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Abstract: The paper investigates a partial exam assignment approach for solving the examination
timetabling problem. Current approaches involve scheduling all of the exams into time slots and
rooms (i.e., produce an initial solution) and then continuing by improving the initial solution in
a predetermined number of iterations. We propose a modification of this process that schedules
partially selected exams into time slots and rooms followed by improving the solution vector of
partial exams. The process then continues with the next batch of exams until all exams are scheduled.
The partial exam assignment approach utilises partial graph heuristic orderings with a modified
great deluge algorithm (PGH-mGD). The PGH-mGD approach is tested on two benchmark datasets,
a capacitated examination dataset from the 2nd international timetable competition (ITC2007) and an
un-capacitated Toronto examination dataset. Experimental results show that PGH-mGD is able to
produce quality solutions that are competitive with those of the previous approaches reported in the
scientific literature.

Keywords: examination timetabling problem; graph heuristic orderings; great deluge algorithm;
meta-heuristics

1. Introduction

Examination timetabling problem has been intensely studied because it is a complex problem and
has practical significance in educational institutions. The problem involves a set of exams that have to
be placed into a number of time slots and rooms, subject to numerous hard and soft constraints [1].
Hard constraints must be fully satisfied for the timetable to be feasible. Soft constraints should be
satisfied as much as possible, with the minimisation of the soft constraint violations providing a quality
timetable. The examination timetabling problem is a real-world combinatorial optimisation problem
that is difficult to solve due to having numerous constraints and limited resources (i.e., time slots
and rooms) in allocating a large number of exams. There are two types of examination timetabling
problem: capacitated and un-capacitated. In the un-capacitated version, the capacity of the rooms is
not considered, whereas the capacitated variant considers room capacity as a hard constraint.

Examination timetabling is a type of scheduling problem that has NP-hard complexity and
thus many researchers have investigated stochastic methods such as heuristic and meta-heuristic
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approaches to find optimal or near-optimal solutions. Until recently, numerous approaches have been
proposed in scientific literature to solve the examination timetabling problem.

In earlier research, graph heuristic orderings were widely used for addressing timetabling
problems [2–4]. Carter et al. [5] developed a software for the examination timetabling problem where
several graph colouring heuristic orderings were successfully employed. Kahar and Kendall [6] used
four graph heuristic orderings for the University Malaysia Pahang examination timetabling problem
(a real-world university examination timetabling problem), which produced feasible solutions for all
datasets and which were of better quality than the university’s solutions. Asmuni et al. [7] proposed
a fuzzy concept with graph heuristic orderings to construct feasible solutions for the timetabling
problem. Pillay and Banzhaf [8] used a hierarchical combination of graph heuristic orderings in their
proposed hyper-heuristic framework for examination timetabling problem. Four heuristic combination
lists were generated using low-level heuristics including Saturation degree (SD), Largest degree (LD),
Largest weighted degree (LWD) and Largest enrollment (LE). Similar approach of graph colouring
hyper-heuristics for constructing exam timetable was also proposed by Sabar et al. [9]. Graph heuristic
orderings have received considerable attention because they are straightforward and effective in
constructing initial feasible solutions. However, they are not suitable for improving of solution vectors.

In time scheduling literature, great deluge (GD) algorithm, a local search meta-heuristic, has been
proposed to improve the initial solution quality. Dueck [10] applied GD to the travelling salesman
problem and observed that GD was able to perform better than simulated annealing (SA) and hill
climbing (HC). Burke and Newall [11] utilised GD and other local search methods individually for the
Toronto exam dataset and found that GD was superior in terms of exploration. Burke and Bykov [12]
designed flex-GD for the examination timetabling problem. They increased the flexibility of GD by
adding features such as an adaptive acceptance condition for each particular move and repairing
infeasible moves with Kemp chains. This approach was tested on the Toronto dataset and outperformed
other reported approaches. Landa-Silva and Obit [13] proposed a variant of GD where a non-linear
decay rate and an increasing boundary level were introduced. The boundary level was decreased
nonlinearly to avoid the algorithm being too greedy, whereas converging to a local optimum was
avoided by increasing the boundary level. The approach was able to produce good quality solutions.
Müller [14] used a GD algorithm combined with Iterative Forward Search (IFS) and HC for examination
timetabling problem. IFS produced the initial solution, which was then improved by HC until reaching
a local optimum. GD was used to improve the solution further. This multi-phase approach was
shown to be effective in the ITC2007 timetabling competition. McCollum et al. [15] implemented an
extended GD to tackle the ITC2007 exam dataset. The proposed approach used a reheating mechanism
in the GD algorithm when no improvement was found after a number of iterations. The methodology
produced good quality solutions. Kahar and Kendall [16] highlighted the application of the GD
algorithm for solving a real-world examination timetabling problem faced by Universiti Malaysia
Pahang. They employed a modified GD algorithm and experimented with different initial solutions
and neighbourhood structures. The approach produced better results than the authors’ previous
approach of graph heuristic orderings [6]. Hybridising GD with other approaches has also been
effective for university course timetabling problems. Abdullah et al. [17] combined GD with tabu
search. The approach generated the best solution from four neighbourhood moves and increased
the boundary level randomly when no improvement was found for a specific period. Experimental
results were competitive compared to other reported works. Turabieh and Abdullah [18] hybridised
GD with the Electromagnetic Mechanism (EM). This approach produced good results when tested
on Toronto and ITC2007 exam datasets. Fong et al. [19] hybridised a modified GD (Imperialist
Nelder-Mead great deluge) with an artificial bee colony algorithm (ABC) to improve the global
exploration capability of the basic ABC. This approach was shown to be effective in the course
timetabling problem. Abuhamdah [20] used modified GD for clustering problems in the medical
domain. A list was created that stored previous boundary levels when a better solution was obtained.
However, no improvement for a certain number of iterations updated the boundary level by a value
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selected randomly from this list. The approach performed better than basic GD in clustering problems.
Besides, GD has been used successfully in other optimisation problems such as course timetabling [13],
patient-admission [21] and rough set attribute reduction [22].

Several other local search meta-heuristic approaches have been reported to address the time
scheduling problem. Burke and Bykov [23] employed late-acceptance hill climbing—a variant of hill
climbing—for examination timetabling problem. Here a list of a specific length was used to delay
comparison between candidate solutions with the current best solution. Bykov and Petrovic [24]
proposed step counting hill climbing algorithm. The idea was based on employing the current cost as
an acceptance boundary for the next several steps. This algorithm produced better solutions than hill
climbing search methods. Battistutta et al. [25] employed SA with feature-based tuning for timetabling
problem. The tuning process selected the most important parameters and fixed the value of other ones.
This tuning mechanism was able to produce competitive results. SA in examination timetabling was
also reported in the literature [26]. The notable features of local search meta-heuristic approaches are
that they are simple, can avoid convergence into local optima and take fewer parameter settings (one
or two). However, the effectiveness of this strategy highly depends on neighbourhood structure and
the quality of the initial solution.

Another category of solution approaches includes population-based meta-heuristic and
hyper-heuristic approach. Alinia Ahandani et al. [27] investigated a discrete particle swarm
optimisation for the examination timetabling problem. The particle’s position was updated
using mutation and crossover, and its position was improved using three types of local searches.
The approach provided satisfactory results when tested on the Toronto dataset. Another similar
approach in addressing the timetabling problem is combining the particle swarm optimisation
algorithm with a local search approach [28]. Bolaji et al. [29] proposed a hybrid ABC for solving
un-capacitated examination timetabling problems. The hybridisation of an ABC with harmony
search algorithm and local search was performed in two phases so that exploration and exploitation
can be balanced. Another population-based approach Prey-predator algorithm has recently been
used to solve some instances of Toronto dataset [30]. Memetic algorithm has also been popular
for examination timetabling problem. Adaptive co-evolutionary memetic algorithm [31], a cellular
memetic algorithm [32] and memetic algorithm based on Multi-objective Evolutionary Algorithm
with Decomposition (MOEA/D) [32] have been reported to be effective in producing a quality exam
timetable. Demeester et al. [33] presented a hyper-heuristic framework based on tournament selection
in genetic algorithm. At the lower level of the hyper-heuristic, the number of move operations for each
problem type was selected. Higher-level heuristics encompassed selection processes of these low-level
heuristics and four move acceptance criteria. In the study, random selection performed better than
intelligent selection. The approach was implemented on both examination and course timetabling
problems, and it tended to produce quality solutions. Anwar et al. [34] investigated a harmony
search hyper-heuristic approach for ITC2007 exam dataset. A basic harmony search algorithm was
employed as a high-level heuristic that controlled the low-level heuristics. Two neighbourhood
structures, move and swap, were employed. The approach was able to produce some better
results than state-of-the-art approaches. Recently, Nelishia Pillay and Özcan [35] has examined
two hyper-heuristic strategies for examination timetabling, which are arithmetic heuristics (AHH) and
hierarchical heuristics (HHH). In general, above hyper-heuristic and population-based approaches
tend to be effective in producing quality timetable solutions, but they are complex and often require
more parameter settings.

It is observed from the literature that examination timetabling is often addressed in two stages.
At the first stage, one or more complete initial feasible solution(s) is constructed. At the second
stage, the quality of the feasible solution(s) is improved [7,16,36]. Initial feasible solution(s) are
usually produced using graph heuristic orderings, and the solution vector(s) are improved using
meta-heuristics such as hill climbing, simulated annealing, tabu search, GD algorithm and genetic
algorithm. Frequently, in the sequential approach, result(s) produced by the improvement step is
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biased by the initial solution(s), with good initial solution(s) tending to result in good improved
solution(s) [16,37]. Moreover, the improvement techniques are occasionally incapable of working
effectively in generating the quality solution in the case of badness (local optima) of the initial
solution [38,39]. Hence the improvement algorithms must possess a good ability to explore (breadth)
the search area as well as the capability to focus on the promising search area (depth). This makes
the whole (sequential approach) search methodologies dependent on the improvement strategy,
and sometimes the improvement strategy is unable to work effectively. Therefore, another approach is
required that could encourage the search to produce quality solutions.

