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a b s t r a c t 

Information on lower bounds plays an important role in the development of exact and heuristic meth- 

ods for stochastic service network design (SSND). In this paper, we consider the Lagrange dual prob- 

lem of SSND for computing lower bounds. The Lagrange dual problem is obtained by introducing sce- 

nario bundling into scenario-wise decomposition of the SSND model and dualizing the non-anticipativity 

constraints in a Lagrangian fashion. Our theoretical analysis establishes the superiority of the resulting 

optimal Lagrange dual bound over that in the case of scenario-wise decomposition. The Lagrange dual 

problem is solved from the primal perspective by employing the recently proposed FW-PH algorithm, 

which combines Progressive Hedging with a Frank-Wolfe-like method. To improve the computing effi- 

ciency, scenario-wise decomposition in the FW-PH algorithm is replaced with bundle-wise decomposi- 

tion, which divides the problem by scenario bundles into multiple-scenario subproblems, rather than by 

individual scenarios into single-scenario subproblems. Scenario bundles are constructed using Gaussian 

mixture models. Our convergence analysis shows that this improvement retains the desirable theoretical 

property of FW-PH about convergence to the optimal Lagrange dual value. Computational experiments 

on SSND instances demonstrate that the improved FW-PH algorithm is far superior to the basic version, 

providing either a dramatic saving in the run-time required to achieve convergence or a much tighter 

lower bound when terminated due to the time limit. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

Over the past few years, less-than-truckload and parcel trans- 

ortation have experienced tremendous growth on the coat- 

ails of soaring electronic and mobile commerce ( Bai, Wallace, Li 

 Chong, 2014 ). Due to relatively small freight in these two types 

f transportation ( Hewitt, Crainic, Nowak & Rei, 2019 ), consolida- 

ion operations are strongly preferred over customized operations. 

hat is, carriers usually choose to consolidate shipments from dif- 

erent customers with possibly different origins and destinations 

nto common vehicles, rather than tailor shipping services for each 

ustomer individually ( Crainic, 20 0 0 ). Given customers’ demand, a 

ransportation plan is therefore needed for consolidation carriers 

o distribute the shipments from many origins to many destina- 

ions in an underlying network, such as the national highway sys- 

em. Since each arc of the underlying network is associated with 

 fixed cost, which represents the minimum investment required 
∗ Corresponding author. 
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o offer shipping services on an arc ( Jiang, Bai, Atkin & Kendall, 

017 ), the planning entails deciding which arcs to open and how to 

oute each shipment on the chosen arcs, so as to minimize the to- 

al cost while satisfying customers’ transportation demand. The se- 

ected arcs constitute a service network, and the process of build- 

ng the transportation plan is referred to as service network design 

SND) ( Lium, Crainic & Wallace, 2009 ). Because of the discrete na- 

ure of design decisions and continuous nature of commodity flow, 

ND problems are often cast in the form of mixed integer program- 

ing models. 

.1. Stochastic service network design 

Traditionally, customers’ transportation demand is defined in 

he spatial aspect as a certain volume of goods to be shipped be- 

ween origin-destination pairs ( Crainic, 20 0 0 ), leaving out its tem- 

oral dimension. In the Internet and mobile commerce era, the 

iming of the delivery of a shipment is, however, often an impor- 

ant determinant of service quality. To ensure timely delivery, the 

lanning of service schedules has become an integral part of SND. 

https://doi.org/10.1016/j.ejor.2022.01.044
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2022.01.044&domain=pdf
mailto:ruibin.bai@nottingham.edu.cn
https://doi.org/10.1016/j.ejor.2022.01.044
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his is usually addressed by dividing the planning horizon into a 

ertain number of time periods and duplicating each terminal of 

he underlying network in every time period to produce the so- 

alled space-time network ( Lium et al., 2009 ). An arc therein con- 

ecting different terminals in two different periods represents the 

ovement from one terminal at some time period to another ter- 

inal at the next period. Compared to static SND without temporal 

equirements, a time-dependent SND involves a significantly larger 

etwork and hence is much harder to solve ( Wang, Crainic & Wal- 

ace, 2019 ). 

Typically, SND deals with tactical planning of operations for a 

elatively long period of time (e.g., next season), and future de- 

and generally cannot be accurately predicted. In order to build 

 robust service network that functions well for various demand 

ealizations, demand uncertainty must be explicitly taken into ac- 

ount ( Lium et al., 2009 ). For SND under demand uncertainty, the 

et of decisions can be divided into two groups according to the 

vailability of demand information at the decision-making point, 

iving rise to a two-stage decision problem. In the first stage, deci- 

ions about arc selection have to be taken without demand infor- 

ation. After future demand is realized, decisions about the most 

ost-effective way of flowing commodities are made in the sec- 

nd stage. In most applications, demand uncertainty is described 

y either continuous probability distributions or discrete distri- 

utions with numerous outcomes, making the resulting optimiza- 

ion model intractable ( Lium et al., 2009 ). A common approach to 

his problem consists in approximating these distributions as a fi- 

ite number of scenarios, each with a probability of occurrence 

 Høyland, Kaut & Wallace, 2003 ). With uncertain demand repre- 

ented by scenarios, the stochastic SND problem can be formulated 

s a deterministic model, the objective function of which is to min- 

mize the first-stage cost of network construction, plus the expec- 

ation of the second-stage cost with respect to all the scenarios. 

ompared to deterministic SND, stochastic SND is more difficult to 

ackle owing to the sheer number of second-stage decisions and 

he additional complexity of balancing first-stage decisions against 

arious scenarios. 

.2. Lower bound computation 

As an NP-hard problem, deterministic SND is generally difficult 

o solve ( Bai, Kendall, Qu & Atkin, 2012 ). The extension of deter-

inistic static SND to stochastic SND makes the resulting model 

ven more challenging from a computational perspective. Fortu- 

ately, the model contains some decomposable structures that 

an be advantageously exploited to alleviate the computational 

ifficulty. Broadly speaking, the decomposition strategies devel- 

ped to date can be categorized into (i) stage-wise decomposition 

here the model is decomposed vertically by time stages, and (ii) 

cenario-wise decomposition where the model is decomposed hor- 

zontally according to scenarios ( Bakir, Boland, Dandurand & Er- 

ra, 2020 ; Beier, Venkatachalam, Corolli & Ntaimo, 2015 ; Watson, 

oodruff & Hart, 2012 ). One advantage of scenario-wise decom- 

osition methods over the stage-wise ones is that they are easily 

daptable to parallel implementation, since the scenario subprob- 

ems can be solved independently ( Guo, Hackebeil, Ryan, Watson & 

oodruff, 2015 ). In this paper, we focus primarily on scenario-wise 

ecomposition methods. 

The scenario-wise decomposition strategies can be further clas- 

ified into exact and heuristic methods ( Ryan, Rajan & Ahmed, 

016 ). The lower bound information plays an important role in 

oth of these methods. Exact methods such as dual decomposi- 

ion ( Carøe & Schultz, 1999 ) rely on efficient estimation of lower 

ounds to iteratively prune regions of the search space that will 

ot contain an optimal solution ( Barnett, Watson & Woodruff, 

017 ; Guo et al., 2015 ). Heuristic methods such as progressive 
1098 
edging (PH) ( Løkketangen & Woodruff, 1996 ; Watson & Woodruff, 

011 ) depend on lower bounds to assess the quality of the so- 

utions relative to the global minimum ( Gade et al., 2016 ). One 

ight settle for a suboptimal solution if the corresponding objec- 

ive function value is close to a known lower bound, since an op- 

imal solution would not be much better ( Hooker, 2008 ). In this 

aper, we attempt to develop a method of efficiently computing 

igh-quality lower bounds for stochastic SND. 

To obtain lower bounds, one of the most widely used meth- 

ds is Lagrangian relaxation ( Fisher, 2004 ). The main idea is to 

elax the original problem by removing the hard constraints and 

ncorporating them into the objective function with some weights 

called Lagrange multipliers). For any choice of the Lagrange multi- 

liers, the relaxation of the original problem (called Lagrange dual 

unction ) is usually easier to solve and its optimal value is a lower 

ound on the optimal value of the original problem. The problem 

f finding the best lower bound from the Lagrange dual function 

ith respect to the Lagrange multipliers is referred to as the La- 

range dual problem ( Boyd & Vandenberghe, 2004 ). In the context 

f mixed integer programs, as is the case with stochastic SND, it is 

ell known that the optimal value of the Lagrange dual problem 

s equal to the optimal value of a corresponding primal characteri- 

ation , which is obtained by convexifying the feasible region of the 

riginal primal problem ( Carøe & Schultz, 1999 ; Gade et al., 2016 ;

emhauser & Wolsey L.A., 1988 ). The best lower bound from La- 

rangian relaxation can thus be computed by solving either the La- 

range dual problem or the primal problem. The solution methods 

or the former problem include, among others, subgradient meth- 

ds ( Hooker, 2008 ; Shor, Kiwiel & Ruszczynski, 1985 ) and proximal 

undle methods ( Carøe & Schultz, 1999 ; Kiwiel, 1990 ). In this pa-

er, we restrict our study to the solution approaches for the latter 

roblem (i.e. the primal problem). 

Despite a linear program, the primal characterization turns out 

o be hard to solve. The main difficulty stems from the challenge 

f an explicit polyhedral description of the convex hull of the 

onstraints, which is generally not readily available. Gade et al. 

