Maintaining regularity and generalization in data using the minimum description length principle and genetic algorithm: Case of grammatical inference

Hari Mohan Pandeya, Ankit Chaudharyb, Deepti Mehrotrac, Graham Kendall d

a Department of Computer Science & Engineering, Amity University Uttar Pradesh, Sector 125, Noida, India
b Department of Computer Science, Truman State University, USA
c Amity School of Engineering & Technology, Amity University, Sector 125, Noida, India
d The University of Nottingham Malaysia Campus Jalan Borga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia

Abstract

In this paper, a genetic algorithm with minimum description length (GAWMDL) is proposed for grammatical inference. The primary challenge of identifying a language of infinite cardinality from a finite set of examples should know when to generalize and specialize the training data. The minimum description length principle that has been incorporated addresses this issue is discussed in this paper. Previously, the e-GRIDS learning model was proposed, which enjoyed the merits of the minimum description length principle, but it is limited to positive examples only. The proposed GAWMDL, which incorporates a traditional genetic algorithm and has a powerful global exploration capability that can exploit an optimum offspring. This is an effective approach to handle a problem which has a large search space such the grammatical inference problem. The computational capability, the genetic algorithm poses is not questionable, but it still suffers from premature convergence mainly arising due to lack of population diversity. The proposed GAWMDL incorporates a bit mask oriented data structure that performs the reproduction operations, creating the mask, then Boolean based procedure is applied to create an offspring in a generative manner. The Boolean based procedure is capable of introducing diversity into the population, hence alleviating premature convergence. The proposed GAWMDL is applied in the context free as well as regular languages of varying complexities. The computational experiments show that the GAWMDL finds an optimal or close-to-optimal grammar. Two fold performance analysis have been performed. First, the GAWMDL has been evaluated against the elite mating pool genetic algorithm which was proposed to introduce diversity and to address premature convergence. GAWMDL is also tested against the improved tabular representation algorithm. In addition, the authors evaluate the performance of the GAWMDL against a genetic algorithm not using the minimum description length principle. Statistical tests demonstrate the superiority of the proposed algorithm. Overall, the proposed GAWMDL algorithm greatly improves the performance in three main aspects: maintains regularity of the data, alleviates premature convergence and is capable in grammatical inference from both positive and negative corpora.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The problem with inductive and statistical inference systems is to maintain regularity in the data. In other words “How to take decisions for selecting an appropriate model that should present the competing explanation of the data using limited observations?” Fig. 1 shows a scenario where a sender who want to transmit some data to the receiver and, is interested in selecting the best model which can maximally compress the observed data and deliver it to the receiver using as few bits as possible.

Formally, the selection of the best model is the process of deciding among the model classes based on the data. The Principle of Parsimony (Occam’s razor) is the soul of the model selection, states that “given a choice of theories, the simplest is preferable” [4,5]. The purpose of implementing the Parsimony Principle is to find a model, which can best fit the data. Rissanen extracted the essence of the Occam’s theory and presented the Principle of Minimum Description Length states that “choose the model that gives the shortest description of data” [4,12].

The domain of inquiry in this paper is the GI problem. A grammar can be constructed without using the MDL principle, but does not reflect any regularity in the data (Fig. 2(a)). In addition, it is difficult to know when to generalize and specialize the training data. In such situations, the constructed grammar is considered as a very simple grammar, because it simply provides the validity of any combination of words. Therefore the grammar does not show any regularity, hence a high amount of information is needed to specify them. In contrast, one can construct grammars that can list all possible sentences/corpus, but is not suitable for all sentences (Fig. 2(a)). Although, this type of grammar shows some sort of regularity, it fails to present any generalization, since it contains the information about each observed corpus, therefore it always exhibits poor performance and is assumed to be very complex.

The construction of a grammar using the MDL principle shows regularities in the data and also makes generalizations beyond the observed corpus (Fig. 2(b)). Therefore, the MDL principle behaves as a middle level and fills the gaps presented in Fig. 2(a). Bayes theorem can be used to derive the MDL principle, but the working of the MDL principle is not similar to the Bayes theorem since the MDL principle uses code length rather probabilities [4,12,54]. The MDL principle was used widely in the GI problem [5,13–17,55].

Several approaches have been attempted for the GI (see Section 2). This paper presents a modified GA based approach that utilizes the MDL principle for generating an appropriate number of corpus (positive and negative) to present the language feature. A GA is a search and optimization algorithm based on natural selection and genetics. The GA is one of the most popular algorithms from the class of EAs. The basic principles of the GA's were initially developed by Holland [11] and further carried by De Jong [17] and Goldberg [2]. Goldberg and Michalewicz have presented a detailed overview of the GA in various fields [2,11]. A GA works with a population of solutions represented by some encoding mechanism. During the implementation of a GA every solution or individual is assigned a fitness value, which is the measure of the quality of the solution. The fitness of an individual is directly related to an objective function of the optimization problem. Then, using the reproduction (crossover and mutation) operators an individual population can be modified to a new one. In GAs, the search for an optimum is iteratively guided by the fitness of the current generation. Whenever, a researcher applies a GA for an optimization problem, it generates thousands of individuals, each representing a solution. The obtained solutions are evaluated and recombined to get an offspring. It has been shown in [1,2,11,55,56] that the previous generations details are only implicitly and partially preserved in the current generation. Hence, the regeneration is hard to manage [30,73]. GAs have gained popularity due to the applicability to a wide range of problems, including multimodal function optimization, machine learning, pattern recognition, image processing, natural language processing and grammar induction [8,23].