This paper proposes a new approach that includes partial graph heuristic orderings with a
modified great deluge algorithm (PGH-mGD) for solving the examination timetabling problem.
The strategy partially schedules a pool of exams, which are selected based on graph heuristic orderings
and exam assignment value. These partially scheduled exams are improved using a modified GD.
The procedure then schedules the next pool of selected examinations. This process continues until all
examinations have been scheduled. This proposed approach is tested on two well-known examination
timetabling problems, namely Toronto and ITC2007 exam dataset. To evaluate the performance,
PGH-mGD is compared with traditional graph heuristic orderings with a modified great deluge
algorithm (TGH-mGD) and related state-of-the-art methods.

In this paper, we use different graph heuristic orderings as a solution construction because they
are straightforward and effective in constructing feasible solutions. In earlier research, several static
graph colouring approaches such as Largest degree (LD), Largest weighted degree (LWD) and Largest
enrollment (LE) were reported to construct timetables [5,6,40]. Another ordering named Saturation
degree (SD) showed better performance than static orderings due to its dynamic property [9].
Subsequently, SD was hybridised with static orderings and exhibited better results compared to
SD in terms of solution construction [41,42]. We have used both hybridised and static approaches
for constructing the timetable. The motivation for using GD in the improvement phase is due to
its consistently good performance in addressing different scheduling problems. These include job
shop scheduling [43], university timetabling problems [13,16,24,44], vehicle routing problem [45],
feature selection problem [46,47] dynamic facility layout problem [48] and patient-admission
problem [21]. In addition to having the ability to avoid local optima, GD has only one parameter
to be tuned. In this proposed approach, we have used a modified GD algorithm that use reheating
mechanism to better avoid local optima. This type of strategy has showed effectiveness in several
scheduling problems [15,16,20,21].

The rest of the paper is structured as follows. Section 2 provides a brief introduction on
examination timetabling problem followed by a description and mathematical formulations of
the examination benchmark datasets (i.e., Toronto and ITC2007 exam datasets). Section 3 describes a
general overview of graph heuristic orderings and GD. Section 4 presents our proposed PGH-mGD
and Section 5 describes TGH-mGD. The experimental setup for the examination timetabling problem
is shown in Section 6. The experimental results are presented in Section 7, whereas the results are
discussed and analysed in Section 8. Concluding remarks and suggestions for future research are
provided in Section 9.

2. Examination Timetabling Problem

In this section, we give a general definition of the examination timetabling problem and then
describe two examination timetabling benchmark datasets, namely Toronto and ITC2007 datasets.

2.1. Definition

Examination timetabling problem can be defined as the process of allocating a set of examinations
E = {e1, e2, . . ., em} into a limited number of time slots T = {t1, t2, . . ., tn} and rooms (optional)
R = {r1, r2, . . ., rp} subject to a set of constraints C = {c1, c2, . . ., cq}, where m, n, p, q ∈ Z+. There are
two types of constraints: hard constraints and soft constraints. An examination timetable produces



Computation 2020, 8, 46 5 of 28

a feasible solution when only hard constraints are considered. A common hard constraint is that
two examinations taken by the same student must be assigned in different time slots. Soft constraint
satisfaction is associated with solution quality. The more we minimise the number of soft constraint
violations, the better we will produce a quality exam timetable. A simple example of a soft constraint
is to spread the examinations as evenly as possible over the time periods.

The examination timetabling problem is categorised into capacitated and un-capacitated.
In a capacitated examination timetabling, room capacity is considered as a hard constraint,
but an un-capacitated one does not consider room capacity. Two datasets that have been
frequently mentioned for examination timetabling problem are Toronto and ITC2007 exam datasets.
Toronto dataset is an un-capacitated and more popular dataset in research communities, whereas the
ITC2007 exam dataset is a capacitated, more realistic and more difficult to solve. These two datasets
are described in the following subsections.

2.2. Toronto Dataset

2.2.1. Problem Description

The most widely used examination benchmark dataset was introduced by Carter and Laporte [5].
This dataset is also known as the Toronto dataset and is available in Reference [49]. This dataset is an
un-capacitated examination timetabling benchmark dataset, and it considers an unlimited number
of seats. There are 13 instances in the Toronto dataset. They are shown in Table 1. In this table,
conflict density indicates the difficulties of instances with respect to examinations in conflict. This is
measured by counting the number of events in which examinations have conflicted with each other,
followed by dividing it with the total number of events aggregating both conflicted and non-conflicted
examinations with each other.

Table 1. Toronto Benchmark dataset.

Instances No. of Time Slots No. of Exams No. of Students Conflict Density

car-s-91 35 682 16,925 0.13
car-f-92 32 543 18,419 0.14
ear-f-83 24 190 1125 0.27
hec-s-92 18 81 2823 0.42
kfu-s-93 20 461 5349 0.06
lse-f-91 18 381 2726 0.06
pur-s-93 42 2419 30,029 0.03
rye-s-93 23 486 11,483 0.07
sta-f-83 13 139 611 0.14
tre-s-92 23 261 4360 0.18
uta-s-92 35 622 21,267 0.13
ute-s-92 10 184 2750 0.08
yor-f-83 21 181 941 0.29

The Toronto dataset has one hard and one soft constraint, which are defined as follows:

• Hard constraint: One student can attend only one exam at a time (it is known as a
clashing constraint).

• Soft constraint: Conflicting examinations are spread as far as possible. This constraint measures
the quality of the timetable.

2.2.2. Problem Formulation

The objective of the Toronto dataset problem is to satisfy the hard constraint and minimise the
penalty value of the soft constraint violations. The formulations of the Toronto examination timetabling
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problem as well as the objective function, which are adopted from Carter et al. [5], are defined
as follows.

• N is the number of exams.
• M is the total number of students.
• Ei is an examination, i ∈ {1, . . ., N}.
• T is the available time slots.
• (cij)N×N is the conflict matrix. where each element in the matrix is the number of students

taking examination i and j, and where i, j ∈ {1, . . ., N}. Each element cij is n if examination i and
examination j are taken by n students (n > 0), otherwise cij is zero.

• tk(1 ≤ tk ≤ T) is the time slot associated with examination k, and k ∈ {1, . . ., N}.

The objective function of the problem is expressed in Equation (1). Its aim is to minimise the
proximity cost, that is, reducing the penalty value of the soft constraint violation as much as possible.

minimise
∑N−1

i=1 F(i)
M

, (1)

where

F(i) =
N

∑
j=i+1

cij × proximity(ti, tj) (2)

and

proximity(ti, tj) =


25

2
|ti−tj |

, if 1 ≤| ti − tj |≤ 5

0, otherwise
(3)

subject to
N−1

∑
i=1

N

∑
j=i+1

cij × λ(ti, tj) = 0, (4)

where

λ(ti, tj) =

{
1, if ti = tj

0, otherwise.
(5)

Equation (2) presents the penalty cost of the examination i and this cost is calculated by
multiplying the proximity value with the conflict matrix. Equation (3) indicates the proximity value
between the two examinations. Based on Equation (3), penalty value 16 is given in the case of assigning
two examinations of a student consecutively; penalty value 8 is used if a student has a time slot gap
between examinations. In this way, a penalty value 4, 2 and 1 are given for 2, 3 and 4 time slot gap
between examinations, respectively. It is also noted that the penalty value zero is given for more
than 4 time slot gap between examinations of a student. Equation (4) indicates the hard constraint of
the problem.

2.3. ITC2007 Exam Dataset

2.3.1. Problem Description

The 2nd international timetable competition (ITC2007) examination dataset was established to
facilitate researchers to carry out exploration on real world examination timetabling problems to
reduce the gap between theory and practice. It is a capacitated problem where a set of examinations
is allocated into limited time slots and rooms subject to a set of numerous real-world hard and soft
constraints. To allocate each examination at most one room and time slot is a requirement of the
dataset. Although more than one examination can be allocated into a single room, splitting individual
examinations among rooms is strictly prohibited.
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There are eight instances which are publicly open for the ITC2007 exam dataset, and each of
the instances has several hard and soft constraints. They are shown in Table 2 and are available
in Reference [50]. This dataset contains many additional elements compared to previous benchmark
datasets, thus increasing the depth and difficulty of the problem. Descriptions of some important
features, including the number of time slots, the number of rooms, room capacity, time slot length,
period hard constraints, room hard constraints, front load expression and different hard and soft
constraints are highlighted as follows:

• Number of examinations: Every instance has a specific number of examinations. Each individual
examination has a definite duration with a set of students who enrolled for the examination.

• Number of time slots: Every instance has a specific number of time slots or periods. There are
some time slots that have penalties. Besides, penalties are associated with two examinations in a
row, two examinations in a day, examination spreading and later period.

• Number of rooms: Every instance has some predefined rooms where examinations have to be
placed. This collection of rooms is assigned to every time slot of an instance. Also, some rooms
are associated with penalties.

• Room capacity: Different room has a different capacity. It is observed that ITC2007 exam dataset
does not allow splitting of an examination into several rooms, albeit multiple examinations can be
assigned in a single room.

• Time slot length: All of the time slots of an instance have either different or same time slot duration.
The penalty is involved when the different duration of examinations share the same room and
period.

• Period hard constraint-AFTER: For any pair of examinations (e1, e2), this constraint means e1
must be assigned after e2. Some of the instances have more complex constraints where the same
examinations are associated with AFTER constraint more than one time. For instance, e1 AFTER
e2; e2 AFTER e3. This increases the complexity for the dataset ( see Exam_1 and Exam_8).

• Period hard constraint-EXCLUSION: For any pair of examinations (e1, e2), this constraint means
e1 must not be assigned with e2.

• Period hard constraint-EXAM-COINCIDENCE: For any pair of examinations (e1, e2),
this constraint means e1 and e2 must be placed in the same time slot.