2016) applied the progressive hedging (PH) method to the primal 

roblem. It is proved in their work that the sequences of primal so- 

utions and Lagrange multipliers generated by PH at each iteration 

onverge to the optimal solutions for the primal and Lagrange dual 

roblem, respectively. However, due to the absence of an explicit 

escription of the convex hull in practical applications, the authors 

sed the PH to optimize directly over the constraints of the origi- 

al problem rather than the convex hull, and the PH was meant to 

rovide feasible Lagrange multipliers for the Lagrange dual func- 

ion to compute lower bounds. Because of the authors’ use of non- 

onvex feasible region, the convergence guarantee no longer holds. 

o overcome the lack of convergence guarantees for the above use 

f PH, Boland et al. (2018) proposed a hybrid algorithm, FW-PH, 

hich combines PH with a Frank-Wolfe (FW) method to solve the 

rimal problem. In the FW-PH, the PH is used as a “wrapper”, 

hile the FW is used as a subroutine to construct inner approx- 

mation of the convex hull over the course of the PH, thereby el- 

gantly circumventing the difficulty in convexification of the con- 

traint set. Since the FW-PH has desirable theoretical properties of 

onvergence to the optimal Lagrangian dual value, we explore the 

se of FW-PH to derive lower bounds for stochastic dynamic SND 

n this paper. 

.3. Scenario bundling-based decomposition 

While theoretically appealing, the FW-PH exhibits slow conver- 

ence speed when applied to the stochastic SND model. To im- 

rove on this, we note that scenario bundling has emerged as 

n effective way to accelerate PH convergence. The key improve- 

ent to the PH is the replacement of scenario-wise decomposi- 



X. Jiang, R. Bai, J. Ren et al. European Journal of Operational Research 302 (2022) 1097–1112 

t

a

p

r

l

d

c

l

h

G

t

s

w

b

m

q

a

i

b

w

t

d

p

p

w

i

s

v

o

p

r

a

n

d

a

a

n

k

s

s

2

p

L

l

m

s

1

S

P

F

c

s

F

f

s

t

i

w

i

a

p

d

o

c

m

s

f

F

v

a

t

t

s

i

S  

w

b

L

b

t

e  

c

t

2

2

N

s

T
t

r

t  

t

i

r

f

t

f

a

r

i

a

s

d

C

c

c

k

s  

w

D

s

i

F  

T

fi

m

p

T

o

ion with bundle-wise decomposition, where individual scenarios 

re combined into bundles and the mathematical model is decom- 

osed by the resulting bundles into scenario-bundle subproblems, 

ather than by individual scenarios into single-scenario subprob- 

ems. Compared to scenario-wise decomposition, the marked re- 

uction in the number of subproblems typically leads to improved 

omputing efficiency, provided that the multi-scenario subprob- 

ems are still manageable. 

As an attractive algorithmic enhancement, scenario bundling 

as received growing attention in the past few years. Escudero, 

arín, Pérez and Unzueta (2013) introduced scenario bundling into 

he decomposition of the Lagrangian relaxation of the two-stage 

tochastic mixed 0–1 problem for obtaining strong lower bounds 

ith less computational effort. Gade et al. (2016) applied scenario 

undling to the PH-based lower bound computation for stochastic 

ixed-integer programs, leading to an improvement in the bound 

uality and a reduction in the number of PH iterations. In the 

bove two pieces of research, scenarios were grouped randomly 

nto bundles of equal size, but the effects of different scenario 

undling results were not compared and no guidance was given on 

hich scenario would be grouped together. Ryan et al. (2020) at- 

empted to group scenarios from an optimization perspective and 

eveloped a mixed integer formulation of the scenario bundling 

roblem so as to maximize the Lagrangian relaxation bound. Com- 

ared with random grouping, this optimization-driven approach 

as observed to provide stronger bounds, but at the cost of 

ncreased computational time. Crainic, Hewitt and Rei (2014) pre- 

ented a k -means-based scenario bundling method and several 

ariants thereof for the PH-based meta-heuristic in the context 

f stochastic SND. Empirical evaluations indicated that the pro- 

osed methods performed better compared to grouping scenarios 

andomly or not grouping scenarios. Jiang, Bai, Wallace, Kendall 

nd Landa-Silva (2021) developed a probabilistic treatment of sce- 

ario bundling by introducing membership scores to measure the 

egree to which a scenario belongs to each bundle. The authors 

pplied Gaussian mixture models to calculate membership scores 

nd showed that Gaussian mixture models-based PH achieved 

early equivalent solution quality in a fraction of the run-time of 

 -means-based PH. In addition to two-stage stochastic programs, 

cenario bundling has attracted a lot of interest from other re- 

earch areas, such as multistage stochastic programs ( Bakir et al., 

020 ; Escudero, Garín & Unzueta, 2016 ) and chance-constrained 

rograms ( Ahmed, Luedtke, Song & Xie, 2017 ; Deng, Jia, Ahmed, 

ee & Shen, 2021 ). Due to its superior performance reported in the 

iterature in improving pH, the method based on Gaussian mixture 

odels is used in this paper to construct scenario bundles, as we 

hall see later. 

.4. Motivations and contributions 

The slow convergence of FW-PH we observed for the stochastic 

ND problem, and the efficacy of scenario bundling in improving 

H, motivate us to consider integrating scenario bundling into 

W-PH, in the hope of developing a theoretically supported and 

omputationally efficient method to compute lower bounds for 

tochastic SND. The main contribution of this paper is twofold. 

irst, we present a method that can produce a tighter lower bound 

or stochastic SND within less run-time. In the proposed method, 

cenario bundling is introduced into scenario-wise decomposi- 

ion of the stochastic SND model, and the FW-PH algorithm is 

mproved by replacing scenario-wise decomposition with bundle- 

ise decomposition. The convergence analysis indicates that this 

mprovement not only retains the desirable property of FW-PH 

bout convergence to the optimal Lagrangian dual value, but also 

roduces tighter lower bounds than the case of scenario-wise 

ecomposition. Second, we perform an experimental assessment 
1099 
f the improved FW-PH in the context of stochastic SND. To 

onstruct scenario bundles, we introduce the Gaussian mixture 

odels-based scenario bundling method. The numerical results 

how that the specific choice of the parameter (i.e., the penalty 

actor) has a marked effect on the performance of the improved 

W-PH. We analyze the behavior of the improved FW-PH under 

arious penalty factors and recommend how to choose appropri- 

te parameter settings. Moreover, the results demonstrate that 

he improved FW-PH is far superior to the basic version when 

he penalty factor is not too large, providing either a dramatic 

aving in the run-time required to achieve convergence or a much 

mproved lower bound when terminated due to the time limit. 

The remainder of this paper is organized as follows. In 

ection 2 , we give the mathematical model of SSND. In Section 3 ,

e present the Lagrange dual problem of SSND obtained by 

undle-wise decomposition and Lagrangian relaxation. To solve the 

agrange dual problem, we develop the FW-PH method based on 

undle-wise decomposition in Section 4 . In Section 5 , we describe 

he Gaussian mixture models for scenario bundling. We empirically 

valuate the improved FW-PH in Section 6 . In Section 7 , we con-

lude with a summary of our results and some directions for fur- 

her study. 

. Problem formulation 

.1. Notations 

etworks 

Let N represent the set of physical terminals. The transportation 

ervice is scheduled over a time horizon of T periods, denoted by 

 := { 0 , 1 , . . . , T − 1 } . We assume that the transport movement be- 

ween every pair of terminals takes one period and use t − to rep- 

esent the departure time of a movement with arrival time t . So 

 

− = T − 1 if ttakes the value 0, otherwise t − = t − 1 . We can ob-

ain the so-called space-time network by duplicating each terminal 

n every time period. Every pair of terminals in different time pe- 

iods is connected by an arc, representing the transport movement 

rom one terminal at a certain time period to another terminal at 

he next period. We use a triplet ( i, j, t ) to denote a time-space arc 

rom terminal i at time t − to terminal j at time t . In particular, an 

rc connecting the identical terminals in different time periods is 

eferred to as a holding arc, which represents the activities of hold- 

ng vehicles at a terminal for some time. Each arc ( i, j, t ) has an 

ssociated fixed cost c ij incurred by the transportation or holding 

ervice. Except for holding arcs, each arc has a resource capacity 

enoted by u . 

ommodities 

Through the underlying space-time network, there are some 

ommodities to be shipped. Let K be the commodity set. Each 

ommodity k ∈ K is characterized by its quantity, which is not 

nown in advance but can be represented by a finite number of 

cenarios, its origin o(k ) and the time σ (k ) when it is available, as

ell as its destination s (k ) and the delivery deadline τ (k ) . 

ecisions 

The decision-making process of stochastic SND has a two-stage 

tructure. In the first stage, the decisions on the inclusion of an arc 

n the service network are taken before knowledge of the demand. 

or an arc ( i , j , t ), this decision is denoted by a binary variable x t 
i j 

.

he vector x stands for such decisions on all of the arcs. After the 

rst-stage decisions are made, a realization of the uncertain de- 

and is observed. We have a limited number of scenarios s for 

ossible future demand, each with a probability of occurrence p s . 

hese probabilities are non-negative and sum to 1. The collection 

f these scenarios is denoted by S . The demand of commodity k 



X. Jiang, R. Bai, J. Ren et al. European Journal of Operational Research 302 (2022) 1097–1112 

Table 1 

List of symbols used in the model for stochastic service network design. 