The domain of inquiry in this paper is the GI problem. Grammar induction poses many theoretical problems, as “learning of CFGs is much harder than learning DFA” [57]. As an implication of the work presented in [19], learning algorithms have been developed that exploit knowledge of negative samples, structural information, or restrict grammars to some subclasses such as linear grammars, K-bounded grammars, structurally reversible languages and terminal distinguishable CFLs [57]. Previous research [58–60] shows that few classes of CFLs are polynomial time identifiable in the limit from the positive samples only. Another issue in GI is the immense search space, where an exhaustive approach is not feasible [61].

Therefore, a different and more efficient approach to explore the search space is needed, which identifies the regularity in the data and simplifies the representation (handles the huge number of grammar rules). The GI approach implemented in this paper applies a modified GA with the MDL (GAWMDL) principle that combines with BMODS to apply reproduction operators. It utilizes BBP for breeding in the next generation. The key benefit of implementing BBP is that it introduces diversity into the population, which helps to alleviate premature convergence (a situation when the diversity of the population decreases, leading to an unwanted convergence and produces a solution which is far from the best solution). The MDL principle that is incorporated supports two different operations, namely merge and constructs. These two operations, reduce the burden of handling a large number of grammar rules. In addition, the MDL principle allows the system not to overestimate and it generates samples that are sufficient to acquire the basic properties of the language. These features help the proposed GA to converge. The computational experiments have been conducted on a set of corpus (positive and negative) of RLs and CFLs. The robust experimental environment is developed to perform the experiments. The results have been collected and tested against three algorithms are: GAWMDL, EMPGA [18] and ITBL [51–53]. The primary objective of comparing the proposed GA with EMPGA and ITBL is both of these algorithms were proposed for the CFG induction using the GA. Evidence is available proving that the EMPGA handles the situation of the premature convergence successfully [18]. The computational results demonstrate

Fig. 1. A scenario showing the rationale of using the MDL principle. The sender wants to transmit some data to the receiver.

Fig. 2. The MDL principle as a middle level for the grammatical construction.
that the proposed GA outperforms the other algorithms (GA-WOMDL, EMPGA and ITBL). Statistical tests are used to determine the significance of the proposed GA/WMDL. The paired t-test has been conducted creating three pairs: GA/WOMDL-GAWMDL, EMPGA-GAWMDL and ITBL-GAWMDL. The results of the paired t-test concludes that the proposed GA/WMDL is statistically significant when compared to two algorithms.

The rest of the paper is organized as follows: Section 2 presents the background and related work in the GI with pros and cons of existing approaches. The authors discuss the role of the MDL principle and its connection with the statistical modeling in Section 3. The proposed GA/WMDL for the GI is discussed in Section 4. A flow chart of the proposed GA/WMDL is presented to demonstrate the overall procedure of the GI and the use of the MDL (role of merging and construct) principle. An example is presented representing the suitability of the MDL principle in the GI and how the GA helps in optimizing the solution. The experimental details, parameters tuning, observations, results, discussion and statistical tests are given in Section 5 followed by the concluding remarks for the paper in Section 6.

2. Background and related work in grammar induction

The GI or grammar learning deals with idealized learning procedures for acquiring grammars on the basis of the evidence about the languages [31,48,49]. It was extensively studied [6,32–37,49] due to its wide fields of application to solve practical problems in a variety of fields, including compilation and translation, human machine interaction, graphic languages, design of programming language, data mining, computational biology, natural language processing, software engineering and machine learning etc.

The first learning model was proposed by Gold [19]. Gold addressed the question “Is the information sufficient to determine which of the possible languages is the unknown language?” [19]. It was shown that an inference algorithm can identify an unknown language in the limit from the complete information in a finite number of steps. The key issue with the Gold’s approach is that there is not sufficient information present within the inference algorithm to identify the correct grammar because it is always possible that the next sample may invalidate the previous hypothesis. Angluin [44] has proposed “tell tales” (a unique string highlighting the differences between languages) to avoid the drawback of the Gold’s model. Although, Gold [19] laid the foundation of the GI, Bunke and Sanfelice [27] have presented the first usable GI algorithm in the syntactic pattern recognition community with the aim of classify and analyzing the patterns, classifying the biological sequence, and for character recognition, etc. The main drawback of this algorithm is that it only deals with positive data, and is not to deal with noisy data, does not fit exactly into a finite state machine and therefore good formal language theories were lost.

Stevenson and Cordy [28,29] explains theorists and empiricists are the two main groups contributing in the field of GI. Language classes and learning models were considered by the theorists group to set up the boundaries of what is learnable and how efficiently it can be learned. On the other hand, the empiricists group dealt with a practical problem by solving it; finally they have made significant contributions in the GI.