• Room hard constraint- EXCLUSIVE: This constraint indicates an examination must be assigned
in an allocated room. Any other examinations must not be assigned in this particular room.
Only three instances (Exam_2, Exam_3, and Exam_8) have this constraint.

• Front load expression: It is expected that examinations with a large number of students should
be assigned at the beginning of the examination schedule. Every instance defines the number of
larger examinations. Another parameter is the number of last periods to be considered for penalty.
If any larger examination falls in that period, an associated penalty is included.

Table 2. ITC2007 Exam Dataset.

Instances Number
of Students

Number
of Exams

Number
of Time slots

Number
of Rooms

Period Hard
Constraint

Room Hard
Constraint

Conflict
Density

Exam_1 7833 607 54 7 12 0 5.05%
Exam_2 12,484 870 40 49 12 2 1.17%
Exam_3 16,365 934 36 48 170 15 2.62%
Exam_4 4421 273 21 1 40 0 15.0%
Exam_5 8719 1018 42 3 27 0 0.87%
Exam_6 7909 242 16 8 23 0 6.16%
Exam_7 13,795 1096 80 15 28 0 1.93%
Exam_8 7718 598 80 8 20 1 4.55%
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A feasible examination timetable is occurred when each examination of an instance is assigned
in a single room and a time slot without violating hard constraints. The hard constraints of ITC2007
exam dataset are defined as follows:

• H1. One student can sit only one exam at a time.
• H2. The capacity of the exam will not exceed the capacity of the room.
• H3. The examination duration will not violate the duration of the period.
• H4. There are three types of examination ordering that must be respected.

– Precedences: exam i will be scheduled before exam j.
– Exclusions: exam i and exam j must not be placed at the same period.
– Coincidences: exam i and exam j must be scheduled in the same period.

• H5. Room exclusiveness must be kept. For instance, an exam i must take place only in room
number 206.

The quality of an examination timetable is related to satisfying the soft constraint, albeit can be
violated if required. The soft constraints of ITC2007 exam dataset are summarised as follows:

• S1. Two Exams in a Row: There is a restriction for a student to sit successive exams on the same
day.

• S2. Two Exams in a Day: There is a restriction for a student to sit two exams in a day.
• S3. Spreading of Exams: The exams are spread as evenly as possible over the periods so that the

preferences of students such as avoiding closeness of exams are preserved.
• S4. Mixed Duration: Scheduling exams of different duration should be avoided in the same room

and period.
• S5. Scheduling of Larger Exams: There is a restriction to assign larger exams at the late of

the timetables.
• S6. Room Penalty: Some rooms are restricted, and an associated penalty is imposed if assigned.
• S7. Period Penalty: Some periods are restricted, and an associated penalty is imposed if assigned.

The objective of solving the ITC2007 exam dataset is to satisfy all five hard constraints and
minimise the violations of seven soft constraints (penalty) so that a quality examination timetable can
be produced. The mathematical formulation of the ITC2007 exam dataset is shown below.

2.3.2. Problem Formulation

A formal model for the ITC2007 exam dataset presented here has been adopted from the model
proposed by McCollum et al. [51]. The formal model, such as the mathematical formulation, provides a
rigorous definition of the problem.To develop the mathematical model of ITC2007 exam dataset,
the following notation has been used in Reference [51].

• E: Set of Examinations.
• sE

i : Size of examination i ∈ E.
• dE

i : Duration of Examination i ∈ E.
• f E

i : A boolean value that is 1 iff examination i is subject to front load penalties, 0 otherwise.
• D: Set of durations used

⋃
i dE

i .
• uD

id: A boolean value that is 1 iff examination i has the duration type d ∈ D.
• UD

dpr: A boolean value that is 1 iff duration type d is used for period p and room r, 0 otherwise.

• S: Set of students.
• tis: A boolean value that is 1 iff student s takes examination i, 0 otherwise.
• R: Set of rooms.
• sR

r : Size of room r ∈ R.
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• wR
r : A weight that indicates a specific penalty for using the room r.

• P: Set of periods.
• dP

p : Duration of period p ∈ P.

• f P
p : A boolean value that is 1 iff period p is subject to FRONTLOAD penalties, 0 otherwise.

• wP
p : A weight that indicates a specific penalty for using the period p.

• ypq: A Boolean value that is 1 iff period p and q are in the same day, 0 otherwise.
• XP

ip = 1 when examination i is in period p, 0 otherwise.

• XR
ir = 1 when examination i is in room r, 0 otherwise.

• XPR
ipr = 1 when examination i is in room r and period p, 0 otherwise.

• w2R: Weight for two in a row.
• w2D: Weight for two in a day.
• wPS: Weight for period spread.
• wNMD: Weight for no mixed duration.
• wFL: Weight for the front load penalty.
• C2R

s : Two in a row penalty for student s.
• C2R: Two in a row penalty for the entire set of students.
• C2D

s : Two in a day penalty for student s.
• C2D: Two in a day penalty for the entire set of students.
• CPS

s : Period spread penalty for student s.
• CPS: Period spread penalty for the entire set of students.
• CNMD: No mixed duration penalty.
• CFL: Front load penalty.
• Cp: Soft period penalty.
• CR: Soft room penalty.
• Ha f t: Pair of examinations set where in each pair (e1, e2) ∈ Ha f t, the examination e1 must be

assigned after the examination e2.
• Hcoin: Pair of examinations sets where in each pair (e1, e2) ∈ Hcoin, the examination e1 and e2

must be assigned at the same period.
• Hexcl : Pair of examinations set where in each pair (e1, e2) ∈ Hexcl , the examination e1 and e2 must

not be assigned at the same period.
• Hsole: A set of examinations where each examination e ∈ Hsole is allocated to a room r and no

other examinations are allocated in this room.

If a student s takes two examinations i and j, where j is placed in a period that is immediately
after the period used for examination and examination i and examination j is held on the same day,
then C2R

s gets an increment of 1. Therefore, the mathematical model of soft constraint S1 is as follows:

C2R
s = ∑

i,j∈E
j 6=i

∑
p,q∈P

q=p+1
ypq=1

tistjsXP
ipXP

jq, (6)

Considering all students,
C2R = ∑

s∈S
C2R

s . (7)
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If a student s takes two examinations i and j, where they are placed into the non-consecutive
period but are held on the same day, then C2D

s gets an increment of 1. Therefore, the mathematical
model of soft constraint S2 is as follows:

C2D
s = ∑

i,j∈E
j 6=i

∑
p,q∈P

q>p+1
ypq=1

tistjsXP
ipXP

jq. (8)

Considering all students,
C2D = ∑

s∈S
C2D

s . (9)

If a student s takes two examinations i and j, and they are placed in a distinct period in such a
way that there is a gap g between them and j is after i, then CPS

s gets an increment of 1. Therefore,
the mathematical model of soft constraint S3 is as follows:

CPS
s = ∑

i,j∈E
j 6=i

∑
p,q∈P

p<q≤p+g

tistjsXP
ipXP

jq. (10)

Considering all students,
CPS = ∑

s∈S
CPS

s . (11)

CNMD
pr is a non-negative penalty which is the number of different duration in period-room pair

minus one. Therefore, the mathematical model of soft constraint S4 is as follows:

∀p ∈ P, ∀r ∈ R, 1 + CNMD
pr ≥ ∑

d∈D
UD

dpr and CNMD
pr ≥ 0. (12)

The overall penalty,
CNMD = ∑

p∈P
∑
r∈R

CNMD
pr . (13)

Front load penalties are applied with f E
i = 1 and f P

p = 1. Therefore, the mathematical model of
soft constraint S5 is as follows:

CFL = ∑
i∈E

∑
p∈P

f E
i f P

p XP
ip (14)

The mathematical model of room penalties of soft constraint S6 is as follows:

CR = ∑
r∈R

∑
i∈E

WR
r XR

ir . (15)

The mathematical model of period penalties of soft constraint S7 is as follows:

CP = ∑
p∈P

∑
i∈E

WP
p XP

ip (16)

To formulate the objective function, each soft constraint is multiplied by its weight factor, and then
results are totalled. The objective function is presented below, and its overall goal is to minimise
the violation of soft constraints. Table 3 presents the weights associated with soft constraints for the
ITC2007 exam dataset. Weights are not included with CP and CR in the objective function because
they are already covered in their definition. Interested readers can get the detailed description of this
examination track, constraints, and objective functions in References [51,52].

minimise (W2RC2R + W2DC2D + WPSCPS + WNMDCNMD + WFLCFL + CR + CP) (17)
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subject to following hard constraints (H1 to H5).

∀p ∈ P, ∀s ∈ S ∑
i∈E

tisXP
ip ≤ 1 (18)

∀p ∈ P, ∀r ∈ R ∑
i∈E

sE
i XPR

ipr ≤ sR
r (19)

∀p ∈ P, ∀i ∈ E dE
i XP

ip ≤ dP
p (20)

∀(i, j) ∈ Ha f t, ∀p, q ∈ P, with p ≤ q XP
ip + XP

jq ≤ 1 (21)

∀(i, j) ∈ Hcoin, ∀p ∈ P XP
ip = XP

jp (22)

∀(i, j) ∈ Hexcl , ∀p ∈ P XP
ip + XP

jp ≤ 1 (23)

∀i ∈ Hsole, ∀j ∈ E, ∀p ∈ P, ∀r ∈ R, j 6= i XP
ip + XR

ir + XP
jp + XR

jr ≤ 3. (24)

Table 3. Weights of the ITC2007 exam dataset.