Symbol Meaning 

Network parameters 

N The set of nodes with elements i or j

( i, j ) The arc from node i to node j

u i j The capacity of an arc ( i, j ) 

c i j The fixed cost for providing services on an arc ( i, j ) 

T The set of time periods with elements t ∈ { 0 , 1 , · · · , T − 1 } 
t − The departing time period for a vehicle arriving at time period t

Commodity parameters 

K The set of commodities with elements k 

σ (k ) The time period when commodity k becomes available 

τ (k ) The delivery deadline of commodity k 

S The set of scenarios with elements s 

p s The probability of scenario s 

d s 
k 

The demand of commodity k in scenario s 

d s The vector of d s 
k 

for all types of commodities 

λ The cost of outsourcing one unit of the commodity 

Decision variables 

x t 
i j 

Binary variables indicating whether an arc ( i, j ) in period t is chosen 

x The vector of x t 
i j 

y st 
i jk 

The flow of commodity k on arc ( i, j ) in period t , scenario s 

z s 
k 

The amount of outsourcing for commodity k in scenario s 

i

d

t

d

t  

d

o

v

s

t

o

2

t

w

r

e

(

M

m

s∑

x

w

Q

s∑
k

 

−

∀
y  

y  

z

t

t

e

n

o

s

t

(

o

C

l

n

3

m

m

e

t

b

s  

t

x

w

s

d b 
n scenario s is represented by d s 
k 

and the vector d s denotes the 

emand of all commodities in that scenario. In the second stage, 

he decisions on the flow of commodity are taken based on the 

emand realization. We use the decision variable y st 
i jk 

to represent 

he flow of commodity k on arc ( i, j, t ) in scenarios s . In case the

emand exceeds the capacity of the service network, some of the 

rders can be outsourced to external suppliers. Let the decision 

ariable z s 
k 

denote the amount of outsourcing for commodity k in 

cenarios s , and λ stands for the cost of outsourcing one unit of 

he commodity. 

The full list of symbols used in the mathematical formulations 

f SSND is shown in Table 1 . 

.2. Model formulation 

With the above notations, stochastic SND can be formulated as 

he following two-stage mixed integer program ( Bai et al., 2014 ), 

hich we denote by [SSND]. This formulation based on scenario 

epresentation of demand uncertainty is also referred to as the 

xtensive form ( Crainic et al., 2014 ) or deterministic equivalent 

 Boland et al., 2018 ). 

odel [SSND] 

Stage 1: 

in 

{ ∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

t 
i j + λ

∑ 

s ∈S 
p s Q ( x , d s ) 

} 

(1) 

.t. 
 

j∈N 
x t−

ji 
= 

∑ 

j∈N 
x t i j ∀ i ∈ N , ∀ t ∈ T (2) 

 

t 
i j ∈ { 0 , 1 } ∀ i, j ∈ N , ∀ t ∈ T (3) 

here 

Stage 2: 

 ( x , d s ) = min 

∑ 

k ∈K 
z s k (4) 

.t. 
 

 ∈K 
y st 

i jk ≤ ux t i j ∀ i, j ∈ N , ∀ t ∈ T , ∀ i � = j (5)
1100 
∑ 

j∈N 
y s t 

−
jik 

+ 

∑ 

j∈N 
y st 

i jk 
= 

{ 

d s 
k 
− z s 

k −d s 
k 
+ z s 

k 
0 

if ( i, t ) is supply node for k 
if ( i, t ) is demand node for k 
otherwise 

 i ∈ N , ∀ t ∈ T , ∀ k ∈ K 

(6) 

 

sτ ( k ) 
i jk 

= 0 ∀ i, j ∈ N , ∀ k ∈ K (7)

 

st 
i jk ≥ 0 ∀ i, j ∈ N , ∀ k ∈ K, ∀ t ∈ T (8)

 

s 
k ≥ 0 ∀ k ∈ K (9) 

The objective function (1) minimizes the cost of constructing 

he service network, plus the expected outsourcing cost across all 

he scenarios. Constraint (2) is the design balance constraint, which 

nsures that the number of incoming and outgoing vehicles at each 

ode is balanced. Constraint (3) enforces the binary restrictions 

n design variables. The objective function (4) minimizes the out- 

ourcing cost for a scenario. Constraint (5) ensures that the to- 

al flow along each arc does not exceed its capacity. Constraint 

6) makes sure that all the commodities are shipped from their 

rigins to destinations and hence all customer demands are met. 

onstraint (7) ensures that a commodity must not flow past its de- 

ivery deadline. Constraints (8) and (9) are used to guarantee the 

on-negativity of decision variables. 

. Bundle-wise decomposition and lagrangian dual bound 

Suppose that the set of scenarios S is partitioned into finitely 

any disjoint scenario bundles, indexed by b. In this paper, the 

ethod for bundling scenario is based on Gaussian mixture mod- 

ls, which will be discussed at length in Section 5 . Let Brepresent 

he collection of scenario bundles and hence b ∈ B. To perform 

undle-wise decomposition, we introduce copies x tb 
i j 

of the first- 

tage decision variable x t 
i j 

for each b ∈ Band write x t 
i j 

as a sum of

he form 

 

t 
i j = 

∑ 

b∈B 
p b x 

tb 
i j ∀ i, j ∈ N , ∀ t ∈ T (10) 

here p b is the probability of scenario bundle b and satisfies p b = ∑ 

 ∈ b 
p s . The vector of x tb 

i j 
on all arcs during all time periods for bun- 

le b is denoted by x . Note that these variable copies must satisfy 
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he non-anticipativity constraints (NACs). In the case of scenario- 

ise decomposition, the NACs require that the scenario copies 

f the first-stage decisions should be identical, because there is 

o way to tell which scenario would come true at the decision- 

aking point. For bundle-wise decomposition, the scenarios be- 

onging to the same bundle b share a common first-stage decision 

ariable x tb 
i j 

. Therefore, the NACs among the scenarios within the 

ame bundle are implicitly implemented and only the NACs among 

ifferent bundles need to be explicitly considered. We introduce 

dditional variables x t 
i j 

and express the NACs as 

 

tb 
i j = x t i j , ∀ b ∈ B (11) 

Substituting (10) into (1) , we obtain the objective function in 

he form 

in 

∑ 

b∈B 
p b 

( ∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j + λ

∑ 

s ∈ b 

∑ 

k ∈K 

p s 

p b 
z s k 

) 

(12) 

We see that the objective function decomposes by scenario 

undles. Due to the substitution of x tb 
i j 

for x t 
i j 

, we need to modify

he constraints (2) , (3) and (5) involving x t 
i j 

into 

 

j∈N 
x t 

−b 
ji = 

∑ 

j∈N 
x tb 

i j ∀ i ∈ N , ∀ t ∈ T , ∀ b ∈ B (13)

 

tb 
i j ∈ { 0 , 1 } ∀ i, j ∈ N , ∀ t ∈ T , ∀ b ∈ B (14)

 

 ∈K 
y st 

i jk ≤ ux tb 
i j ∀ i, j ∈ N , i � = j, ∀ t ∈ T , ∀ s ∈ b, ∀ b ∈ B (15)

Let F be the feasible set defined by constraints ( 13 –15 ) and ( 6 –

 ) without taking into account (11) yet. Since these constraints are 

eparable with respect to scenario bundles, we shall denote the 

ubset of Fpertaining to a certain bundle b by F b . Among all of 

he constraints, the newly added NACs (11) are the only ones that 

ie together different bundles. By Lagrangian relaxation, we can re- 

ove the NACs and bring them into the objective function with 

ssociated weights v tb 
i j 

∈ R (called Lagrange multipliers), obtaining 

he Lagrange dual function in the form 

( v ) := min 

⎧ ⎨ 

⎩ 

∑ 

b∈B 

[
p b 

(∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j 

+ λ
∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

)
+ 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
v tb 

i j 

(
x tb 

i j 
− x t 

i j 

)]
: 

( x b , y b , z b ) ∈ F b , ∀ b ∈ B, x t 
i j 

∈ R 

⎫⎬
⎭

(16) 

here v is a vector of length |N | ∗ |N | ∗ |T | ∗ |B| with elements

 

tb 
i j 

. y b and z b are the vectors of y st 
i jk 

and z s 
k 

for all the scenarios

n bundle b, with length |N | ∗ |N | ∗ |K| ∗ |T | ∗ | b| and |K| ∗ | b| , re-

pectively. It is often convenient to define w 

tb 
i j 

:= 

1 
p b 

v tb 
i j 

and rewrite 

16) as 

( w ) := min 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
p b 

[∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j 

+ λ
∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 
+ 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
w 

tb 
i j 

(
x tb 

i j 
− x t 

i j 

)]
: 

( x b , y b , z b ) ∈ F b , ∀ b ∈ B, x t 
i j 

∈ 

⎫ ⎬ 

⎭ 

(17) 

here w is the vector of w 

tb 
i j 

with the same length as v . Since x t 
i j 

s unconstrained, in order for the Lagrange dual function φ(w ) to 

e bounded from below, the multipliers w 

tb 
i j 

are required to satisfy 

 

b∈B 
p b w 

tb 
i j = 0 ∀ i, j ∈ N , ∀ t ∈ T (18) 

o that the terms related to x t 
i j 

in (17) will vanish. Rearranging 

17) then gives: 

( w ) = min 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
p b 

[∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 

(
c i j + w 

tb 
i j 

)
x tb 

i j 
+ λ

∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

]
: 

( x b , y b , z b ) ∈ F b , ∀ b ∈ B 

⎫ ⎬ 

⎭ 
1101 
(19) 

As can be seen from (19) , both the objective function and 

he constraints are now separable with respect to scenario bun- 

les, and hence the Lagrange dual function splits into separate 

ulti-scenario subproblems for each bundle. In fact, scenario- 

ise decomposition can be viewed as a special case of bundle- 

ise decomposition where each bundle contains only one sce- 

ario, or equivalently, bundle-wise decomposition is a generaliza- 

ion of scenario-wise decomposition. More formally, scenario-wise 

ecomposition corresponds to setting |B| = |S| , whereas the origi- 

al problem [SSND] can be obtained by setting |B| = 1 . 