The teacher and query is another learning model, where a teacher, also referred as an oracle knows the target languages and is capable of answering the particular type of questions/queries from the inference algorithm. Six types of queries were described by Angluin [45], two of which are membership and equivalence queries, and having a significant impact on learning. In case of membership queries, the inference algorithm presents either “yes” or “no” as an answer to the oracle, whereas an oracle receives “yes” if the hypothesis is true and “no” otherwise by the inference algorithm. Valiant [46] has presented the PAC learning model, which takes the advantages of both the identification of the limit and the teachers and queries learning models. The PAC learning model is different from the other two learning models for two reasons: first, it does not guarantee exact identification with certainty; second, compromise between accuracy and certainty. The problem with the PAC model is that the inference algorithm must learn in polynomial time under all distributions, but it is believed to be too strict in reality. These problems occur because many apparently simple classes are either known to be NP-hard or at least not known to be polynomial learnable for all the distributions [29]. To mitigate this issue, Li et al. [47] has proposed an inference algorithm that considers the simple distribution only.

Apart from the above popular learning models, many researchers have explained the suitability of the NN for the GI. The NN has shown the ability to maintain a temporal internal state like a short term memory [29]. In case of the NN, a set of inputs and their corresponding outputs (Yes: string is in the target language, No: otherwise) and a defined function needs to learn, which describes those input-output pairs [20]. Alex et al. [40] has conducted experiments for the handwriting recognition using a NN and the NN has the ability to predict subsequent elements from an input sequence of elements. Cleeremans et al. [39] has implemented a special case of a recurrent network presented by Elman [41], known as a simple RNN, to approximate a DFA. Delgado and Pégalaar [42] have presented a multi-objective GA to analyze the optimal size of a RNN to learn from the positive and negative examples. The merits of the SOM have been used to determine the automation, after the completion of the training process. Although, the NN has been widely used for the GI, as it was found good at simulating an unknown function, but it was found less effective because there is no way to reconstruct the function from the connections in a trained network [29].

A detailed survey of various GI algorithms is presented in [6,29,30,38,39,43,44]. The inductive inference is the process of making a generalization from the input (string). Wyard [3] has presented the impact of the different grammatical representation and the experimental result shows that the EA uses standard CFG in BNF has outperformed the others. Thanaruk and Okumura [20] have classified the grammar induction methods into three major categories, namely; supervised, semi-supervised and unsupervised on the basis of the type of required data. Javed et al. [21] presented a GP based approach to learning the CFG. The work presented in [2] was an extension of the work conducted in [3] applying the grammar specific heuristic operator. In addition, a better construction of the initial population was suggested. Choube and Kharat [22] have presented a sequential structuring approach that performs coding and decoding of the binary coded chromosomes into terminal and non-terminals and vice-versa. A CFG induction library was presented using the GA, which contains various Java classes to perform the GI [8,23]. Hrn nic and Marjan [61,62] have implemented a MA for the GI that assists the domain experts and software language engineers to develop the DSLs by automatically producing a grammar. Hrn nic et al. [63] has proposed an unsupervised incremental learning algorithm using a MA for the DSLs. The authors [74] have proposed a GI approach known as MAGIc (based on the MA), to extract grammars from DSL examples.

Sakakibara and Kondo [51] have proposed a GA for learning the CFG from a finite sample of positive and negative examples. The authors [51] have used a table similar to the parse table that reduces the partitioning problem of non-terminal and then the GA has been applied to solve the partitioning problem. Jaworski and Unold [52] have brought some improvement, which involve:
initial population block size manipulation, block deletes special-
ized operator and modified fitness function and experimentally proved that the TBLA is not vulnerable to block size and popula-
tion size, and the ITBL is capable of finding the solutions faster. Bhalse and Gupta [53] have applied the ITBL for the GI.

3. Minimum description length principle

The theory of induction [64,65] says that under the right cir-
cumstances learning is "finding a shorter description of the observed data". The MDL principle suggests choosing the model, which provides the shortest description of data [4], it works on coding rather on probability. hence, the focus is about casting a statistical model as a means of generating code, and resulting code lengths. The MDL principle has connections with more traditional frame-
works given for the statistical estimation, in classical terms, we intend to estimate the parameter θ of a given model.

\[M = \{ f(x^n|\theta); \theta \in \Theta \subseteq \mathbb{R}^k \} \] (1)

Eq. (1) is based on observations \(x^n = (x_0, \ldots, x_n) \). The aim is to choose \(\hat{\theta} \) to maximize \(f_\theta(x^n) \) over \(\theta \in \Theta \). According to the maximum likelihood principle \(\hat{\theta} \)'s asymptotic efficiency in the form of repeated sampling under some regularity and handled by Cramer–Rao information lower bound theory in the finite sample case. From a coding point of view, both sender and receiver know which member \(f_\theta \) of the parametric family \(M \) generated a data string \(x^n \) is simply \(-\log f_\theta(x^n)\), since on average code based on \(f_\theta \), achieve entropy lower bound. The noticeable thing is minimizing \(-\log f_\theta(x^n)\) is the same as maximizing; therefore the MDL principle coincides with the maximum likelihood principle in parametric estimation problems. The MDL principle enjoys all the desirable features of the maximum likelihood principle. In case of modeling, one has to transmit \(\theta \), as receiver did not know its value in advance. Adding in this case, we get a code length of the data string \(x^n \) using Eq. (2).

\[MDL = -\log f_\theta(x^n) + I(\theta) \] (2)

Now, if the term \(I(\theta) \) is constant, then the MDL principle needs a model, which minimizes \(-\log f_\theta(x^n)\) among all the densities in the family. The maximum likelihood principle breaks down when one is forced to choose among nested classes of parametric models. This occurs most noticeably in variable selection for the linear regression.