Instances
Weight for

Two in a Day
W2D

Weight for
Two in a Row

W2R

Weight for
Period Spread

WPS

Weight for
No Mixed Duration

WNMD

Weight for
the Front Load Penalty

WFL

Weight for
period Penalty

WP
p

Weight for
Room Penalty

WR
r

Exam_1 5 7 5 10 100 30 5
Exam_2 5 15 1 25 250 30 5
Exam_3 10 15 4 20 200 20 10
Exam_4 5 9 2 10 50 10 5
Exam_5 15 40 5 0 250 30 10
Exam_6 5 20 20 25 25 30 15
Exam_7 5 25 10 15 250 30 10
Exam_8 0 150 15 25 250 30 5

3. Background

3.1. Graph Heuristic Orderings

The examination timetabling problem can be modelled using a graph colouring problem where
all vertices are considered as examinations, and an edge between any pair of vertices represents
conflicting examinations. That is, those conflicting examinations have at least one student in common
and cannot take place in the same time slot. As the graph colouring problem is a NP-hard problem,
graph heuristic orderings are used to tackle the problem in polynomial time [5]. In the context of
examination timetabling, a graph heuristic ordering strategy measures the difficulty index of the exams
and orders them in such a way that the most difficult exam to be scheduled will be assigned first to
a proper time slot. Graph heuristic orderings are popular approaches that are used to construct an
initial timetable [5,53]. The most commonly used graph heuristic orderings seen in the literature are
described as follows:

• Largest degree (LD): In this ordering, the number of conflicts is counted for each examination by
checking its conflict with all other examinations. Examinations are then arranged in decreasing
order such that exams with the largest number of conflicts are scheduled first.

• Largest weighted degree (LWD): This ordering is similar to LD. The difference is that in the
ordering process the number of students associated with the conflict is considered.

• Largest enrolment (LE): The examinations are ordered based on the number of registered students
for each exam.

• Saturation degree (SD): Examination ordering is based on the availability of the remaining time
slots where unscheduled examinations with the lowest number of available time slots are given
priority to be scheduled first. The ordering is dynamic as it is updated after scheduling each exam.
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3.2. Great Deluge Algorithm

The great deluge (GD) algorithm is a local search meta-heuristic algorithm proposed by Dueck [10].
The inspiration of this algorithm originated from the behaviour of a hill climber seeking a higher place
to avoid rising water levels during a deluge. Like simulated annealing (SA), this algorithm avoids local
optima by accepting worse solutions. However, SA uses a probabilistic function for accepting a worse
solution, whereas GD uses a more deterministic approach. GD is also less dependent on parameter
tuning compared to SA. The only parameter in the GD algorithm is a decay rate, used for controlling
the boundary or acceptance level. In a minimisation problem, the initial boundary level (water level)
usually starts with the quality of the initial solution. During the search, a new candidate solution is
accepted if it is better than or equal to the current solution. However, a solution worse than the current
solution is accepted when the quality of the candidate solution is less than or equal to the predefined
boundary level B. This boundary level is then lowered according to a parameter called the decay rate
(∆B). This parameter is important as the speed of the search depends on the decay rate. The procedure
of GD algorithm is shown in Algorithm 1.

Algorithm 1: GD algorithm.

1 Set the initial solution s
2 Calculate initial cost function f (s)
3 Boundary level B← f (s)
4 Set a decay rate ∆B
5 while stopping criteria do not meet do
6 Define neighbourhood N(s)
7 Randomly select a feasible solution s∗ ∈ N(s)
8 if f (s∗) ≤ f (s) or f (s∗) ≤ B then
9 s← s∗

10 B = B− ∆B.

4. Proposed Method: PGH-mGD

4.1. Definition and an Illustrative Example

In this section, we describe the proposed PGH-mGD for the examination timetabling problem.
The proposed approach partially schedules a group of exams that are selected based on a graph
heuristic orderings and exam assignment value v. These partially scheduled exams are then improved
using a modified GD algorithm. The procedure continues to schedule the next group of selected exams
based on v and graph heuristic orderings. This above procedure repeats until the scheduling of all
exams. The exam assignment value v plays an important role in the partial scheduling of the exams.
This parameter can be defined in the following way: Supposing that N represents a list of exams, and v
is an integer equal to or less than N (0 < v ≤ N). Then v can be defined as the number of exams
selected for scheduling (from the unscheduled list of exams). Here we have represented the v value
as a percentage of the total exam N. For instance, if N is equal to 165, then 25% of v value would
correspond to 41 (i.e., rounding of 41.25) exams being chosen for scheduling.

A simple example has been presented in Figure 1 to understand the overall PGH-mGD approach.
Assuming that we have to schedule nine examinations e1, e2, e3, e4, e5, e6, e7, e8 and e9 into four time
slots t1, t2, t3 and t4 and three rooms r1, r2 and r3. Initially, the timetable is empty, and all nine
examinations are ordered according to a graph heuristic ordering. Let us consider v is equal to 50%.
Therefore, five exams (i.e., e7, e3, e5, e9 and e1) will be selected for scheduling. These five exams are
assigned into random time slots and rooms while ensuring feasibility is maintained, resulting in a
partially constructed timetable. This timetable is then improved using a modified GD algorithm,
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aiming to reduce the penalty cost. After improving the timetable, the PGH-mGD will again select
the next pool of exams (i.e., e8, e4, e2 and e6) from the ordered list that has been rearranged using a
graph heuristic ordering. When four examinations are assigned properly, the timetable contains all
nine examinations. The timetable is improved again, and finally, a complete timetable is returned.

Ordered list 

e7 e3 e5 e9 e1 e4 e8 e6 e2 

   
Selecting exams by  v 

 t1 t2 t3 t4 

r1     

r2     

r3     

Initial timetable 

 

 t1 t2 t3 t4 

r1 e3  e7  

r2  e5  e9 

r3    e1 

After partial construction 
 
 

 t1 t2 t3 t4 

r1 e1   e3 

r2 e5 e9   

r3    e7 

After improvement 

Ordered list 

e8 e4 e2 e6 

 
Selecting exams by  v 

 t1 t2 t3 t4 

r1 e1   e3 

r2 e5 e9   

r3    e7 

Next initial timetable 
 
 

 t1 t2 t3 t4 

r1 e8 e7  e1 

r2  e9 e2 e3 

r3 e4 e5 e6  

 After construction 
 

 t1 t2 t3 t4 

r1 e7  e2  

r2 e3 e8 e5 e6 

r3  e9 e1 e4 

After improvement 
 

 

Figure 1. An Illustration of PGH-mGD for examination timetabling procedure.

4.2. PGH-mGD Algorithm

PGH-mGD deals with partial solutions followed by improvement until all exams have been
scheduled. The PGH-mGD algorithm is shown in Algorithm 2. In addition to LD, LWD and LE
orderings, here we use three hybrid graph heuristic orderings such as SD-LD, SD-LWD and SD-LE to
measure the exam difficulty. For example, In SD-LD, exams are ordered according to SD followed with
LD, and the exam at the top of the list is scheduled first. Initially, a graph heuristic ordering is selected
from the heuristic list (line 1). The exam assignment value v is assigned, which indicates how many
exams at a time will be scheduled (line 2). An iterative process starts with ordering the un-scheduled
exams using a selected heuristic ordering (line 4). Next, a subset of exams is selected in sequence based
on v from the ordered exams set (line 5). This subset of exams is called the current partial exams set.
Fulfilling the required hard constraints, these partial exams are then scheduled into predefined time
slots and rooms (for the ITC2007 exam dataset). During scheduling, if an exam fails to be assigned into
a time slot (after several tries), an exam resolution manager is used, which attempts to handle these
exams (line 6). The partial exam scheduling and exam resolution manager are described in Algorithms
3 and 4, respectively. When exams have been successfully scheduled, these exams are removed from
the unscheduled exam set and inserted into the scheduled exam set (line 8). Next, the penalty cost is
calculated based on the scheduled exams (line 9). In the next step, the modified GD algorithm (see
Algorithm 5) is used to improve the quality of partially scheduled exams with the aim of satisfying the
soft constraints (line 10). The above process repeats for the next batch of partial exams until all exams
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have been scheduled. Finally, the procedure checks whether the solution vector has satisfied all hard
constraints (line 11), and no examinations are in the blacklist. The penalty value of the solution vector
is then stored as the final solution (line 12).

Algorithm 2: PGH-mGD approach.

1 Choose a heuristic ordering H ∈ {LD, LWD, LE, SD− LD, SD− LWD, SD− LE}
2 Set examination assignment value, v
3 while until the end of all exams assigned to time slots do
4 Order the unscheduled exams using heuristic H and put into an unscheduled set
5 Select partial exams from the ordered list based on examination assignment value, v
6 Schedule partial exams and use complex exam manager if needed for scheduling (see

Algorithms 3 and 4)
7 if current partial exams are scheduled successfully then
8 Remove them from the unscheduled set and insert into a scheduled set
9 Calculate (temporary) penalty cost of all scheduled exams so far

10 Use modified GD algorithm for the improvement of the penalty value (see Algorithm 5)

11 if the final solution vector satisfies all hard constraints and the blacklist is empty then
12 return final penalty cost as a result

Algorithm 3: Scheduling partial exams.

1 Set partial ordering list
2 while ordering list is not empty do
3 Select an exam, e
4 while until some iterations do
5 Select a random time slot t and room r
6 if all hard constraints are satisfied then
7 Assign the exam e into time slot t and room r
8 Remove e from the partial ordering list and add to the partial scheduling list
9 Break the loop

10 if e is not scheduled then
11 Handle it by ExamResolutionManager (Algorithm 4)
12 if e is successfully scheduled then
13 Remove e from the partial ordering list and add to the partial scheduling list

14 else
15 Remove e from the partial ordering list and insert into a blacklist

16 Set the partial scheduling list as current partial scheduled Examinations that have been
scheduled

17 Handle unscheduled examinations of the blacklist if it is not empty

4.3. Scheduling Procedure of Partial Exams

Algorithm 3 presents the partial exam scheduling procedure. In scheduling the exams, the selected
exams are kept in a partial ordering list (line 1). An iterative procedure starts with selecting the first exam
e in the list (line 3). A pseudo-random number is generated for time slot t and room r (for the ITC2007
exam dataset) for scheduling this exam (line 5). If the hard constraints are satisfied, the exam is removed
from the partial ordering list and added to the partial scheduling list (line 8). Then, the next exam
is selected for scheduling until all exams have been successfully scheduled. However, when it is not
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possible to schedule an exam after a few iterations (line 10), a mechanism called ExamResolutionManager
(see Algorithm 4) is employed to assist the scheduling exam (line 11). If this mechanism can successfully
schedule exam e, the exam is added to the partial scheduling list after being removed from the partial
ordering list (lines 12–13). However, the exam e is moved to the blacklist when the mechanism fails
to schedule the exam (lines 14–15). The above procedure repeats until the scheduling of all exams.
The partial scheduling list is set as current partial scheduled examinations (line 16). Finally, if the
blacklist contains unscheduled examinations, they are given high priority to be scheduled in the next
attempt (line 17). That is, in the next partial ordering selection, blacklisted examinations are ordered
(scheduled) first, followed by other examinations in the unscheduled list.