For any feasible choice of w , the Lagrange dual function φ(w ) 

n model [SSND-B] gives a lower bound on the original problem 

SSND]. We can find the tightest possible lower bound by maximiz- 

ng (19) over w , leading to our bundle-wise decomposition model: 

odel [SSND-B] 

 

LD 
B := max 

w 

{ 

φ( w ) : 
∑ 

b∈B 
p b w 

tb 
i j = 0 

} 

(20) 

This is known as the Lagrange dual problem ( Boyd & Van- 

enberghe, 2004 ) and the vector w is referred to as dual vari- 

bles. Moreover, in comparison with scenario-wise decomposition, 

undle-wise decomposition enables the Lagrange dual problem to 

rovide an equal or tighter lower bound ( Escudero et al., 2013 ). We

ummarize these results in Proposition 1 . 

roposition 1. ς 

LD 
B 

( |B| = |S| ) ≤ ς 

LD 
B 

( 1 < |B| < |S| ) ≤
 

LD 
B ( |B| = 1 ) = ς 

SSND , where ς 

LD 
B (�) is the optimal Lagrange dual 

ound under a given number of scenario bundles in brackets . 

Proof. The three cases differ from each other only in the num- 

er of NACs that are relaxed in φ(w ) . When |B| = |S| , there

re |S| NACs relaxed. That number decreases to |B| and 0 for the case 

f 1 < |B| < |S| and |B| = 1 , respectively. So φ(w ) for the case

f |B| = |S| is a relaxation of that for the case of 1 < |B| < |S|
r |B| = 1 , and φ(w ) for the case of 1 < |B| < |S| is a relaxation of

hat for the case of |B| = 1 . From this, the result follows. 

There exist several methods for directly solving the dual prob- 

em (20) , such as the subgradient method. The following propo- 

ition opens up the possibility of computing the Lagrange dual 

ound from the primal perspective. 

roposition 2. The optimal value ς 

LD of the Lagrange dual problem 

20) equals the optimal value of a linear program arising from con- 

exification of the original problem [SSND], giving 

 

LD 
B = min 

⎧ ⎨ 

⎩ 

∑ 

b∈B 
p b 

(∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j 

+ λ
∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

)
: 

( x b , y b , z b ) ∈ conv ( F b ) , x 
tb 
i j 

= x t 
i j 
, ∀ b ∈ B 

⎫ ⎬ 

⎭ 

(21) 

where conv ( F b ) denotes the convex hull of F b for each b ∈ B. 

Proof. When |B| = |S| , the bundle-wise decomposition reduces 

o the scenario-wise decomposition. The result then follows from 

he proof of Proposition 2 in ( Carøe & Schultz, 1999 ). 

Compared to the case of |B| = |S| , the case of 1 < |B| < |S| dif-

ers only in the sizes of some vectors and the values of some co- 

fficients. For example, the size of the vector z b for a bundle b

hanges from |K| to | b| ∗ |K| . The coefficient for an element z s 
k 

of

he vector z b changes from λ to λ ∗ ( p s / p b ) . By using vector rep- 

esentations, all the formula for the case of 1 < |B| < |S| can thus

e converted to the same form as those for the case of |B| = |S| .
herefore, the result follows in the case of 1 < |B| < |S| from the

roof for the case of |B| = |S| . 
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From Proposition 2 , we know that the optimal Lagrange dual 

ound can also be derived by solving a certain primal problem, 

hose feasible region is the convex hull of the constraints of the 

riginal problem. In this work, we explore the Lagrange dual bound 

omputation from the primal perspective instead of the dual angle 

nd focus our efforts on methods for solving the problem (21) . 

. FW-PH based on bundle-wise decomposition 

Although there exist many efficient methods for linear pro- 

rams, the primal problem (21) turns out hard to solve. The princi- 

al difficulty lies in the fact that an explicit polyhedral description 

f conv ( F b ) is generally not available in practice. The recently de- 

eloped algorithm FW-PH ( Boland et al., 2018 ), which integrates a 

rank-Wolfe method with the Progressive Hedging algorithm, is a 

heoretically desirable method to resolve this difficulty. Essentially, 

he FW-PH algorithm is a scenario-wise decomposition method, 

hich works by breaking down the potentially difficult problem 

nto manageable single-scenario subproblems. In this section, we 

mprove the FW-PH algorithm by substituting bundle-wise decom- 

osition, which divides the problem according to scenario bundles 

nstead of individual scenarios into multi-scenario subproblems. It 

s shown in later sections that this improvement significantly im- 

roves the computational performance without spoiling the desir- 

ble property of optimal convergence. 

In the FW-PH algorithm, PH plays the role of a ‘wrapper’, where 

equences of subproblem solutions and dual variable values are 

enerated during the iterative process, while FW serves as a sub- 

outine to solve the subproblems in each PH iteration. 

The standard PH begins with an augmented Lagrangian repre- 

entations for problem (21) , so that it breaks down into separate 

ubproblems for each scenario. The augmented Lagrangian method 

s quite similar to the Lagrangian relaxation above, but adds ex- 

ra squared penalty terms in the objective function. When scenario 

undles are considered instead of individual scenarios, applying 

he augmented Lagrangian method to the NACs in (21) yields 

in 

{ ∑ 

b∈B 
p b L 

ρ
b 
( x b , y b , z b , x , w b ) : ( x b , y b , z b ) ∈ conv ( F b ) , ∀ b ∈ B 

}

(22) 

here 

 

ρ
b 
( x b , y b , z b , x , w b ) = 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j 

+ λ
∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
w 

tb 
i j 

(
x tb 

i j 
− x t 

i j 

)
+ 

ρ
2 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 

(
x tb 

i j 
− x t 

i j 

)2 (23) 

nd ρ > 0 is the penalty factor with a fixed value. x is the vector

f x t 
i j 

with length |N | ∗ |N | ∗ |T | . w b is the vector of w 

tb 
i j 

on all

rcs during all the time periods for bundle b. Scenario bundles are 

btained with a method based on Gaussian mixture models, as we 

hall see in Section 5 . 

For a given x , the problem (22) decomposes into separate sub- 

roblems for each scenario bundle. Solving these subproblems 

ives admissible solutions, which do not necessarily satisfy the 

ACs. Nevertheless, only if these subproblem solutions are also im- 

lementable can they be a feasible solution to the problem (21) . 

mplementable solutions are the ones that fulfill the NACs. To ad- 

resses this issue, the PH iteratively aggregates all subproblem so- 

utions into an implementable solution and encourages every sub- 

roblem solution to move towards this implementable solution un- 

il all subproblem solutions agree. Specifically, given values (x ) ( r−1 ) 

nd ( w b ) 
(r) obtained in the (r − 1) -th iteration, the r -th iteration 

f the PH involves three key steps stated as follows. Here a vari- 

ble with a parentheses-enclosed loop index (r) in the superscript 

epresents its value in the r -th iteration. 
1102 
Step 1 Solve for each scenario bundle b the multi-scenario sub- 

problem of the form 

(
( x b ) 

( r ) , ( y b ) 
( r ) , ( z b ) 

( r ) 
)

∈ arg min 

{
L 
ρ
b 

(
x b , y b , z b , ( x ) 

( r−1 ) , ( w b ) 
( r ) 

)
: 

( x b , y b , z b ) ∈ conv ( F b ) 

}
(24) 

Step 2 Compute an implementable solution for the first-stage 

decision variables according to 

( x ) ( 
r ) ← 

∑ 

b∈B 
p b ( x b ) 

( r ) (25) 

Step 3 Update the dual variables for each scenario bundle b ac- 

cording to 

( w b ) 
( r+1 ) ← ( w b ) 

( r ) + ρ
[
( x b ) 

( r ) − ( x ) ( 
r ) 
]

(26) 

The iterative procedure of the PH generates a sequence of im- 

lementable solutions and dual variable values that provably con- 

erges to the optimal solutions to (21) and (20) , respectively ( Gade 

t al., 2016 ). 

The trouble now is that an explicit polyhedral description 

f conv ( F b ) is not known, so that the multi-scenario subprob- 

em (24) cannot be tackled directly. Fortunately, the subproblem 

24) has two structural characteristics: (1) minimizing a linear 

unction over conv ( F b ) is much simpler than minimizing L 
ρ
b 
(�) 

ver conv ( F b ) because we can replace conv ( F b ) with F b ; (2) min- 

mizing L 
ρ
b 
(�) over the convex hull of a relatively small number of 

xtreme points of conv ( F b ) is much simpler than minimizing L 
ρ
b 
(�) 

ver conv ( F b ) . Under these two conditions, the simplicial decom- 

osition method, which is an extension of the classical Frank-Wolfe 

ethod, is well suited for solving (24) ( Bertsekas, 2015 ). 

The simplicial decomposition method overcomes the lack of an 

xplicit polyhedral description for conv ( F b ) in (24) by constructing 

nner approximations of conv ( F b ) . That is, the set conv ( F b ) is ap- 

roximated by the convex hull of some extreme points of conv ( F b ) 

nd a new extreme point of conv ( F b ) is added at each iteration to 

xpand this convex hull. Minimizing L 
ρ
b 
(�) over this convex hull is 

uch easier since the decision variables can now be expressed as a 

onvex combination of these extreme points. For the problem (24), 

iven the solutions ( ( x b ) 
( r−1 ) 

, ( y b ) 
( r−1 ) 

, ( z b ) 
( r−1 ) ) and the finite set 

 V b ) ( r−1 ) of points obtained in the ( r −1)-th iteration, the r -th it- 

ration of the simplicial decomposition method involves three key 

teps stated as follows. 