4. Grammatical inference using GA and the MDL principle

The input for the algorithm is a set of corpus \(C^n = (c_0, c_1, \ldots, c_n) \). \(L \) is the total length of the corpus, \(c_i \) indicates the ith string of the corpus set, for each \(i, 1 \leq i \leq L \). The proposed GA tries to infer a grammar rule. A partial grammar \(G \) is defined that contains a set of CFG rules for the training data. \(G \) can be described in a somewhat nonstandard way as a set of classes. For every class \(g \), exactly one corresponding non-terminal \(g' \) is present, which is the set of grammar rules with this non-terminal on the left hand side of the production rules. Two basic operations have been performed. First, merge or merge for shorting the production rules. Second, the construction operation, which construct for shorting the production rules. If two production rules are merged, then they have been removed from the G and replaced by a new production rule. The new production rule would be obtained by taking the union of the ex-
isting grammar rules. For example, suppose \(g'_1 = \{ g'_1 \rightarrow g'_2g'_1/g'_1 \} \) and \(g'_2 = \{ g'_2 \rightarrow g'_3 \} \) are two production rules belongs to G. If we remove \(g'_1 \) and \(g'_3 \) are merged, it produces a new production rule \(g'_3 = \{ g'_1 \rightarrow g'_2 \} \) and we would remove \(g'_1 \) from G. Re-indexing is done at this stage to incorporate \(g'_n \).

Merging of production rules is found effective and yields better result by decreasing the number of classes. On the other hand, if \(g_L \) and \(g_R \) are two classes, then a new class \(g_{new} \) is created, which contains just one production rule \(g_{new} = \{ g_{new} \rightarrow g_L \} \). The working of MDL principle is used for the GI shows these two operations are represented in a separate block in Fig. 3.

In order to define a DL for each \(C_i \), a system generated code is employed, which uses a unique representation for each training data. Dense code is set, i.e., a sequence of code words which de-
finest a training data [65]. The reason of doing this is that we are interested in representing G in the form of code, but the information theory explains that to arrive at an ideal code (shortest description of training data), one need to keep track of the frequencies of occurrence of the training data in classes belongs in G. The two operations (merge and construct) are useful reduces the DL.

4.1. Genetic algorithm adapted

Pandey et al. [8] has presented a GA for CFG induction uses the simple 1-point and 2-point crossover and a bit inversion mutation operator to introduce diversity during the execution of the GA. The authors [7,23] proposed a Java based library for the GI that utilizes the GA. The algorithm implemented in [7,8,23] works successfully for the relatively simple and deterministic CFG induction, but has been found not to work for the complex corpus. In addition, these approaches were not focused towards handling premature con-
vergence in the GA.

In this paper, we have implemented an algorithm, GAWMDL, for the CFG induction. The proposed GAWMDL is different from the other approaches as it uses BMODS to perform the reproduc-
tion operations [10]. The breeding process is also different from the previous approaches as the proposed GAWMDL incorporates BBP which uses Boolean based operators (substep-3 in Fig. 3), which not only generates the new offspring, but also alleviates the risk of premature convergence [30] by introducing diversity into the population. The proposed GAWMDL algorithm uses the merit of the MDL principle ad maintains the regularity and general-
ization in the training data according the DL (Fig. 3).

The e-GRIDS learning model also uses the MDL principle for the generalization and specialization of the training data [50]. The e-GRIDS model is based on a beam search, which starts construct-
ing the initial grammar for each input sentence and then applies the e-GRIDS learning operators, which include MergeNT, CreateNT and Create OptionalNT. The workings of these operators are discussed in [50]. The key drawback of the e-GRIDS learning model are: it is not fit for the negative examples, the beam search has been used in the learning process uses three operators as discussed above, but implementing these operators and collecting the temporary results makes it ineffective.

The proposed GAWMDL algorithm is more powerful as it is able to deal with both positive and negative training data. The MDL principle increases the effectiveness of the proposed algorithm as it supports generalization and specialization of the training data. The training set and test set are required for the learning has been generated by the length \(L \) (or DL) \((L=0, 1, 2, \ldots) \) such that it covers all the possible valid strings of length \(L \) until a sufficient number of the valid strings of corpus have been generated. The invalid strings generated during this process are considered as negative strings.

The flow chart of the proposed GAWMDL have BMODS and MDL principle for the CFG induction is presented in Fig. 3. Step 2 demonstrates the process of GI and verification of production rules. The process of the GI begins applying the mapping of the
We have used 3-bit/4-bit representation of the mapping. This being decided based on the number of symbols present in the input language (3-bit representation has been used in Fig. 4, since two symbols (0 and 1) are used).

During the mapping process, if the string “010” or “110” is encountered, set null (ε). After the completion of the mapping process, the process of the construction of the CFG starts with the start symbol 'S' mapped at '000'. The symbolic representation contains the block size of five equal to the PRL (PRL = 5).