4.4. Exam Resolution Manager Procedure

Algorithm 4 illustrates the ExamResolutionManager procedure. As mentioned previously, when a
particular exam cannot be scheduled (after several tries), it is considered as a complexExam (lines 1–2).
From the current partial scheduling vector, the number of conflicting exams with complexExam in
each time slot is calculated (lines 3–5). The time slots are then sorted in ascending order based on
the number of conflicting exams (line 6). Next, the time slot that has less conflicted exams with the
complexExam is chosen (line 8). The conflicting exams (with complexExam) are moved to a different
time slot(s), ensuring feasibility (line 9). If they are moved successfully, the complexExam is assigned
to the selected time slot and room of the timetable, the partial scheduled vector is updated, and the
procedure is terminated indicating the success of scheduling the complexExam (lines 10–14). Otherwise,
the next less-conflicted time slot is taken, and the same process is executed until all available time slots
have been checked.

Algorithm 4: ExamResolutionManager procedure.

1 Select the unscheduled exam e
2 complexExam← e
3 Select the current partial exam scheduled vector
4 for each time slot do
5 Count the number of conflicted exams with complexExam

6 Sort all the time slots in ascending order according to the number of conflicts with the
complexExam and insert into a queue Q

7 while there exists a time slot in Q do
8 De-queue time slot t
9 Schedule conflicted exams in other time slot(s)

10 if all conflicted exams are scheduled then
11 Move complexExam in any available room in time slot t
12 if complexExam is scheduled successfully then
13 Update partial scheduling vector
14 return from the loop with success

4.5. Improvement Using Modified GD

Algorithm 5 shows the proposed modified GD algorithm used for improving the partially
constructed solution. At the start, a partial solution vector s, generated from a graph heuristic
ordering, is taken as an initial solution (Algorithm 3). The penalty value of this solution f (s) is
calculated, which is also set as the initial boundary level B (lines 1–3). Then the number of iterations
I, neighbourhood structure n, and desired value D are defined (lines 4–6). The decay rate β is
initialised dynamically as (B− D)/I, and s is set as best solution sbest (lines 7–8). Until the stopping
condition is met, the following steps are executed. Neighbourhood structures are employed on the
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current solution s, and a set of new solutions is created. Among these solutions, one is considered
as the candidate solution s∗ and its penalty cost f (s∗) is calculated (line 10). When this penalty cost
is less than or equal to the current cost, or less than or equal to boundary level B, the candidate
solution s∗ is set as a current solution (lines 11–12). Next, the current boundary level is updated as
B ← B− β ∗ random(1, 5) (line 13). The candidate solution s∗ is set as the best solution only if the
penalty cost of this candidate solution f (s∗) is less than or equal to the cost of the best solution f (sbest)

(lines 14–15). This algorithm encourages exploration by increasing the boundary level if the solution is
not improved in M iterations (i.e., using the reheating mechanism [16,54]). Usually, a smaller value for
M would encourage exploration, whereas a larger value would discourage exploration. Therefore,
we have chosen M such a way that it can maintain the balance between exploration and exploitation.
In this study, parameter M is set to 50 based on our preliminary experiment. The boundary level, B is
then increased by adding a random number between 1 and 5 (line 17). Note that instead of standard
formula (i.e., constant increment) to update the boundary level, the level is updated with a certain
number (between 1 and 5 in this experiment) in order to allow some flexibility in accepting a worse
solution. Abdullah et al. [17] also employed randomness in updating the boundary level and found
efficiency for solving the timetabling problem. Finally, the best solution sbest is returned as a partial
best solution after the required number of iterations (line 18).

Algorithm 5: Modified GD for improvement of partial scheduled exams.

1 Set the initial partial solution s from the partial graph heuristic
2 Calculate initial cost function f (s)
3 Set an initial boundary level B← f (s)
4 Set the number of iterations I
5 The number of neighbourhood structures n
6 Set the desired value D
7 Set initial decay rate β← (B− D)/I
8 Set best solution sbest ← s
9 while stopping criteria do not meet do

10 Calculate neighbour solutions by applying neighbourhood structure (N1, N2, . . .Nn) and
consider the best solution as candidate solution f (s∗)

11 if f (s∗) ≤ f (s) or f (s∗) ≤ B then
12 s← s∗

13 Boundary level B← B− β ∗ random(1, 5)

14 if f (s∗) ≤ f (sbest) then
15 sbest ← s∗

16 if no solution improves in M iterations then
17 Boundary level B← B + random(1, 5)

18 return sbest as a partial best solution

5. TGH-mGD Algorithm

Algorithm 6 illustrates TGH-mGD approach that is implemented to compare with PGH-mGD.
In TGH-mGD, the ordering uses six graph heuristic orderings which are LD, LWD, LE, SD-LD,
SD-LWD and SD-LE. In each heuristic ordering, an initial feasible solution and its penalty cost are
generated (lines 5–6). These steps are continued for 30 times for each of the heuristic orderings.
Thirty iterations are chosen as we wish to generate a comparatively large pool of initial solutions for
each of the instances. This will assist in selecting a good quality initial solution that will be employed
in the improvement phase. After determining the best initial solution, an improvement phase is carried
out using the same modified GD algorithm as described in Algorithm 5 (lines 7–8). Finally, the penalty
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cost is calculated. It is noted that during implementing modified GD in TGH-mGD, the only change is
that instead of partial solution vector we use complete solution vector. ExamResolutionManager (see
Algorithm 4) is also used when examinations have difficulty finding appropriate time slots and rooms.

Algorithm 6: TGH-mGD approach.

1 heuristic orderings list A = [LD, LWD, LE, SD− LD, SD− LWD, SD− LE]
2 for each heuristic H ∈ A do
3 Initial ordering based on heuristics H
4 for 30 iterations do
5 Construct an initial feasible solution
6 Calculate initial feasible penalty

7 Select the best penalty cost and solution vector
8 Use modified GD for improvement (Algorithm 5)
9 if the final solution vector satisfies all hard constraints then

10 return the final penalty cost as a result

6. Experimental Setup

Both PGH-mGD and TGH-mGD are validated with the Toronto and ITC2007 exam datasets.
We examine the effect of exam assignment values v, graph heuristic orderings and execution time on
solution quality. The experiment is repeated 30 times with different random seeds. The program is
coded in Java (Java SE 7) and performed on a PC with following configurations: Intel Core i7 (3 GHz),
4 GB RAM and Windows 10 OS.

6.1. Toronto Dataset

For the Toronto benchmark dataset, twelve instances are tested. Four different v values are
considered: 10%, 25%, 50% and 75%. Six different graph heuristic orderings including LD, LWD, LE,
SD-LD, SD-LWD and SD-LE are employed in partial construction phases. Termination criterion for
Toronto dataset is the time duration, and we investigate with three execution times such as 600 s,
1800 s and 3600 s. In the Toronto dataset, three neighbourhood structures are considered:

• N1: Move—an examination is randomly selected and moved to a random time slot.
• N2: Swap—Two examinations are randomly selected, and their time slots are swapped.
• N3: Swap time slot—Two time slots are randomly selected, and all examinations between the two

time slots are swapped.

The above three neighbourhood structures are used during the improvement phase. However,
we only accept neighbourhood moves that lead to an improvement.

6.2. ITC2007 Exam Dataset

We experiment with eight instances from the ITC2007 exam dataset. Six graph heuristic orderings
LD, LWD, LE, SD-LD, SD-LWD and SD-LE are used to construct partial solutions. We use v = 5%
and v = 10%. We experiment with two-time duration: 600 s and 3600 s. In the ITC2007 exam dataset,
the following neighbourhood operations are employed:

• N1: An examination is randomly selected and is moved to a random time slot and room.
• N2: Two examinations are randomly selected, and their time slots and rooms are swapped.
• N3: After selecting an examination, it is moved to a different room within the same time slot.
• N4: Two examinations are selected randomly and moved to different time slots and rooms.
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During the improvement phase, a neighbourhood (i.e., N1, N2, N3 and N4) is selected randomly
and it is applied only if the solution is feasible; otherwise, a different neighbourhood structure will
be selected.

It is noted that for both Toronto and ITC2007 exam datasets, the total execution time is divided
among all partial improvement phases in such a way that the complete examination scheduling (i.e.,
last partial improvement phase) have sufficient time for improvement.

7. Experimental Result

In this section, we describe the results obtained from the experiment. The discussion starts with
Toronto dataset followed by the ITC2007 dataset.

7.1. Experimental Results with Toronto Dataset

Table 4a–d present the performance of TGH-mGD and PGH-mGD when they are employed on
the Toronto dataset using four different v values (i.e., 10%, 25%, 50%, and 75%) and with termination
criteria: 600 s, 1800 s and 3600 s. We present the best and the average values for all problem instances.
It is obvious from Table 4a–d that, with the same v value, the results with longer runs tend to
outperform the results with a less amount of run (this is not surprising). Both TGH-mGD and
PGH-mGD usually improve the solution quality. Using the same amount of run, the results with a
lower v value are usually better than the results with a larger v value. Generally, we obtain better
quality solutions when v = 10% with 3600 s compared to larger v value (i.e., 75%) with same amount of
run (i.e., 3600 s). It is also noticed that in all the combinations of v and running time, the PGH-mGD
outperforms TGH-mGD completely.