Step 1 Generate ( ̂ x b , ̂  y b , ̂  z b ) as an extreme point of conv ( F b ) 

by solving a modification of the problem (24) , in which the 

quadratic objective L 
ρ
b 
(�) is linearized using a first-order ap- 

proximation. The mathematical description of the modified 

problem can be found in the lines 14 and 15 of Algorithm 1 .

Step 2 Expand the set of extreme points according to ( V b ) (r) ← 

( V b ) ( r−1 ) ∪ { ( ̂ x b , ̂  y b , ̂  z b ) } . 
Step 3 Generate solutions ( ( x b ) 

(r) 
, ( y b ) 

(r) 
, ( z b ) 

(r) ) by solving a 

modification of the problem (24) , in which the feasible set 

conv ( F b ) is replaced by conv ( ( V b ) 
(r) ) . The mathematical de- 

scription of the modified problem can be found in the line 

17 of Algorithm 1 . 

The solutions generated in Step 3 of the simplicial decomposi- 

ion method provably converge to the optimal solutions to the con- 

ex problem (24) in a finite number of iterations ( Bertsekas, 2015 ). 

The FW-PH algorithm integrates the simplicial decomposition 

ethod into PH by substituting Step 1 of each PH iteration with 

ne iteration of the simplicial decomposition method. A complete 

escription of the FW-PH algorithm based on bundle-wise decom- 

osition is given in Algorithm 1 . Here, V b is a finite set of points

 x b , y b , z b ) . Initialization of the set V b in the lines 4–7 is crucially 

mportant for convergence of the FW-PH algorithm. The goal is to 
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Algorithm 1 

FW-PH based on bundle-wise decomposition for the problem (21). 

// Initialization in the lines 1–11. 

1: r ← 0 , ( w 

tb 
i j 
) (0) ← 0 for all i, j ∈ N , t ∈ T , b ∈ B

2: for b ∈ B do 

3: ( ( x b ) 
(0) 

, ( y b ) 
(0) 

, ( z b ) 
(0) 

) ∈ argmin { 
∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
c i j x 

tb 
i j 

+ λ
∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

: 

( x b , y b , z b ) ∈ F b 
} 

4: ( V b ) (0) ← { ( ( x b ) (0) 
, ( y b ) 

(0) 
, ( z b ) 

(0) 
) } 

5: if b is not a certain pre-specified ˜ b ∈ B then 

6: ( ( ̄y b ) 
(0) 

, ( ̄z b ) 
(0) 

) ∈ argmin { λ ∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

: ( ( x ˜ b ) 
(0) 

, y b , z b ) ∈ F b } 
7: ( V b ) (0) ← ( V b ) (0) ∪ { ( ( x ˜ b ) (0) 

, ( ̄y b ) 
(0) 

, ( ̄z b ) 
(0) 

) } 
8: end if 

9: end for 

10: (x ) (0) ← 

∑ 

b∈B 
p b ( x b ) 

(0) 

11: ( w b ) 
(1) ← ( w b ) 

(0) + ρ[ ( x b ) 
(0) − (x ) 

(0) 
] 

// Iteration updates in the line 12. 

12: r ← r + 1 

13: for b ∈ B do 

// Steps 1, 2 and 3 of simplicial decomposition in the lines 14–17. 

14: ̂  w 

tb 
i j 

← ( w 

tb 
i j 
) (r) + ρ( ( x tb 

i j 
) 
( r−1 ) − ( x t 

i j 
) 
( r−1 ) 

) for all i, j ∈ N , t ∈ T , b ∈ B

15: ( ̂ x b , ̂  y b , ̂ z b ) ∈ argmin { 
∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
( c i j + ˆ w 

tb 
i j 
) x tb 

i j 
+ λ

∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

z s 
k 

: 

( x b , y b , z b ) ∈ F b 
} 

16: ( V b ) (r) ← ( V b ) ( r−1 ) ∪ { ( ̂ x b , ̂  y b , ̂ z b ) } 
17: ( ( x b ) 

(r) 
, ( y b ) 

(r) 
, ( z b ) 

(r) 
) ∈ argmin { L 

ρ
b 
( x b , y b , z b , (x ) 

( r−1 ) 
, ( w b ) 

(r) 
) : 

( x b , y b , z b ) ∈ conv ( ( V b ) 
(r) 

) 
} 

// Lower bound computation in the line 18. 

18: ( φb ) 
(r) ← 

∑ 

i ∈N 

∑ 

j∈N 

∑ 

t∈T 
( c i j + ˆ w 

tb 
i j 
) ̂ x tb 

i j 
+ λ

∑ 

s ∈ b 

∑ 

k ∈K 
p s 
p b 

ˆ z s 
k 

19: end for 

// Steps 2 and 3 of the pH in the lines 20–21. 

20: (x ) (r) ← 

∑ 

b∈B 
p b ( x b ) 

(r) 

21: ( w b ) 
( r+1 ) ← ( w b ) 

(r) + ρ[ ( x b ) 
(r) − (x ) 

(r) 
] 

// Lower bound computation in the line 22. 

22: (φ) (r) ← 

∑ 

b∈B 
p b ( φb ) 

(r) 

23: If the termination criteria are met, then stop. Otherwise, go to line 12. 
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nsure that the initial set ( V b ) (0) for each bundle has a common 

 b . This is accomplished by arbitrarily choosing one bundle ˜ b ∈ B
nd adding an extra point to the initial set for every bundle ex- 

ept ˜ b . In all the extra points, the element x b is set equal to the

nitial solution ( x ˜ b ) 
(0) for bundle ˜ b , and the elements y b and z b 

re obtained by solving the problem in line 6 of Algorithm 1 , with

he first-stage decision variables x b fixed at the initial solutions 

 x ˜ b ) 
(0) for bundle ˜ b . The termination criteria are based mainly on 

onvergence of the x (r) 
b 

to a common x (r) , for which we require 

he Euclidean distance 

√ ∑ 

b∈B 
p b ‖ x (r) 

b 
− x (r) ‖ 2 to be less than some 

respecified tolerance. If needed, Algorithm 1 may also terminate 

hen a predetermined limit on the run-time or the number of it- 

rations is exceeded. 

We now extend the convergence analysis of the FW-PH algo- 

ithm performed for the case of scenario-wise decompositions in 

 Boland et al., 2018 ) to the more general case of bundle-wise de-

omposition. The following proposition shows that the value (φ) (r) 

alculated at each iteration of the bundle-wise decomposition- 

ased FW-PH provides a lower bound on the optimal objective 

alue ς 

LD of the problem (21). Moreover, the sequence of lower 

ound (φ) (r) converges to ς 

LD in the limit. 

roposition 3. Suppose Algorithm 1 is applied to the problem (21) . 

or the value (φ) (r) calculated at line 22 at iteration r of Algorithm 1 , 

he following hold: 

(a) (φ) (r) ≤ ς 

LD 
B for any r ≥ 1 . 

(b) lim 

r→∞ 

(φ) (r) = ς 

LD 
B . 
1103 
Proof. When |B| = |S| , the bundle-wise decomposition reduces 

o the scenario-wise decomposition. By Proposition 3 and 4 in 

 Boland et al., 2018 ), the results (a) and (b) hold in this case. Note

hat the assumption of Proposition 3 in ( Boland et al., 2018 ) that∑ 

∈B 
p b ( w 

tb 
i j 

) 
(0) = 0 is guaranteed by the initialization ( w 

tb 
i j 

) (0) ← 0 

n the line 1 of Algorithm 1 . Note also that the precondition of 

roposition 4 in ( Boland et al., 2018 ) that the initial set ( V b ) (0) for

ach bundle has a common x b is satisfied by the initialization of 

he set V b in the lines 4–7 of Algorithm 1 . 

When 1 < |B| < |S| , as we have explained in the proof of

roposition 2 , all the formulas for the case of 1 < |B| < |S| can be

onverted to the same form as those for the case of |B| = |S| by

ector representations. Therefore, the results (a) and (b) follow in 

he case of 1 < |B| < |S| from the proof for the case of |B| = |S| . 

. Scenario bundling based on Gaussian mixture models 

In this section, we consider methods for grouping individual 

cenarios into bundles. As reported in the literature, Gaussian mix- 

ure models (GMMs) outperform other prevalent methods for sce- 

ario bundling, such as randomly grouping scenarios and k -means, 

n improving the computing efficiency of the PH algorithm. In view 

f the close connection between the PH algorithm and the FW-PH 

lgorithm, we employ GMMs to construct scenario bundles for the 

W-PH algorithm in this paper. Here we give only a brief descrip- 

ion of GMMs in the context of scenario bundling. For more infor- 

ation on GMMs, see ( Bishop, 2006 ) and ( Jiang et al., 2021 ). 

Before scenario bundling, we need to specify the scenario fea- 

ures based on which scenario similarity is measured, as well as 

he number of desired bundles. Because of its superior perfor- 

ance reported in ( Crainic et al., 2014 ), we choose as the feature

f a scenario s the |K| -dimensional vector d s , which represents the 

emand volumes of all the commodities in scenario s . As in ( Jiang

t al., 2021 ), the number of bundles is determined by rounding the 

quare root 
√ |S| to the nearest integer, so as to achieve a proper 

alance between the number and the size of the associated sub- 

roblems. 