The symbolic grammar is traced from 'S' to terminal to remove useless productions and the remaining production rules are tested for the removal of left recursion, unit production, ambiguity and left factor. During the grammar rule generation, the MDL principle is used in generating the code for the grammar and to perform operations: merging and construct to reduce the complexity (see Section 4).

The string to be tested from the selected sample set is taken as an input with the CFG rules are passed to the finite state controller that verifies the acceptability through proliferation on the PDA. In the EA, an individual chromosome survives based on its fitness.
value [2,9,70,71,72]. In case of the GI problem, the fitness value of an individual chromosome largely depends on the acceptance or rejection of positive and negative sample respectively. A total of four cases are possible that affect the fitness value: an increase in fitness value for APS and RNS and a decrease for ANS and RPS. The NPRs have also shown a considerable impact on the fitness value, hence is considered to determine the fitness value. Eq. (3) has been used to evaluate the fitness of each population.

\[
\text{Fitness} = \sum K^* (\text{APS} + \text{RNS}) - (\text{ANS} + \text{RPS}) + (2*K - \text{NPR})
\]

Eq. (3)

Computing Fitness: suppose the CS = 120, which derives a maximum 8 grammar rules (Fig. 4). In the present scenario, 25 positive and 25 negative sample strings are found sufficient to generate the best possible production rules. In an ideal situation, we have assumed that the system is not rejecting any positive strings and not accepting any negative sample strings, then the value of ANS = RPS = 0. In the example that presented in Fig. 4, the value of NPR = 4 is considered. \(K = 10\) is a constant, taken so that the grammar has less production rules with high fitness value can be created.

Putting these values into Eq. (3), we get 516 (\((10^* (25 + 25) - (0 + 0)) + (2^*10 - 4)\)), which is the fitness value in the first generation. At this stage, evolutionary operators (crossover, mutation and selection) are executed. The important thing to note here is, \(K = 10\) is considered to conduct the experiment and any increase in \(K\) would lead to high value of fitness by that factor. But with CS = 120, only 8 grammar rules can be extracted. Further, substitution/break for the removal of left recursion and other preprocessing leads to at most an additional 4–5 rules. Therefore, \(K = 10\) (i.e. \(2^{*10} = 20\)) (from Eq. (3)) is considered that differentiate between various grammar based on the number of rules. As discussed, an increase in \(K\) will produce high fitness values, but it will be just for the sake of increasing the fitness value and not for representing the difference between various grammars. Hence, \(K = 10\) is sufficient in this process to determine the optimum production rules. If the CS is increased to produce more grammar rule, a higher value of \(K\) might be needed.

Step-3 shows the main functions of the proposed GAWMDL. It utilizes BMODS [10] to improve the capability of the crossover and mutation operations, replaces various algorithms and codifies specialized rules of mating, supports a formal separation between searching for a proper bit composition and an effective achievement (using the mask for crossover and mutation) of the offspring. Previous research signifies that a binary code based GA can be grouped into an explicit and implicit binary formulation [11]. On the other hand, in a bit masking scheme, there is no need to use an explicit data structure, since only high level operations, working on integer values are mapped into a discrete representation domain are executed. Iuspa [10] has presented a detailed description about the construction of BMODS. Two integer arrays known as CM and MM are used to perform crossover and mutation.

For the creation of BMODS an integer genome array has been formed, where a set of integer values are linked with the design variables. The binary image has been used to represent the masks and is used to generate the CM and MM. The following convention has been used to represent a binary image for the CM: high value, i.e. one or true for the current image bit is a pointer to the first parent while low value i.e. zero or false is a pointer to the second parent. Similarly, for the MM an integer sequence has been used that indicates its binary image using the following convention: “if the pointed bit of the target string has to be inverted (i.e. high value) or not (i.e. low value)”. In order to create a generic child individual a vector function \(f(P_1, P_2, CM, MM)\) has been used takes four arguments: \(P_1, P_2, CM\) and MM.

The implementation of BMODS for any real life problem is a two-step process: first apply crossover and mutation mask-fill operation and then apply mask application on the selected parent strings. Three crossovers (cut crossover, bit-by-bit and local cut) and a mutation (mutation mask-fill: similar to an inverted mutation has been applied based on a specific mutation rate) operations are applied as suggested in [10].

At sub-step-2 and 3, mask-fill reproduction operators are applied and then BBP. The key challenge in applying a GA is how to handle premature convergence. BBP is able to introduce diversity in the population in a generative manner that helps to avoid premature convergence.

The process of generating a new offspring takes place at sub-step-3. Two parent strings have been selected using roulette wheel selection technique for the GAWMDL. Two complementary child vectors are generated applying Eq. (4).

\[
\begin{align*}
\text{OS}_1 &= f_1(P_1, P_2, CM, MM) \\
\text{OS}_2 &= f_2(P_1, P_2, CM, MM)
\end{align*}
\]

(4)

where \(f_1\) and \(f_2\) are respectively the offspring, parent vectors and a Boolean function that has been used to determine the assembly style of a new chromosome.