Table 4. Penalty values of Toronto dataset for different termination criteria

(a) v = 10% for PGH-mGD

Instances
600 s 1800 s 3600 s

TGH-mGD PGH-mGD TGH-mGD PGH-mGD TGH-mGD PGH-mGD
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 5.98 6.19 5.69 5.83 5.78 5.99 5.60 5.69 5.58 5.70 4.58 4.72
car-f-92 4.95 5.11 4.66 4.78 4.80 4.95 4.57 4.69 4.58 4.66 3.82 3.93
ear-f-83 38.67 40.46 37.00 38.69 37.23 39.24 36.35 37.33 33.68 34.76 33.23 34.49
hec-s-92 11.92 12.19 11.25 11.91 11.44 11.92 11.18 11.75 10.53 11.02 10.32 11.09
kfu-s-93 15.65 16.80 14.61 15.43 15.37 16.09 14.44 14.91 14.79 15.10 13.34 13.97
lse-f-91 12.75 13.61 11.78 12.34 12.40 12.99 11.05 11.47 10.85 11.12 10.24 10.62
rye-s-93 11.90 12.24 11.44 11.89 11.71 11.88 11.25 11.71 11.39 11.54 9.79 10.29
sta-f-83 158.21 158.48 157.66 158.28 157.86 158.14 157.50 158.19 157.39 157.72 157.14 157.64
tre-s-92 9.42 9.80 8.58 8.88 9.21 9.49 8.20 8.44 8.24 8.50 7.74 8.03
uta-s-92 4.12 4.17 3.70 3.82 3.93 4.04 3.61 3.68 3.22 3.29 3.13 3.22
ute-s-92 28.49 29.47 27.38 28.61 28.04 28.82 27.08 27.83 26.96 27.79 25.28 26.04
yor-f-83 40.44 41.35 39.00 40.43 39.52 40.22 38.34 39.39 35.51 36.71 35.68 36.79
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(b) v = 25% for PGH-mGD

Instances
600 s 1800 s 3600 s

TGH-mGD PGH-mGD TGH-mGD PGH-mGD TGH-mGD PGH-mGD
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 5.98 6.19 5.63 5.82 5.78 5.99 5.57 5.67 5.58 5.70 4.60 4.68
car-f-92 4.95 5.11 4.68 4.85 4.80 4.95 4.63 4.71 4.58 4.66 3.89 4.04
ear-f-83 38.67 40.46 36.82 38.89 37.23 39.24 35.93 37.83 33.68 34.76 33.30 34.43
hec-s-92 11.92 12.19 11.31 12.05 11.44 11.92 11.23 11.78 10.53 11.02 10.49 11.09
kfu-s-93 15.65 16.80 14.71 15.57 15.37 16.09 14.60 15.27 14.79 15.10 13.55 14.34
lse-f-91 12.75 13.61 12.06 12.67 12.40 12.99 11.46 12.10 10.85 11.12 10.25 10.76
rye-s-93 11.90 12.24 11.40 11.86 11.71 11.88 11.38 11.71 11.39 11.54 10.68 11.20
sta-f-83 158.21 158.48 157.71 158.34 157.86 158.14 157.70 158.12 157.39 157.72 157.03 157.41
tre-s-92 9.42 9.80 8.79 9.06 9.21 9.49 8.56 8.85 8.24 8.50 7.94 8.15
uta-s-92 4.12 4.17 3.77 3.88 3.93 4.04 3.61 3.74 3.22 3.29 3.17 3.26
ute-s-92 28.49 29.47 27.97 28.85 28.04 28.82 27.56 28.53 26.96 27.79 25.47 25.95
yor-f-83 40.44 41.35 39.18 40.78 39.52 40.22 39.11 40.06 35.51 36.71 35.68 36.91

(c) v = 50% for PGH-mGD

Instances
600 s 1800 s 3600 s

TGH-mGD PGH-mGD TGH-mGD PGH-mGD TGH-mGD PGH-mGD
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 5.98 6.19 5.82 6.05 5.78 5.99 4.63 4.80 5.58 5.70 4.09 4.41
car-f-92 4.95 5.11 4.81 5.00 4.80 4.95 5.56 5.72 4.58 4.66 4.63 4.74
ear-f-83 38.67 40.46 36.91 39.11 37.23 39.24 36.28 38.13 33.68 34.76 33.43 34.68
hec-s-92 11.92 12.19 11.70 12.13 11.44 11.92 11.41 11.92 10.53 11.02 10.59 11.17
kfu-s-93 15.65 16.80 15.12 15.86 15.37 16.09 14.78 15.38 14.79 15.10 13.51 14.46
lse-f-91 12.75 13.61 12.44 13.10 12.40 12.99 11.75 12.45 10.85 11.12 10.50 10.99
rye-s-93 11.90 12.24 11.62 12.08 11.71 11.88 11.47 11.86 11.39 11.54 11.24 11.55
sta-f-83 158.21 158.48 157.86 158.40 157.86 158.14 157.43 158.05 157.39 157.72 157.15 157.54
tre-s-92 9.42 9.80 9.00 9.20 9.21 9.49 8.77 8.99 8.24 8.50 8.03 8.22
uta-s-92 4.12 4.17 3.85 4.02 3.93 4.04 3.77 3.88 3.22 3.29 3.26 3.36
ute-s-92 28.49 29.47 28.26 29.00 28.04 28.82 27.68 28.40 26.96 27.79 25.52 26.57
yor-f-83 40.44 41.35 39.34 41.00 39.52 40.22 38.99 40.19 35.51 36.71 35.46 36.75

(d) v = 75% for PGH-mGD

Instances
600 s 1800 s 3600 s

TGH-mGD PGH-mGD TGH-mGD PGH-mGD TGH-mGD PGH-mGD
Best Avg Best Avg Best Avg Best Avg Best Avg Best Avg

car-s-91 5.98 6.19 4.82 5.02 5.78 5.99 4.70 4.85 5.58 5.70 4.83 5.06
car-f-92 4.95 5.11 5.92 6.15 4.80 4.95 5.68 5.91 4.58 4.66 3.96 4.11
ear-f-83 38.67 40.46 37.16 39.55 37.23 39.24 36.73 38.09 33.68 34.76 32.48 33.46
hec-s-92 11.92 12.19 11.55 12.19 11.44 11.92 11.33 11.85 10.53 11.02 10.52 10.99
kfu-s-93 15.65 16.80 15.35 16.14 15.37 16.09 14.76 15.47 14.79 15.10 13.51 14.43
lse-f-91 12.75 13.61 12.66 13.43 12.40 12.99 12.44 12.91 10.85 11.12 10.37 11.15
rye-s-93 11.90 12.24 11.59 12.16 11.71 11.88 11.57 11.82 11.39 11.54 10.53 11.09
sta-f-83 158.21 158.48 157.87 158.31 157.86 158.14 157.64 158.05 157.39 157.72 157.20 157.63
tre-s-92 9.42 9.80 9.05 9.33 9.21 9.49 8.68 8.98 8.24 8.50 8.04 8.25
uta-s-92 4.12 4.17 3.94 4.06 3.93 4.04 3.79 3.92 3.22 3.29 3.26 3.36
ute-s-92 28.49 29.47 27.94 28.97 28.04 28.82 27.69 28.48 26.96 27.79 25.48 26.12
yor-f-83 40.44 41.35 39.42 40.78 39.52 40.22 38.81 40.00 35.51 36.71 35.48 36.68

A comparative study of PGH-mGD with TGH-mGD is shown in Table 5. For all problem instances,
PGH-mGD outperforms TGH-mGD. In car-s-91, maximum improvement of 17.92% is observed
followed by car-f-92 and rye-s-93 which have around 16.50% and 14% improvement, respectively.
For instances kfu-s-93, lse-f-91, tre-s-92 and ute-s-92, we obtain at least a 5% improvement, whereas for
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the other five instances, the improvement is below 4%. For eight instances, SD-LD produces the best
results. This might be because the more conflicted exams are being prioritized. It is also observed that,
on most occasions, a lower v tends to produce the best results. As can be seen, in the nine instances
out of twelve, lower v (10%) produces the best results.

In a statistical analysis, we perform a t-test with a confidence level at 0.05. The null hypothesis (H0)
is that there is no difference between TGH-mGD and PGH-mGD, whereas the alternative hypothesis
(H1) states PGH-mGD performs better than TGH-mGD. Referring to Table 5, it is observed that the
p-values of all instances are lower than the confidence level of 0.05, indicating that H0 is rejected and
H1 is accepted. We therefore conclude that the performance of PGH-mGD is significantly better than
TGH-mGD for the Toronto dataset.

Table 5. Comparisons of results between TGH-mGD and PGH-mGD for Toronto dataset.