Suppose we wish to partition the data set comprising |S| data 

oints d s into |B| disjoint bundles b. In order to use GMMs for data 

rouping, we first need to fit a GMM to the given data set. A GMM

s a linear combination of |B| multivariate Gaussian densities, given 

y 

 

b∈B 
ϕ b G ( d s | μb , �b ) (27) 

The parameters ϕ b are called mixing coefficients, which sat- 

sfy 0 ≤ ϕ b ≤ 1 and 

∑ 

b∈B 
ϕ b = 1 . Each Gaussian density G ( d s | μb , �b ) 

s called a component of the mixture and has its own |K| - 
imensional mean μb and |K| -by- |K| covariance matrix �b . For a 

K| -dimensional data point d s , the multivariate Gaussian density 

akes the form 

 ( d s | μb , �b ) 

= 

1 

( 2 π) | K | / 2 
1 

( det ( �b ) ) 
1 / 2 

exp 

{ 

−1 

2 

( d s − μb ) 

 �b 

−1 
( d s − μb ) 

} 

(28) 

here det ( �b ) denotes the determinant of �b . 

Given |S| data points, the values of the parameters ϕ, μ and �, 

hich denote the set of ϕ b , μb and �b respectively, are determined 

sing the maximum likelihood method. If the data points are as- 

umed to be drawn independently from this mixture of Gaussian 

ensities, the likelihood function of the |S| data points is given by 



X. Jiang, R. Bai, J. Ren et al. European Journal of Operational Research 302 (2022) 1097–1112 

Algorithm 2 

Scenario bundling based on Gaussian mixture models. 

// Initialization in the lines 1–2. 

1: r ← 0 

2: Initialize ϕ (0) , μ(0) and �(0) . 

// Iteration updates in the line 3. 

3: r ← r + 1 

// E-step of the EM algorithm in the lines 4–8. 

4: for s ∈ S do 

5: for b ∈ B do 

6: ( δsb ) 
(r) ← 

( ϕ b ) 
( r−1 ) 

G ( d s | ( μb ) 
( r−1 ) 

, ( �b ) 
( r−1 ) 

) ∑ 

b∈B 
( ϕ b ) 

( r−1 ) 
G ( d s | ( μb ) 

( r−1 ) 
, ( �b ) 

( r−1 ) 
) 

7: end for 

8: end for 

// M-step of the EM algorithm in the lines 9–13. 

9: for b ∈ B do 

10: ( ϕ b ) 
(r) ← 

∑ 

s ∈S 
( δsb ) 

(r) 

|S| 

11: ( μb ) 
(r) ← 

∑ 

s ∈S 
( δsb ) 

(r) 
d s ∑ 

s ∈S 
( δsb ) 

(r) 

12: ( �b ) 
(r) ← 

∑ 

s ∈S 
( δsb ) 

(r) 
( d s −( μb ) 

(r) 
) ( d s −( μb ) 

(r) 
) 

 

∑ 

s ∈S 
( δsb ) 

(r) 

13: end for 

14: if � ( ϕ, μ, �) does not converge, then 

Go to line 3. 

15: end if 

// Scenario bundling in the lines 15–17. 

16: for s ∈ S do 

17: Assign s to the bundle that satisfies arg max 
b 

( δsb ) 
(r) . 

18: end for 

∏
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 ∈S 

( ∑ 

b∈B 
ϕ b G ( d s | μb , �b ) 

) 

(29) 

The maximum likelihood method estimates the parameter val- 

es by maximizing the log of the likelihood function (29) in the 

orm 

 ( ϕ, μ, �) = 

∑ 

s ∈S 
log 

{ ∑ 

b∈B 
ϕ b G ( d s | μb , �b ) 

} 

(30) 

o that the |S| data points are most probable. An elegant method 

or maximizing (30) is the iterative Expectation-Maximization (EM) 

lgorithm ( Bishop, 2006 ). Given values ϕ 

( r−1 ) , μ( r−1 ) and �( r−1 ) 

btained in the (r − 1) -th iteration, the r-th iteration of the EM 

lgorithm involves two key steps stated as follows. 

E Step For every possible combination of datapoints and com- 

ponents, compute the posterior probability ( δsb ) 
(r) that the 

datapoint d s is from the component G ( d s | μb , �b ) . The for- 

mula of the posterior probability can be found in the line 6 

of Algorithm 2 . 

M Step Update the component means ϕ 

(r) , covariance matrices 

μ(r) and mixing coefficients �(r) using the posterior proba- 

bilities ( δsb ) 
(r) . The update rules can be found in the lines 

10–12 of Algorithm 2 . 

The EM algorithm iterates over these steps until convergence of 

he log likelihood � ( ϕ, μ, �) . A fitted GMM can then be obtained

y substituting the parameter values at convergence into (27) . 

With a fitted GMM, grouping data points is fairly straightfor- 

ard because the posterior probabilities for a data point indicate 

he probability of it belonging to each component. Since we con- 

ider disjoint bundles in this paper, we assign each data point to 

he Gaussian component yielding the highest posterior probabil- 

ty. A complete description of scenario bundling based on Gaussian 

ixture models is given in Algorithm 2 . Regarding the initializa- 

ion in Algorithm 2 , every initial mixing coefficient is set to be 

he uniform probability 1 / |B| . We select |B| data points d s as the 
1104 
nitial means using the k -means ++ algorithm ( Arthur &, Vassilvit- 

kii, 2007 ). To allow for different covariance structures among sce- 

ario bundles, we chose independent full covariance matrices for 

very Gaussian component. The initial covariance matrices for all 

aussian components are diagonal, where an element on the di- 

gonal is the variance of an |S| -dimensional vector formed by d k s 

cross different scenarios. 

. Computational experiments 

.1. Test instances and experimental settings 

In this section, we examine the impact of scenario bundling on 

he convergence speed of FW-pH for stochastic service network de- 

ign problems. Two sets of test instances are included in this study. 

he first set is taken directly from Jiang et al. (2021) , and an adap-

ion thereof forms the second set. For most instances in the first 

et, neither FW-pH nor our proposed bundle-based method, GMM- 

W-pH, can converge within the three-hour time limit, whereas 

he final convergence is observed for many instances in the sec- 

nd set. With these two sets, we are therefore able to see if the 

ffects of scenario bundling generalize in different conditions. 

etwork configuration 

Both sets of test instances use a fully connected network con- 

isting of 6 terminals, but they have different types of cost ma- 

rices. To establish the cost matrices, we labeled these terminals 

onsecutively from 1 to 6 and partitioned them into three groups, 

amely {{1,2}, {3,4}, {5,6}}. We attached a relatively higher fixed 

ost to the arcs connecting two between-group terminals than the 

rcs that link two within-group terminals. While the between- 

roup costs are the same in the first set, we specified different val- 

es for the between-group costs in the second set. For consistency 

ith the names in ( Jiang et al., 2021 ), we refer to these matrices,

hich are shown in Table 2 , as Type 2 and Type 3 cost matrix re-

pectively. In our experiments, all the services are scheduled over a 

lanning horizon of 5 time periods. Since each terminal is repeated 

n every time period, the resulting space-time network comprises 

0 ( = 6 × 5) nodes and 180 ( = 6 × 6 ∗5) arcs. 

cenario representation of demand uncertainty 

In each test instance, there are 12 commodities to be conveyed, 

ut the volumes of these commodities are uncertain. Similar to the 

rocedure in Lium et al. (2009) and Bai et al. (2014) , demand un-

ertainty in our experiment is described by marginal distributions 

f each commodity, along with correlations between all pairs of 

ommodities. We specified the same probability distribution for all 

he commodities, which is given by the symmetric triangular dis- 

ribution Tri(4, 12, 8) where 3 parameters are min, max, and mode, 

espectively. We considered three different correlation settings: (1) 

very pair of commodities are positively correlated, (2) a mix of 

ositively and negatively correlated commodities, (3) all the com- 

odities are uncorrelated. For later use in the instance identifiers, 

he three correlation settings are denoted in turn by uppercase let- 

ers C, M and U. For each correlation setting, we employed the 

pen-source scenario-generating tool from Høyland et al. (2003) to 

onstruct two scenario trees, one containing 20 scenarios and the 

ther including 40 scenarios. The scenario-generating tool is based 

n the moment-matching algorithm, where scenarios are gener- 

ted to match the first four marginal moments and the correlation 

atrix of the given uncertain demand ( Høyland & Wallace, 2001 ; 

øyland et al., 2003 ; Kaut & Wallace, 2007 ). For the two scenario

rees, in-sample stability (see ( Kaut & Wallace, 2007 ; Lium et al., 

009 ) for details) was verified, with the difference between the 

ighest and lowest objective function values across scenario trees 

ess than 1.5%. Other parameters can be found in Table 2 . 
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Fig. 1. The network configuration of the optimal solution for U4035 in Table 3 . 

Table 2 

Problem specifications for the test instances. In each cost matrix, the main diagonal element in the i -th row represents the fixed cost of holding service at terminal i , whereas 

the off-diagonal element in the i -th row and j-th column represents the fixed cost of transportation service from terminal i to j. 

Parameters Values Type 2 cost matrix Type 3 cost matrix 

|N | 6 50 100 250 250 250 250 50 100 250 250 550 550 

T 5 100 50 250 250 250 250 100 50 250 250 550 550 

|K| 12 250 250 50 100 250 250 250 250 50 100 250 250 

u 20 250 250 100 50 250 250 250 250 100 50 250 250 

λ 100(250) ∗ 250 250 250 250 50 100 550 550 250 250 50 100 

#scenarios 20(40) ∗∗ 250 250 250 250 100 50 550 550 250 250 100 50 

∗ : For the instances with type 2 and 3 cost matrices, the outsourcing costs are 100 and 250, respectively. 
∗∗ : Each scenario has an equal probability of occurrence, i.e. 1/20 and 1/40 for the cases of 20 and 40 scenarios, respectively. 