The arguments CM and MM are used to determine a suitable crossover operator (cut crossover, bit-by-bit and local cut) and mutation rule (mutation mask-fill). For the sake of simplicity Eq. (4) can be converted into a new form to show both crossover and mutation operations separately. Eq. (5) represents the crossover vector and a binary image that allows \(P_1\) or \(P_2\) to a child bit transfer
According to the correlated CM value.

$$O_{S1} = \overline{(P_1 \text{ AND CM}) \lor (P_2 \text{ AND } \overline{\text{NOT CM}})}$$

$$O_{S2} = (P_2 \text{ AND CM}) \lor (P_1 \text{ AND } \overline{\text{NOT CM}})$$ \hspace{1cm} (5)

Table 1

<table>
<thead>
<tr>
<th>L-id</th>
<th>Language description</th>
<th>Standard sets</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>All strings not containing '000' over (01)*</td>
<td>Tomita [25]/Dupont set [26]</td>
</tr>
<tr>
<td>L2</td>
<td>0^n1 over (0+1)*</td>
<td>Dupont set [26]</td>
</tr>
<tr>
<td>L3</td>
<td>(00)'(11) over (0+1)*</td>
<td>–</td>
</tr>
<tr>
<td>L4</td>
<td>Any string with even 0 and odd 1 over (0+1)*</td>
<td>–</td>
</tr>
<tr>
<td>L5</td>
<td>000^n1 over (0+1)*</td>
<td>–</td>
</tr>
<tr>
<td>L6</td>
<td>All strings with even number of 0 over (0+1)*</td>
<td>–</td>
</tr>
<tr>
<td>L7</td>
<td>(00)'(10) over (01)*</td>
<td>–</td>
</tr>
<tr>
<td>L9</td>
<td>0^01^n, n ≥ 0 over (0+1)*</td>
<td>Keller and Lutz set [5]</td>
</tr>
<tr>
<td>L10</td>
<td>$(01)^2^n$, n ≥ 0 over (0+1)*</td>
<td>Dupont set [26]</td>
</tr>
<tr>
<td>L11</td>
<td>Even Length Palindrome over (a, b)*</td>
<td>Huijsen [24]/Keller and Lutz set [5]</td>
</tr>
<tr>
<td>L12</td>
<td>$(10)^n$ over $(0+1)^*$</td>
<td>Tomita [25]/Dupont set [26]</td>
</tr>
<tr>
<td>L13</td>
<td>Odd binary number ending with 1</td>
<td>Dupont set [26]</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>L-id</th>
<th>Fitness</th>
<th>Grammar $<V, \Sigma, P, S>$</th>
<th>NPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>1011</td>
<td>$<{S, CM}, {0, 1}, {S \rightarrow CM, M \rightarrow 7, M \rightarrow 15M, C \rightarrow 7, C \rightarrow 0}$, S></td>
<td>5</td>
</tr>
<tr>
<td>L2</td>
<td>1014</td>
<td>$<{S}, {0, 1}, {S \rightarrow 1, S \rightarrow 0S}$, S></td>
<td>2</td>
</tr>
<tr>
<td>L3</td>
<td>1013</td>
<td>$<{S}, {0, 1}, {S \rightarrow 7, S \rightarrow 11S, S \rightarrow 0S}$, S></td>
<td>3</td>
</tr>
<tr>
<td>L4</td>
<td>1011</td>
<td>$<{S, M}, {0, 1}, {S \rightarrow 1M, S \rightarrow 0SM, M \rightarrow 0SM, M \rightarrow 7, M \rightarrow 0M}$, S></td>
<td>5</td>
</tr>
<tr>
<td>L5</td>
<td>1013</td>
<td>$<{S, C}, {0, 1}, {S \rightarrow C, S \rightarrow 00S}$, S></td>
<td>3</td>
</tr>
<tr>
<td>L6</td>
<td>1012</td>
<td>$<{S, C}, {0, 1}, {S \rightarrow C, S \rightarrow 1S, S \rightarrow 0S}$, S></td>
<td>4</td>
</tr>
<tr>
<td>L7</td>
<td>1012</td>
<td>$<{S, M}, {0, 1}, {S \rightarrow 1M, S \rightarrow 00SM, M \rightarrow 7, M \rightarrow 0M}$, S></td>
<td>4</td>
</tr>
<tr>
<td>L8</td>
<td>1014</td>
<td>$<{S}, {S}, {S \rightarrow 5, S \rightarrow 5}$, S></td>
<td>2</td>
</tr>
<tr>
<td>L9</td>
<td>1014</td>
<td>$<{S, M}, {0, 1}, {S \rightarrow 7, S \rightarrow 001}$, S></td>
<td>2</td>
</tr>
<tr>
<td>L10</td>
<td>1012</td>
<td>$<{S, A}, {0, 1}, {S \rightarrow A11, S \rightarrow 11, S \rightarrow 011, A \rightarrow 0S}$, S></td>
<td>4</td>
</tr>
<tr>
<td>L11</td>
<td>1012</td>
<td>$<{S}, {a, b}, {S \rightarrow bSb, S \rightarrow aSa, S \rightarrow 7}$, S></td>
<td>3</td>
</tr>
<tr>
<td>L12</td>
<td>1012</td>
<td>$<{S, A}, {0, 1}, {S \rightarrow 7, S \rightarrow 10S}$, S></td>
<td>2</td>
</tr>
<tr>
<td>L13</td>
<td>1012</td>
<td>$<{S, M}, {0, 1}, {S \rightarrow 1M, S \rightarrow 0SM, M \rightarrow 0SM, M \rightarrow 7, M \rightarrow 0M}$, S></td>
<td>4</td>
</tr>
</tbody>
</table>

NPR: number of production rules.