Instances

(A)
TGH-mGD PGH-mGD %Impro-

vement
=

C−E
C

×100%
(I)

t-Test

Initial
Solution

with Graph
Heuristics

(B)

Modified GD
Algorithm Best

(E)
Avg
(F)

Graph
Heuristic
Orderings

(G)

v(%)

(H)
Best

(C)

Avg

(D)

p-Value
(J)

car-s-91
8.33
(LD) 5.58 5.70 4.58 4.72 SD-LD 10% 17.92 1.41 × 10−54

car-f-92
7.00
(LD) 4.58 4.66 3.82 3.93 SD-LD 10% 16.59 1 × 10−52

ear-f-83
52.35

(SD-LE) 33.68 34.76 32.48 33.46 SD-LD 75% 3.56 0.00047

hec-s-92
16.21

(SD-LWD) 10.53 11.02 10.32 10.99 SD-LD 10% 1.99 0.046692

kfu-s-93
23.68
(LD) 14.79 15.10 13.34 13.97 SD-LD 10% 9.80 1.84 × 10−23

lse-f-91
18.83
(LE) 10.85 11.12 10.24 10.62 SD-LD 10% 5.62 1.45 × 10−14

rye-s-93
18.28

(SD-LD) 11.39 11.54 9.79 10.29 SD-LD 10% 14.05 4.16 × 10−29

sta-f-83
166.43

(SD-LE) 157.39 157.72 157.03 157.41 SD-LWD 25% 0.23 0.018815

tre-s-92
12.07

(SD-LE) 8.24 8.50 7.74 8.03 SD-LD 10% 6.07 9.53 × 10−19

uta-s-92
5.53
(LE) 3.22 3.29 3.13 3.22 SD-LWD 10% 2.80 1.32 × 10−8

ute-s-92
38.03

(SD-LD) 26.96 27.79 25.28 26.08 SD-LWD 10% 6.23 3.95 × 10−20

yor-f-83
49.8
(LD) 35.51 36.71 35.46 36.68 SD-LWD 50% 0.14 0.043694

Column A shows instances. Column B is the best initial solution with graph heuristic orderings with TGH-mGD
approach. Column C and D show the best and the average cost after improvement with the modified GD algorithm,
respectively. In PGH-mGD, column E and F show the best and the average cost respectively with their graph
heuristic orderings (column G) and v value (column H). Column I shows the improvement of PGH-mGD over
TGH-mGD by comparing their best-reported results. Column J shows the p-values of t-test result.

7.2. Experimental Results with ITC2007 Exam Dataset

Table 6a,b present the penalty values for the ITC2007 exam dataset with v = 5% and v = 10%.
The termination criteria is 600 s and 3600 s. Therefore, four different result sets are obtained. In all
cases, we highlight the best and the average penalty costs for all the problem instances. Referring
to Table 6a,b, when we increase the termination criterion from 600 s to 3600 s with the same v value,
the penalty costs decrease for PGH-mGD (and TGH-mGD). However, when v value is increased
from 5% to 10% (using the same time duration), the penalty values tend to be higher for PGH-mGD.
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We obtain the best results for most of the instances (6 out of 8 instances) with v = 5% and time
duration of 3600 s in PGH-mGD.

Table 6. Penalty values of ITC2007 exam dataset for different termination criteria.

(a) v = 5% for PGH-mGD

Instances 600 s 3600 s
TGH-mGD PGH-mGD TGH-mGD PGH-mGD

Best Avg Best Avg Best Avg Best Avg

Exam_1 12,096 12,599.26 7837 8687.40 9791 10,727.64 5328 5676.74
Exam_2 2114 3160.99 1448 2171.43 996 1170.77 407 653.49
Exam_3 34,333 41,308.88 19,119 22,332.93 23,052 27,456.67 11,692 13,461.00
Exam_4 33,910 34,693.51 19,988 26,017.32 33,621 34,323.08 16,204 19,005.79
Exam_5 10,118 11,006.88 8714 9711.07 7415 7877.17 4786 4993.68
Exam_6 28,150 30,506.54 26,350 26,754.63 29,960 30,941.25 25,880 26,085.05
Exam_ 7 16,572 18,459.67 11,081 11,904.77 9399 9757.41 6181 6834.67
Exam _8 15,366 17,662.61 11,863 19,124.70 11,845 12,847.23 8238 9708.57

(b) v = 10% for PGH-mGD

Instances 600 s 3600 s
TGH-mGD PGH-mGD TGH-mGD PGH-mGD

Best Avg Best Avg Best Avg Best Avg

Exam_1 12,096 12,599.26 8322 9124.77 9791 10,727.64 5794 6039.93
Exam_2 2114 3160.99 1356 2623.73 996 1170.77 476 529.33
Exam_3 34,333 41,308.88 21,027 25,542.00 23,052 27,456.67 11,709 13,806.63
Exam_4 33,910 34,693.51 22,298 28,292.99 33,621 34,323.08 16,591 19,897.41
Exam_5 10,118 11,006.88 8557 10,233.27 7415 7877.17 4300 4941.47
Exam_6 28,150 30,506.54 26,510 29,284.95 29,960 30,941.25 26,245 26,839.18
Exam _7 16,572 18,459.67 11,276 12,289.63 9399 9757.41 5507 6119.60
Exam _8 15,366 17,662.61 12,414 22,078.43 11,845 12,847.23 9626 10,461.21

Comparison between TGH-mGD and PGH-mGD for ITC2007 exam dataset is shown in
Table 7. For all of the eight instances, PGH-mGD produces better quality solutions compared to
TGH-mGD. It is observed that a maximum improvement is obtained on Exam_2, with 59.14%
improvement. Exam_3 and Exam_4 have around 50% improvement. Three exams including Exam_1,
Exam_5 and Exam_7 have an average of around 40% improvement, whereas Exam_8 and Exam_6
obtain 30.45% and 13.61% improvement, respectively. We can see that PGH-mGD tends to improve the
solution quality by employing lower v value, as six out of eight problem instances it produces the best
results with v = 5%. For all instances, hybrid graph heuristic orderings produce the best results as
they can handle the complex exams well. We have carried out a t-test with a confidence level at 0.05.
The null hypothesis (H0) is that there is no difference between TGH-mGD and PGH-mGD, and the
alternative hypothesis (H1) is PGH-mGD performs better than TGH-mGD. The results indicate that
p-values of all instances are smaller than the confidence level (0.05), indicating that H0 is rejected,
and H1 is accepted. Therefore, the difference between these two approaches is significant for the
ITC2007 exam dataset, with the performance of PGH-mGD being better than TGH-mGD.



Computation 2020, 8, 46 22 of 28

Table 7. Comparisons of results between TGH-mGD and PGH-mGD for the ITC2007 exam dataset.

Instances

(A)
TGH-mGD PGH-mGD %Impro-

vement
=

C−E
C

×100%
(I)

t-Test

Initial
Solution

with Graph
Heuristics

(B)

Modified GD
Algorithm Best

(E)
Avg
(F)

Graph
Heuristic
Orderings

(G)

v(%)

(H)
Best

(C)

Avg

(D)

p-Value
(J)

Exam_1
25,989

(SD-LE) 9791 10,727.64 5328 5676.74 SD-LWD 5% 45.58 5.82 × 10−44

Exam_2
30,960

(SD-LE) 996 1170.77 407 653.49 SD-LD 5% 59.14 1.49 × 10−37

Exam_3
85,356

(SD-LD) 23,052 27,456.67 11,692 13,461.00 SD-LE 5% 49.27 4.94 × 10−29

Exam_4
41,702

(SD-LD) 33,621 34,323.08 16,204 19,005.79 SD-LD 5% 51.80 7.66 × 10−26

Exam_5
132,953

(LD) 7415 7877.17 4300 4941.47 SD-LE 10% 42.00 4.24 × 10−27

Exam_6
44,160

(SD-LE) 29,960 30,941.25 25,880 26,085.05 SD-LWD 5% 13.61 1.95 × 10−39

Exam_7
53,405

(SD-LE) 9399 9757.41 5507 6119.60 SD-LWD 10% 41.41 1.8 × 10−55

Exam_8
92,767

(SD-LE) 11,845 12,847.23 8238 9708.57 SD-LD 5% 30.45 1.7 × 10−15

Column A shows instances. Column B is the best initial solution with graph heuristic orderings with TGH-mGD
approach. Column C and D show the best and the average cost after improvement with the modified GD algorithm,
respectively. In PGH-mGD, column E and F show the best and the average cost respectively with their graph
heuristic orderings (column G) and v value (column H). Column I shows the improvement of PGH-mGD over
TGH-mGD by comparing their best-reported results. Column J shows the p-values of t-test result.

7.3. Comparison with the State-of-the-Art Approaches

In this section, the proposed PGH-mGD has been compared with other approaches presented in
the scientific literature for solving the Toronto and ITC2007 exam datasets. For each instance, we take
the best results obtained from the PGH-mGD approach to compare with other reported results.

Ranking and average raking are computed in the following way. Let us consider total n approaches
are compared for m given instances in terms of their best results. For a given instance, each approach
of m is given ordinal value OK where 1 ≤ OK ≤ n and 1 ≤ K ≤ m. This value indicates the ranking of
the corresponding instance. Then each approach sums all its OK values for m instances and computes
the average value. Finally, all of the approaches are ranked according to their average values.

7.3.1. Toronto Dataset

Table 8 presents the best results of the proposed approach with state-of-the-art methods on the
Toronto dataset. We have ranked all the approaches according to the penalty costs (shown in brackets)
of each instance. For each approach, the average rank of all Toronto instances is computed.

It is observed from Table 8 that we have been able to produce solutions for all of the
twelve instances of the Toronto dataset. Our approach outperforms Sabar et al. [9] and Alinia
Ahandani et al. [27] in all problem instances. Apart from instance rye-s-93, for all other
instances, our approach achieves better results than the approaches proposed by Carter et al. [5],
Abdul Rahman et al. [41], Pillay and Banzhaf [8], Qu et al. [55] and Nelishia Pillay and Özcan [35].
Moreover, we have obtained better results than the results reported by Turabieh and Abdullah [56]
for all instances except for kfu-s-93, lse-f-91 and rye-s-93. For six instances (car-s-91, car-f-92, ear-f-83,
rye-s-93, tre-s-92, uta-s-92), we have produced better results than Burke et al. [57]. While comparing
among all approaches, our approach has produced the best results for five instances car-s-91, car-f-92,
ear-f-83, tre-s-92 and uta-s-92, and the second best results for instances hec-s-92, kfu-s-93, sta-f-83,
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ute-s-92 and yor-f-83. Besides, for one instance lse-f-91 we have obtained the third best result. Finally,
when we compare the average rank of the approaches, our approach is ranked first in solving all
problem instances of the Toronto dataset.

Table 8. Best results from our proposed approach (PGH-mGD) compared to the results from the
scientific literature for the Toronto dataset.

