033583.
[52] B. Bilgin, P. Demeester, M. Misir, W. Vancroonenburg, and G. Berghe, “One hyper-
heuristic approach to two timetabling problems in health care,” J. Heuristics, vol. 18, no. 3,
pp. 401–434, June 2012. doi: 10.1007/s10732-011-9192-0.
[53] M. Misir, K. Verbeeck, P. D. Causmaecker, and G. Berghe, “An investigation on the
generality level of selection hyper-heuristics under different empirical conditions,” Appl.
Soft Comput., vol. 13, no. 7, pp. 3335–3353, July 2013. doi: 10.1016/j.asoc.2013.02.006.
[54] A. Shahriar, E. Özcan, and T. Curtois, “A tensor based hyper-heuristic for nurse
rostering,” Knowl.-Based Syst., vol. 98, no. 1, pp. 185–199, Apr. 2016. doi: 10.1016/j.
knosys.2016.01.031.
[55] U. Aickelin and J. Li, “An estimation of distribution algorithm for nurse schedul-
ing,” Ann. Oper. Res., vol. 155, pp. 289–309, July 2007. doi: 10.1007/s10479-007-0214-0.
[56] S. Haspeslagh, P. D. Causmaecker, A. Schaerf, and M. Stlevik, “The first interna-
tional nurse rostering competition 2010,” Ann. Oper. Res., vol. 218, no. 1, pp. 221–236,
July 2014. doi: 10.1007/s10479-012-1062-0.
[57] P. Lehre and E. Özcan, “A runtime analysis of simple hyper-heuristics: To mix or
not to mix operators,” in Proc. Workshop on Foundations of Genetic Algorithms, Adelaide, Jan.
16–20, 2013, pp. 97–104. doi: 10.1145/2460239.2460249.
[58] G. K. R. Q. N. R. Sabar and M. Ayob, “A dynamic multiarmed bandit-gene ex-
pression programming hyper-heuristic for combinatorial optimization problems,” IEEE
Trans. Cybern., vol. 45, no. 2, pp. 217–228, Feb. 2015. doi: 10.1109/TCYB.2014.2323936.
[59] N. Pillay and R. Qu, “Assessing hyper-heuristic performance,” European J. Oper.
Res., to be published. doi: 10.1016/j.ejor.2008.07.023.
[60] E. Burke, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and J. Woodward, “A clas-
sif ication of hyper-heuristic approaches,” in Handbook of Metaheuristics, 2010, pp. 449–468.
[61] M. Bader-El-Den, R. Poli, and S. Fatima, “Evolving timetabling heuristics using
a grammar-based genetic programming hyper-heuristic framework,” Memet. Comput.,
vol. 1, pp. 205–219, Nov. 2009. doi: 10.1007/s12293-009-0022-y.
[62] E. Burke, M. Hyde, G. Kendall, and J. Woodward, “A genetic programming hyper-
heuristic approach for evolving two dimensional strip packing heuristics,” IEEE Trans.
Evol. Comput., vol. 14, no. 6, pp. 942–958, June 2010. doi: 10.1109/TEVC.2010.2041061.
[63] W. Banzhaf, P. Nordin, R. Keller, and F. Francone, Genetic Programming: An Introduc-
tion on the Automatic Evolution of Computer Programs and Its Applications. Morgan Kaufmann,
1998.
[64] K. Sörensen, “Metaheuristics: The metaphor exposed,” Int. Trans. Oper. Res., vol. 22,
no. 1, pp. 3–18, Jan. 2015. doi: 10.1111/itor.12001.
[65] R. Poli and M. Graff, “There is a free lunch for hyper-heuristics, genetic program-
ming and computer scientists,” in Proc. European Conf. Genetic Programming, Tubingen,
Apr. 15–17, 2009, pp. 195–207. doi: 10.1007/978-3-642-01181-8_17.
[66] M. Maashi, G. Kendall, and E. Özcan, “Choice function based hyper-heuristics for
multi-objective optimization,” Appl. Soft Comput., vol. 28, pp. 312–326, Mar. 2015. doi:
10.1016/j.asoc.2014.12.012.
[67] D. Walker and E. Keedwell, “Multi-objective optimisation with a sequence-based
selection hyper-heuristic,” in Proc. Conf. Genetic and Evolutionary Computation, Denver,
July 20–24, 2016, pp. 81–82. doi: 10.1145/2908961.2909016.

Authorized licensed use limited to: UNIVERSITY OF NOTTINGHAM. Downloaded on April 19,2020 at 03:07:19 UTC from IEEE Xplore. Restrictions apply.