Eq. (6) expresses the mutation operation and has been derived from the Eq. (4), under the situation that a single MM vector of both child strings is set.

$$O_{S} = O_{S1} \lor \overline{\text{XOR MM}}$$ \hspace{1cm} (6)

The step-by-step mechanism of generating a new offspring is...
depicted at Substep-3 (Fig. 3), whilst Fig. 5 demonstrates the process of offspring creation using an example.

The interesting thing to note at this stage is as the CM and MM vectors have been considered as an argument to the function (f1 and f2), a new individual has no strict correlation with the specified type of generation range or threshold (threshold indicates the highest rank of generations or threshold (threshold indicates the highest rank value)) is reached. This stopping criterion is common for each language input. Finally, we display the best production solution’s fitness value. Such grammars are assumed as a good representation of the language features. Here, a corpus of 25 positive and 25 negative strings are found to be sufficient to represent the selected languages L1–L13 for the CFG induction.

5. Simulation model

The computational experiments have been conducted on a set of RLs and CFLs using L1 through L13 as listed in Table 1. The Java programming Net Beans IDE 7.0.1, Intel Core™ 2 processor (2.8 GHz) with 2 GB RAM have been used.

5.1. Parameter tuning

An extensive control parameter tuning is performed. The orthogonal array with Taguchi SNR [66–69] is utilized for the tuning process. The Taguchi SNR is a log function of the desired output handling the premature convergence (as the mask-pressing the data more in the case of sixth CFG rules with a maximum fitness value and therefore the system has learned more.)

In the present scenario, for selecting the corpus, strings of terminals are generated for the length L for the given language. Initially, L=0 is chosen, which gradually increases up to the required length to represent the language features. Here, a corpus of 25 positive and 25 negative strings are found to be sufficient to represent the selected languages L1–L13 for the CFG induction.

5.2. Performance comparison

The authors have compared the performance of the proposed GAWMDL with the GAWOMDL, ITBL and EMPGA. The ITBL and EMPGA have been considered for the comparison purpose as both algorithms were applied to the CFG induction. The EMPGA was proposed to alleviate premature convergence [18]. As the authors have made the claim that the proposed GAWMDL is capable of handling the premature convergence (as the mask-fill reproduction operators and the BBP introduces diversity in the offspring’s)
Fig. 7. Fitness vs. generation charts w.r.t. proposed approaches for each algorithm implemented.
leads to compare the performance of the proposed GAWMDL against an algorithm (in our case EMPGA) that introduces diversity in the offspring. The same computational environment has been set up for each algorithm.

5.3. Results and discussion

The experimental results show that the GAWMDL is effective in CFG induction. The MDL principle is able to identify the correct sample string from the corpus with a minimum DL (Fig. 6). The GA is a stochastic search technique; therefore results are collected at an average of ten runs. The resultant grammar rule is validated against the best known available grammar rules are represented via the standard representation $<V, \sum, P, S>$. Table 2 represents the grammar rules generated, fitness value and NPRs.

In order to evaluate the performance of the proposed GAWMDL, a comparative analysis has been conducted as depicted in Table 3. The show that the performance has vastly improved in the case of the GAWMDL. Table 3 shows generation range, threshold value, mean and standard deviation for each language L1–L13. As discussed, the results are collected at an average of the first successful ten runs. The number of generations over ten runs varies, therefore generation range is given. The phenomenon involved with generation range can be understood with the help of an example: the generation range for L1 in case of “GAWO MDL” is 21 ± 10 indicates that generations taken over ten runs varies between 11 ($21 - 10$) and 31 ($21 + 10$), similarly for others. The mean and standard deviation for the GAWMDL concludes that the convergence rate is faster than other algorithms.

Also, the convergence rate of the ITBL and EMPGA is considerably good, whilst the convergence rate of the GAWOMDL is worst.

The comparison chart for the best average fitness value with respect to the generations are shown in Fig. 7 for the first ten iterations for each algorithm. We conclude that the proposed GAWMDL has outperformed the other approaches. The performance of the EMPGA is almost identical to the GAWMDL, whereas the performance of the GAWOMDL is worst.

5.4. Statistical tests

A statistical test has been conducted to evaluate the significance of the proposed GAWMDL with the GAWOMDL, ITBL and EMPGA. The paired t-test is conducted on the collected sample considering the hypothesis: “there is no significant difference in the mean of samples at the 5% level of confidence” i.e.
Three pairs: pair-1 (GAWOMDL-GAWMDL), pair-2 (EMPGA-GAWMDL) and pair-3 (ITBL-GAWMDL) have been formed to conduct the tests. Table 4 represents the paired sample statistics for Pair-1, 2 and 3 respectively. Total 15 (N=15) samples have been drawn from each algorithm. The average fitness value for the proposed GAWMDL is 926.2800 higher than the others 825.4000, 860.1867 and 866.6200 have been received respectively for the proposed GAWMDL is statistically significant different than the other algorithms (GAWOMDL, EMPGA and ITBL). The statistical test (paired t-test) has been conducted. The pairs (Pair-1, 2, and 3) have been formed to conduct the tests conclude that the proposed GAWMDL is statistically significantly different than the other methods. One thing more to note at this stage is: the performance of the EMPGA and ITBL is almost similar, whilst the GAWOMDL has shown the worst performance. Overall, a GA based GI system has been proposed using the MDL principles for the generalization and specialization of the training data.