Table 3 

Performance results of FW-PH and GMM-FW-PH under various penalty values on the test instance U4035, for which both algorithms can converge within 3 h. The letter “T”

in the column “Run-time” indicates that the algorithm hit the time limit before convergence. 

CPLEX Direct Solving Expected Cost 

2657.89 

Run-time(s) 

729 

Theoretical bound Via Decomposition 2657.89 

Penalty 

factor 

Optimality Gap (%) # Iterations Run-time (s) 

FW-PH GMM-FW-PH FW-PH GMM-FW-PH FW-PH GMM-FW-PH 

0.2 1.17 0.15 165 67 T T 

0.5 0.82 0.00 146 53 T 9224 

1 0.51 0.00 130 30 T 5487 

2 0.27 0.00 117 17 T 3083 

5 0.06 0.01 102 9 T 1619 

10 0.00 0.00 71 10 7703 1783 

25 0.00 0.00 48 15 5168 2783 

50 0.00 0.00 37 14 3651 2367 

100 0.00 0.00 37 18 3805 3106 

200 0.00 0.00 48 22 5220 3361 

400 0.00 0.00 50 31 5283 4786 

800 0.00 0.00 62 41 7190 7616 

n

c  

n

a

s

‘

i

8

s

o

l

w

n

d

a

Combining the three correlation settings and two different 

umbers of scenarios, together with the two types of cost matri- 

es, we obtained a total of 12 ( = 3 × 2 ∗2) test instances. For conve-

ience, we supplied a unique identifier for each instance. For ex- 

mple, the test instance characterized by positive correlation, 40 

cenarios, Type 3 cost matrix and commodity set 5 is designated 

C4035’. For an instance with 20 (or 40) scenarios, its determin- 

stic equivalent contains 180 integer decision variables, 43,440 (or 
1105 
6,880) continuous decision variables and 19,350 (or 38,670) con- 

traints. While the problem size is far from large by the standards 

f real-world applications, more than half of the test instances are 

arge enough to create serious difficulties for FW-PH to converge 

ithin three hours. Since our primary objective is to see if sce- 

ario bundling helps FW-PH achieve faster convergence, or pro- 

uce a better lower bound at termination, these instances serve 

dequately as the testbed for our purposes. 
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Fig. 2. The impacts of the penalty factor on the performance of GMM-FW-PH. The left plot shows the run-time versus the penalty factor on the instance M4035, whereas 

the right-hand plot shows the optimality gap versus the penalty factor on the instance C4023. Both plots use a base 10 logarithmic scale for the penalty factor. 

Fig. 3. Evolution of the lower bounds with time for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {0.2, 0.5, 1, 2}. 
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these algorithms here. 
We implemented Algorithm 1 in Microsoft Visual Studio 2010 

sing C ++ , with the optimization problems at line 3, 6,15 and 17

odelled by ILOG Concert Technology and solved by the CPLEX 

IP optimizer in version 12.6.2. For all the experiments performed, 

e initialized the dual variables ω 

tb 
i j 

to zeros. Apart from a rela- 

ive MIP gap tolerance of 0.5%, all the CPLEX parameters were left 

t their default settings. Regarding the termination criteria, we set 

he convergence tolerance at 0.001. Algorithm 1 also terminates 

fter 3 h of wall-clock time or 190 iterations, whichever condi- 
1106 
ion is met first. As the preprocessing step, Algorithm 2 was im- 

lemented in MATLAB R2015b, with the membership score calcu- 

ation at the E- and M-step performed by the built-in function for 

aussian Mixture Models. Unless otherwise indicated, all the ex- 

eriments were performed on a PC with eight 3.60 GHz Intel Core 

7 CPUs and 16GB of RAM, under a 64-bit Windows 7 operating 

ystem. All of the algorithms in the experiments were executed 

equentially and we did not consider parallel implementation of 
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Fig. 4. Evolution of the lower bounds with time for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {2, 5, 10, 25}. 

Table 4 

Performance results of FW-PH and GMM-FW-PH under various penalty values on the test instance M4035, for which only one algorithm can converge within 3 h. The letter 

“T” in the column “Run-time” indicates that the algorithm hit the time limit before convergence. 

CPLEX Direct Solving Expected Cost 

2697.25 

Run-time(s) 

717 

Theoretical bound Via Decomposition 2697.25 

Penalty 

factor 

Optimality Gap (%) # Iterations Run-time (s) 

FW-PH GMM-FW-PH FW-PH GMM-FW-PH FW-PH GMM-FW-PH 

0.2 2.30 0.16 143 42 T T 

0.5 1.94 0.00 130 31 T 8104 

1 1.64 0.00 115 17 T 4945 

2 1.42 0.01 102 10 T 2955 

5 1.25 0.00 89 7 T 2156 

10 1.15 0.03 90 7 T 2429 

25 0.85 0.01 92 12 T 3709 

50 0.63 0.04 89 16 T 4517 

100 0.27 0.00 85 20 T 5448 

200 0.06 0.00 87 17 T 4661 

400 0.00 0.00 94 25 T 7981 

800 0.00 0.00 109 31 T 9448 
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.2. Experimental results and analysis for small-size instances 

Tables 3-5 provide the performance results of FW-PH and 

MM-FW-PH on the test instances for stochastic service network 

esign. According to the convergence status at termination, we or- 

anized the 12 test instances into three groups: (i) both algorithms 

onverged, (ii) only one algorithm converged, and (iii) neither al- 

orithm converged. Although each group was found to contain 

everal instances, only the results of one instance were displayed 

n each table due to space limitations. For comparison purposes, 

e included the optimal objective values obtained by directly solv- 

ng the instances by CPLEX, along with the computational time. 

he theoretical bounds via decomposition were also reported. As 

hown in each table, we chose up to 12 different values of the 

enalty factor for each test instance, ranging between 0.2 and 800, 

o as to study its influence on the convergence of FW-pH and 
1107 
MM-FW-PH. In the column “Optimality Gap (%)”, we reported 

he quality of the incumbent lower bound φ produced by FW-PH 

nd GMM-FW-PH at termination, which was measured against a 

nown optimal objective value ζ ∗ for the test instance and was 

alculated as ( ζ ∗ − φ) / ζ ∗ ∗ 100% . The total number of iterations 

nd the elapsed computing time (rounded to the nearest integer) 

ere recorded in the columns “# Iterations” and “Run-time”, 

espectively. The network configuration of the optimal solution 

or U4035 in Table 3 is given in Fig. 1 . It can be seen that, to

ffectively handle the demand uncertainty, each node is visited at 

east twice over the planning duration of 5 periods. Additionally, 

he consolidation at node 1, period 1 is also a common practice to 

nhance robustness of the network under uncertainties. 

Analyzing the experimental results presented in Tables 3-5 , we 

rst observe that the specific choice of the penalty factor has a 

arked effect on the performance of both FW-PH and GMM-FW- 
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Table 5 

Performance results of FW-PH and GMM-FW-PH under various penalty values on the test instance C4023, for which neither algorithm can converge within 3 h. The letter 

“T” in the column “Run-time” indicates that the algorithm hit the time limit before convergence. 

CPLEX Direct Solving Expected Cost Run-time(s) 

2071.32 1261 

Theoretical bound Via Decomposition 2071.32 

Penalty 

factor 

Optimality Gap (%) # Iterations Run-time (s) 

FW-PH GMM-FW-PH FW-PH GMM-FW-PH FW-PH GMM-FW-PH 

0.2 4.76 2.49 48 14 T T 

0.5 4.21 2.23 42 13 T T 

1 3.6 1.9 37 13 T T 

2 2.91 1.49 33 12 T T 

5 2.22 0.68 28 11 T T 

10 1.81 0.39 26 11 T T 

25 1.55 0.76 26 10 T T 

50 1.15 0.58 30 11 T T 

100 1.27 1.22 31 11 T T 

200 2.57 2.72 36 13 T T 

400 3.12 3.77 50 15 T T 

800 6.56 4.6 59 19 T T 

Fig. 5. Evolution of the lower bounds with iterations for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {0.2, 0.5, 1, 2}. 
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H. When we play around with different values of the penalty fac- 

or, it can be seen from Tables 3 and 4 that the time required by

MM-FW-PH to achieve convergence varies considerably from half 

n hour or so to more than 3 h. The optimality gaps in Table 5

how that the quality of the lower bound that GMM-FW-PH pro- 

uces after hitting the time limit also varies significantly according 

o the penalty factor, with the difference between the maximum 

nd minimum greater than 4%. 

The impacts of the penalty factor can be seen more clearly by 

lotting the run-times ( Tables 3 and 4 ) or optimality gaps ( Table 5 )
1108 
gainst the penalty factor, as shown in Fig. 2 . We see that small

alues of the penalty factor lead to relatively poor performance of 

he GMM-FW-PH, giving comparatively long run-times or large op- 

imality gaps. As the penalty factor increases, the run-times and 

ptimality gaps reduce dramatically, thereby producing substan- 

ial improvements in GMM-FW-PH’s performance. However, fur- 

her increase in the penalty factor would cause a sharp drop in 

he performance of the GMM-FW-PH. On one hand, as we shall see 

hortly, smaller values of the penalty factor are more reliable since 

arger values tend to render the lower bounds very poor in early 
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Fig. 6. Evolution of the lower bounds with iterations for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {2, 5, 10, 25}. 
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w

terations and widely oscillating throughout. On the other hand, if 

e take too small a value (e.g., several orders of magnitude smaller 

han the fixed cost) for the penalty factor, the dual variables will 

e improved only very marginally per iteration, which in turn will 

ignificantly delay the convergence. 