Instances
Carter
et al.
[5]

Alinia
Ahandani

et al.
[27]

Abdul
Rahman

et al.
[41]

Qu
et al.
[55]

Turabieh
and

Abdullah
[56]

Burke
et al.
[57]

Nelishia
Pillay

and Özcan
[35]

Pillay
and

Banzhaf
[8]

Sabar
et al.
[9]

Our
Approach

car-s-91
7.1
(10)

5.22
(9)

5.12
(6)

4.95
(4)

4.8
(3)

4.6
(2)

5.16
(8)

4.97
(5)

5.14
(7)

4.58
(1)

car-f-92
6.2
(10)

4.67
(8)

4.41
(7)

4.09
(3)

4.1
(4)

3.9
(2)

4.32
(6)

4.28
(5)

4.7
(9)

3.82
(1)

ear-f-83
36.4
(7)

35.74
(5)

36.91
(9)

34.97
(4)

34.92
(3)

32.8
(2)

36.52
(8)

35.86
(6)

37.86
(10)

32.48
(1)

hec-s-92
10.8
(5)

10.74
(4)

11.31
(7)

11.11
(6)

10.73
(3)

10
(1)

11.87
(9)

11.85
(8)

11.9
(10)

10.32
(2)

kfu-s-93
14
(3)

14.47
(5)

14.75
(8)

14.09
(4)

13
(1)

13
(1)

14.67
(7)

14.62
(6)

15.3
(9)

13.34
(2)

lse-f-91
10.5
(4)

10.76
(6)

11.41
(9)

10.71
(5)

10.01
(2)

10
(1)

10.81
(7)

11.14
(8)

12.33
(10)

10.24
(3)

rye-s-93
7.3
(1)

9.95
(7)

9.61
(4)

9.2
(2)

9.65
(5)

–
(9)

9.48
(3)

9.65
(5)

10.71
(8)

9.79
(6)

sta-f-83
161.5

(9)
157.1

(3)
157.52

(4)
157.64

(5)
158.26

(6)
156.9

(1)
157.64

(5)
158.33

(7)
160.12

(8)
157.03

(2)

tre-s-92
9.6
(9)

8.47
(6)

8.76
(8)

8.27
(4)

7.88
(2)

7.9
(3)

8.48
(7)

8.48
(7)

8.32
(5)

7.72
(1)

uta-s-92
3.5
(6)

3.52
(7)

3.54
(8)

3.33
(3)

3.2
(2)

3.2
(2)

3.35
(4)

3.4
(5)

3.88
(9)

3.13
(1)

ute-s-92
25.8
(3)

25.86
(4)

26.25
(7)

26.18
(6)

26.11
(5)

24.8
(1)

27.16
(8)

28.88
(9)

32.67
(10)

25.28
(2)

yor-f-83
41.7
(10)

38.72
(5)

39.67
(6)

37.88
(4)

36.22
(3)

34.9
(1)

41.31
(9)

40.74
(8)

40.53
(7)

35.46
(2)

Avg.
Rank

6.41
(6)

5.75
(5)

6.91
(9)

4.17
(4)

3.25
(3)

2.17
(2)

6.75
(8)

6.58
(7)

8.50
(10)

2.00
(1)

The best results obtained are highlighted in bold. Value in bracket shows the rank of the corresponding penalty
value.

7.3.2. ITC2007 Exam Dataset

Table 9 highlights the comparison of our proposed approach with some results from the scientific
literature on ITC2007 exam dataset. For each problem instance, we rank all of the approaches based
on their penalty values. The rank value is shown next to the penalty value of each problem instance.
We also compute the average rank for each approach for solving the overall ITC2007 exam dataset.

It is observed from Table 9 that Müller [14] produces the best results for five out of eight instances,
and its average rank is the highest. Besides, Alzaqebah and Abdullah [58] is in second place in terms
of average rank. Our approach is ranked in the third position among the ten approaches. We were able
to produce the best results for Exam_6, the second best result for Exam_2, and the third best result for
both Exam_4 and Exam_8. Overall, our approach shows comparable results with other approaches in
solving all of the instances of ITC2007 exam dataset.
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Table 9. Best results from our proposed approach (PGH-mGD) compared to the results from the
scientific literature for the ITC2007 exam dataset.

Instances Müller
[14]

Gogos
et al.
[59]

Atsuta
et al.
[60]

De
Smet
[61]

Pillay
[62]

Leite
et al.
[32]

Abdul
Rahman

et al.
[41]

Hamilton
-Bryce
et al.
[63]

Alzaqebah
and

Abdullah
[58]

Our
Approach

Exam_1
4370
(1)

5905
(6)

8006
(9)

6670
(8)

12,035
(10)

6207
(7)

5231
(3)

5517
(5)

5154
(2)

5328
(4)

Exam_2
400
(1)

1008
(8)

3470
(10)

623
(7)

3074
(9)

535
(5)

433
(4)

538
(6)

420
(3)

407
(2)

Exam_3
10,049

(2)
13,862

(7)
18,622

(9)
-

(10)
15,917

(8)
13,022

(6)
9265
(1)

10,325
(4)

10,182
(3)

11,692
(5)

Exam_4
18,141

(6)
18,674

(7)
22,559

(8)
-

(10)
23,582

(9)
14,302

(1)
17,787

(5)
16,589

(4)
15,716

(2)
16,204

(3)

Exam_5
2988
(1)

4139
(7)

4714
(9)

3847
(6)

6860
(10)

3829
(5)

3083
(2)

3632
(4)

3350
(3)

4300
(8)

Exam_6
26,950

(6)
27,640

(7)
29,155

(9)
27,815

(8)
32,250

(10)
26,710

(5)
26,060

(2)
26,275

(4)
26,160

(3)
25,880

(1)

Exam_7
4213
(1)

6683
(7)

10,473
(8)

5420
(4)

17,666
(10)

5508
(6)

10,712
(9)

4592
(3)

4271
(2)

5507
(5)

Exam_8
7861
(1)

10,521
(6)

14,317
(8)

-
(10)

16,184
(9)

8716
(5)

12,713
(7)

8328
(4)

7922
(2)

8238
(3)

Avg
Rank

2.38
(1)

6.88
(7)

8.75
(9)

7.88
(8)

9.38
(10)

5.0
(6)

4.13
(4)

4.25
(5)

2.50
(2)

3.88
(3)

The best results obtained are highlighted in bold. Value in bracket shows the rank of the corresponding penalty
value.

8. Discussion and Analysis

It is clear from the above experimental results that the PGH-mGD approach performs better than
the TGH-mGD approach for solving both Toronto and ITC2007 exam datasets. It is also observed that
lower v, the longer time duration and hybrid graph heuristic orderings can reduce the penalty costs
(i.e., produce quality solutions) in the PGH-mGD approach. Our best results are comparable with
the reported results from the scientific literature (see Tables 8 and 9), with several cases producing
the best results. The PGH-mGD approach can produce feasible solutions for all datasets because
the ExamResolutionManager procedure helps to handle any deadlock faced during the scheduling
process. As ITC2007 exam dataset is a heavily constraint problem compared to Toronto dataset,
the ExamResolutionManager procedure is used more often in the ITC2007 exam dataset than in the
Toronto dataset. One limitation of the partial examination approach is that in the case of some
examinations with high conflict densities and complex hard constraints, it is occasionally stuck in
obtaining feasible solutions, thus increasing the computational time.

In TGH-mGD, a good initial solution is first chosen from the construction phase, and then it
is improved so that a good final solution is obtained. According to Kahar and Kendall [16], it is
observed that in a sequential (i.e., traditional) approach, good initial solution(s) tend to produce good
improved solution(s). However, with the partial examination assignment approach, we can improve
the partial solution many times, especially with small v, and this improvement activity encourages
the improvement phase to produce a good quality solution. Additionally, modified GD promotes
exploration (with the reheating mechanism), allowing the search to escape from local optima. Hence
the partial examination assignment approach (i.e., PGH-mGD) is able to produce quality solutions (for
all instances) compared to the traditional approach (i.e., TGH-mGD).

9. Conclusions and Future Work

In this paper, a partial exam assignment strategy has been proposed for addressing the
examination timetabling problem. In this approach, partially selected exams that are obtained based on
a parameter named exam assignment value v are constructed using graph heuristic orderings, and then
solution quality is improved using a modified GD algorithm until all exams have been scheduled.
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Both TGH-mGD and PGH-mGD are tested on two different benchmark datasets—Toronto and
ITC2007 exam track, with each benchmark having its own distinctive features. Experimental results
and statistical analysis indicate that PGH-mGD produces better results compared to the TGH-mGD
algorithm for all instances of the datasets. To study the effectiveness of the proposed approach,
we experiment with different v values, termination criteria (time duration) and graph heuristic
orderings. It is observed that, with smaller v and the longer time duration, PGH-mGD approach
tends to produce quality solutions. In comparison with state-of-the-art methods, our approach has
produced the five best results for the Toronto dataset, with promising results obtained for other seven
instances of the dataset. Although we have produced one best result for the ITC2007 exam dataset,
our obtained results of other instances are competitive with the reported results from the scientific
literature. For future work, the following suggestions might be worthy of investigation.

• The partial construction phase could be extended and improved by introducing adapting ordering
strategies or fuzzy logic that may select the appropriate heuristics (i.e., LD, LE, LWD) for exam
ordering.

• The partial improvement phase can also be improved by incorporating other meta-heuristic
approaches, such as SA, tabu search and genetic algorithms, or hybridising of meta-heuristics.

• This paper has studied the impact of different exam assignment value v on the penalty cost.
However, it would be worthwhile to study the effect of dynamic or adaptive exam assignment
value on the penalty cost.
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Abbreviations

The following abbreviations are used in this manuscript:

PGH-mGD Partial graph heuristic orderings with a modified great deluge
TGH-mGD Traditional graph heuristic orderings with a modified great deluge
ITC2007 2nd International Timetable Competition
LD Largest degree
LWD Largest weighted degree
LE Largest enrolment
SD Saturation degree
GD Great deluge
SD-LD Saturation degree - Largest degree
SD-LWD Saturation degree -Largest weighted Degree
SD-LE Saturation degree- Largest enrolment
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