6. Conclusions

In this paper, we have developed a GAWMDL for the CFG induction using BMODS to perform the crossover and mutation operations creating CM and MM. BBP has been used to create an offspring in the next generation. The proposed GA uses the MDL principle to generate a corpus of positive and negative strings up to an appropriate length. A more robust experimental environment has been designed using an orthogonal array and the Taguchi SNR method.

The authors have used 3-levels and four factors during the robust experimental design process. The computational experiments have been performed in various languages of varying complexities (Table 1). The results reported have demonstrated the capability of the proposed algorithm for the GI. Also, it is important to note that the Boolean based operators introduce the diversity in the population in a generative manner that helps the proposed GAWMDL to alleviate the premature convergence. The performance of the proposed GAWMDL has been evaluated against three algorithms: GAWOMDL, EMPGA and ITBL. The EMPGA has been considered in the comparison, mainly because it was proposed to alleviate the premature convergence within the GA and has been applied for the GI. On the other hand, the ITBL focuses on the CFG induction. The comparative results have demonstrated the superiority of the proposed GAWMDL over the other algorithms (GAWOMDL, EMPGA and ITBL). The statistical test (paired t-test) has been conducted. The pairs (Pair-1, 2, and 3) have been formed to conduct the tests conclude that the proposed GAWMDL is statistically significantly different than the other methods. One thing more to note at this stage is: the performance of the EMPGA and ITBL is almost similar, whilst the GAWOMDL has shown the worst performance. Overall, a GA based GI system has been proposed using the MDL principles for the generalization and specialization of the training data.

[56] Colin Higuera, Ten open problems in grammatical inference, Gramm.

Hari Mohan Pandey is major in Computer Science and Engineering and pursuing Ph.D. in Formal Language Theory, Grammatical Inference and Evolutionary Algorithms. He has served in industry and in many academc institutions. Previously, He was associated with the Middle East College, Coventry University, U.K. Presentely, he is working in the department of computer science and engineering at Amity University Uttar Pradesh, India. He has published research papers in various International conferences and journals. He has received the global award for the best computer science faculty of the year 2015 He is the author of several books of Computer Science & Engineering for McGraw-Hill, Pearson Education, University Science Press, and Scholar Press. He is associated with various International Journals as a reviewer and editorial board member. He has served as a leading guest editor for several International journals. He has organized special sessions at International conferences, served as chair and delivered keynote.

Ankit Chaudhary is Assistant Professor at Department of Computer Science, Truman State University, MO, USA. He received his Ph.D. in Computer Engineering and his areas of research interest are computer vision, artificial intelligence and graph algorithms. He has authored 75 research papers and an Associate Editor of Computer & Electrical Engg. Journal, Elsevier. He is member of IEEE and also serves in the editorial board at many international journals.
Deepti Mehrotra did Ph.D. from Lucknow University and currently she is working as Professor in Amity school of Engineering and Technology, Amity University, Noida, earlier, she worked as Director of Amity School of Computer Science, Noida, India. She has more than 20 years of research, teaching and content writing experience. She had published more than 60 papers in international refereed Journals and conference Proceedings. She is editor and reviewer of many books, refereed journal and conferences. She is regularly invited as resource persons for FDPs and invited talks at national and international conference. She guided Ph.D. and M.Tech students.

Graham Kendall received the B.S. in computation (first class, honors) from the Institute of Science and Technology, University of Manchester, Manchester, U.K., in 1997 and the Ph.D. degree in computer science from the University of Nottingham, Nottingham, U.K., in 2001. His previous experience includes almost 20 years in the information technology industry where he held both technical and managerial positions. He is a Professor of Computer Science at the University of Nottingham and is currently based at their Malaysia Campus where he holds the position of Vice-Provost (Research and Knowledge Transfer). He is a Director of two companies (EventMAP Ltd., Nottingham, U.K.; Aptia Solutions Ltd., Nottingham, U.K.) and CEO of two companies (MyRIAD Solutions Sdn Bhd, Malaysia and MyResearch Sdn Bhd, Malaysia). He is a Fellow of the Operational Research Society. He is an Associate Editor of nine international journals, including two IEEE journals: the IEEE Transactions on Evolutionary Computation and the IEEE Transactions on Computational Intelligence and AI in Games. He chaired the Multidisciplinary International Conference on Scheduling: Theory and Applications in 2003, 2005, 2007, 2009, and 2011, and has chaired several other international conferences, which has included establishing the IEEE Symposium on Computational Intelligence and Games. He has been awarded externally funded grants worth over 6 million from a variety of sources, including the Engineering and Physical Sciences Research Council (EPSRC) and commercial organizations.