We next study the impact of scenario bundling by comparing 

he performance results of FW-PH and GMM-FW-PH in Tables 3-5 . 

ith very few exceptions, GMM-FW-PH gives better performance 

han FW-PH for any choice of the penalty factor in any of the test 

nstances. In particular, when the penalty factor is not too large, 

MM-FW-PH offers vastly superior performance, providing either 

 dramatic saving in run-time or a much improved lower bound at 

ermination. 

Note that the performance results in Tables 3-5 are obtained 

nder certain termination conditions (e.g., a time limit of 3 h). As 

 matter of fact, these results may vary with the parameter set- 

ing of the termination criteria. In order to validate the above re- 

earch findings at various termination settings, it is necessary to 

eep track of how the lower bound evolves during the iterative 

rocess. Take the test instance M4035, for example. The evolution 

f its lower bound with time under 12 different penalty factors is 

llustrated in Figs. 3-4 . Due to space limitations, plots showing the 

volution with iterations are provided in Appendix A . For the sake 

f clarity, no more than 4 penalty factors are considered in each 

gure but the trends behaves similarly across all penalty ranges. 

t can be seen that when the penalty factor is set at appropriate 

evels, the lower bound from FW-PH or GMM-FW-PH rises steeply 

n the early period and then levels out, evolving very slowly in 

he remaining and majority of run-time towards convergence. From 

igs. 2 , we see that there is not much difference in the initial lower

ounds generated by FW-PH or GMM-FW-PH between small values 

f the penalty factor. However, larger values of the penalty factor 

ignificantly improve the convergence speed of both FW-PH and 

MM-FW-PH. 

Unlike the cases of very small penalty factors in Figs. 2 , it can

e seen from Fig. 4 that the quality of the initial lower bounds 

enerated by FW-pH or GMM-FW-pH declines dramatically as the 

enalty factor increases. Furthermore, among relatively small ones 
p

1109 
f these penalty factors, a larger value is still much better than a 

maller one, since the disadvantages of poorer initial lower bounds 

re more than offset by the benefits of increased convergence 

peed. 

Overall, the best value of the penalty factor will be given by a 

rade-off between high-quality initial lower bounds and fast con- 

ergence speed. Too strong a focus on either of the two aspects 

ill yield poor results. Basically, these observations support our 

revious findings from Tables 3-5 that the best performance is ob- 

ained for some intermediate value of the penalty factor. 

Finally, we consider the comparison between the lower bound 

urves of FW-PH and GMM-FW-PH when the penalty factor is 

ot too large. Given the same value of the penalty factor, there 

re no significant differences in the convergence speed between 

W-PH and GMM-FW-PH, as evidenced by the absolute change 

n the lower bound during the early 10 iterations or so. However, 

he initial lower bound generated by GMM-FW-PH is much higher 

han that generated by FW-PH under the same penalty value, with 

he absolute difference being greater than 75. Consequently, for 

ny of the penalty values considered, the lower bound curve of 

MM-FW-PH lies completely above that of FW-PH, indicating that 

he lower bounds obtained by GMM-FW-PH are consistently of 

etter quality than those obtained by FW-PH throughout the iter- 

tive process. This can be attributed to the fact that GMM-FW-PH 

akes more time per iteration than FW-PH as a result of scenario 

undling and hence yields the first lower bound at a later time. 

side from the initial short period, GMM-FW-PH consistently gives 

etter lower bounds than FW-PH for the entire run-time. Funda- 

entally, these observations further reinforce our previous findings 

rom Tables 3 - 5: GMM-FW-PH is far superior to FW-PH when the 

enalty factor is not too large, providing either a dramatic saving 

n run-time or a much improved lower bound at termination. 

.3. Results for large-size instances 

In this section, we run the experiments for 3 larger instances 

ith 100 scenarios (C10 022, M10 022 and U10022). For the com- 

arison purposes, the three instances were also solved to opti- 
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Fig. 7. Evolution of the lower bounds with iterations for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {25, 50, 100, 200}. 

Table 6 

The computational results of GMM-FW-PH for large problem instances with 100 

scenarios. 

Instances CPLEX direct solving GMM-FW-PH 

cost gap% Run-time(s) 

M10022 2320.61 2259.55 2.6% T 

C10022 2349.15 2258.55 3.9% T 

U10022 2253.81 2253.81 0.0% 8890 
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ality by calling CPLEX MIP solver directly. The results and run- 

imes are summarized in Table 6 . Although the algorithm fails to 

onverge within the given time limit for two instances (M10022 

nd C10022), it still generates reasonably tight bounds that can be 

ery useful to algorithmic development. For U10032, the proposed 

ethod converges to the optimal solution within 8890 s. 

In this study, we chose to use GMM as the method to clus- 

er the scenarios into bundles. In our previous study ( Jiang et al., 

021 ), various bundling methods are investigated, including ran- 

om bundling and machine learning based bundling (K-means, C- 

eans). It was found that, based on the empirical results, a small 

evel of overlaps in membership can speed up the convergence 

onsiderably without worsening the solution quality. 

. Conclusions and future directions 

We have introduced scenario bundling into the decomposition 

f the SSND problem, so as to obtain tighter lower bounds within 

ess run-time. Instead of scenario-wise decomposition, we consider 

undle-wise decomposition to divide the problem by scenario bun- 

les into multi-scenario subproblems. Dualizing the NACs arising 

rom bundle-wise decomposition produces the Lagrange dual prob- 
1110 
em, whose objective function value provides a lower bound on 

he SSND problem. We have proven that the optimal Lagrange dual 

ound is tighter than or equal to that in the case of scenario-wise 

ecomposition. 

In order to solve the Lagrange dual problem, we have improved 

he FW-PH algorithm by replacing scenario-wise decomposition 

ith bundle-wise decomposition. The disjoint scenario bundles are 

onstructed using Gaussian mixture models. As with the basic FW- 

H algorithm, the improved version is guaranteed to converge to 

he optimal Lagrange dual bound in theory. However, the two ver- 

ions differ significantly in the computational performance. Exten- 

ive computational experiments demonstrate that the improved 

W-PH algorithm is far superior to the basic version when the 

enalty factor is not too large, providing either a dramatic saving 

n the run-time required to achieve convergence or a much tighter 

ower bound when terminated due to the time limit. Moreover, 

he computational evidence suggests that the specific choice of the 

enalty factor has a marked effect on the performance of both the 

asic and the improved FW-PH algorithm. In particular, the com- 

utational evidence does not support the use of very large penalty 

actors, because in that case it would take prohibitively long before 

he quality of the lower bound reaches an acceptable level, owing 

o the very poor initial lower bound and the continual oscillation. 

ote that the method proposed in this paper is served to compute 

 high quality lower bound of the original SSND problem. The re- 

ults can be useful to develop more efficient bundling based SSND 

lgorithms that were compared extensively in (Xiang et al. 2021). 

One limitation of the proposed algorithm is that its compu- 

ational performance gets poor when addressing very large-scale 

roblems (involving, say, over 100 nodes, 10 0 0 arcs, 24 time peri- 

ds, 800 commodities and 1000 scenarios). This is not surprising 

f we consider the fact that deterministic network design problems 
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Fig. 8. Evolution of the lower bounds with iterations for M4035, obtained by FW-PH and GMM-FW-PH under four different penalty values {200, 400, 800}. 
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A  
re NP-hard and modeling demand uncertainty with scenarios 

urther increases the size of the network design problem. Given 

he current large size of LTL transportation networks, and the 

rends for them to become even larger in the era of ecommerce, 

urther research into solution approaches (e.g., parallel computa- 

ion) is needed. As for the model discussed, the primary limitation 

oncerns model assumptions. In this study, it is assumed that 

ustomers’ demands are uncertain only in commodity volumes. 

n real-world applications, however, not only the commodity 

olumes, but the origins, destinations, ready times and delivery 

eadlines of the shipments are uncertain at the decision-making 

oint. These other uncertainties are left out or inadequately 

reated in the models. 

For future research, we envision three possible directions. First, 

he improved FW-PH algorithm offers great opportunity for parallel 

omputation, since the multi-scenario subproblems can be solved 

ndependently. Because parallelization has the potential to dramat- 

cally reduce the run-time, a parallel implementation of the ex- 

ended FW-PH warrants careful study, in a similar effort by Boland, 

hristiansen, Dandurand, Eberhard and Oliveira (2019) . Second, the 

mproved FW-PH algorithm can be naturally used as a bound- 

ng procedure for obtaining optimal solutions to SSND. New ex- 

ct methods can thus be developed by, for example, integrating 

he improved FW-PH algorithm into a branch-and-bound frame- 

ork. The rapid improvement in the Lagrange dual bound during 

arly iterations of the improved FW-PH algorithm may be benefi- 

ial for accelerating the exact methods. Also, the improved FW-PH 

lgorithm may be used in conjunction with heuristic techniques 

or SSND to enable an assessment of the solution quality. Lastly, 

esides commodity volumes, customers’ demands are also uncer- 
1111 
ain in terms of commodity origins and destinations, as well as 

he starting time and deadline for delivery. These uncertainties 

ave become even more pronounced with the rising popularity of 

lectronic and mobile commerce. In addition, travelling time is of- 

en an important source of uncertainties in practice. Therefore, it 

s meaningful to investigate the impact of these uncertainties on 

ervice network design in the future and develop some machine 

earning-based methods which have shown promising results in 

ecent studies ( Bai, Chen & Chen, 2022 ; Zhang, Bai, Qu, Tu & Jin,

022 )”. 
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