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ABSTRACT

Hyper-GA was introduced by the authors as a genetic algorithm
based hyperheuristic which aims to evolve an ordering of low-level
heuristics so as to find a good quality solution to a given problem.
The adaptive length chromosome hyper-GA, let’s call it
ALChyper-GA, is an extension of the authors previous work, in
which the chromosome was of fixed length. The aim of a variable
length chromosome is two fold; 1) it allows dynamic removal and
insertion of heuristics 2) it allows the GA to find a good
chromosome length which could otherwise only be found by
experimentation. We apply the ALChyper-GA to a geographically
distributed training staff and courses scheduling problem, and
report that good quality solution can be found. We also present
results for four versions of the ALChyper-GA, applied to five test
data sets.

1. INTRODUCTION

This paper uses a new approach to solve a trainer scheduling
problem, which is in the range of personnel scheduling problems
that can be regarded as the allocation of staff to timeslots and
possibly locations [20].

Metaheuristic approaches have been successfully applied to a
range of personnel scheduling problems. Aickelin and Dowsland
[1] used GAs for a nurse rostering problem in a large UK hospital.
Easton and Mansour [11] also used GAs for deterministic and
stochastic labour scheduling problems, which was effective for
three labour scheduling problems. Burke et al [2] and Dowsland
[10] used tabu search to solve nurse rostering problems. Burke et al
[3] used Memetic algorithm to tackle a nurse scheduling problem
in Belgian hospitals. Simulated annealing was applied by
Thompson [19] for shift scheduling using non-continuously
available employees.

These metaheuristic approaches are proved effectively solving
problems, but they are often time and domain knowledge intensive.
The heavy dependence on problem specific knowledge also
worsens the reusability of these approaches. In order to remove the
disadvantage of metaheuristic approaches and have a reusable,
robust and fast-to-implement approach applicable to a wide range
of problems and instances, we designed a genetic algorithm based
hyperheuristic approach, hyper-GA, which may be regarded as a
hyper-heuristic that uses a GA to select low-level heuristics to
solve the problem [4] in our previous work. We investigated the
behaviour of the algorithm for a trainer scheduling problem and
believed that given an appropriate set of low-level heuristics and an
evaluation function the hyper-GA approach may be applied to a
wide range of problems of scheduling and optimisation. In this
paper, we designed a more parameter-adaptive algorithm, Adaptive
Length Chromosome hyper-GA (ALChyper-GA). The motivation
of ALChyper-GA is that we don't know the optimal length and

want to encourage the evolution of good combinations of low-
level heuristics without having to explicitly consider this length.
This is related to ideas of genetic programming, which is “select
programming components based on the evolution of the program”
[15].

Cowling, Kendall and Soubeiga introduced the term “hyper-
heuristic” [5] as an approach that operates at a higher level of
abstraction than a meta-heuristic. It is described thus: “The hyper-
heuristics manage the choice of which lower-level heuristic
method should be applied at any given time, depending upon the
characteristics of the heuristics and the region of the solution
space currently under exploration.” The approach has been used
successfully to solve a sales summit scheduling problem [5], [6]
and a project presentation scheduling problem [7]. In their
approach, they first design a general framework for a hyper-
heuristic to select which low-level heuristic to apply, and further
improve their approach using a choice function. Their choice
function is calculated based on information of recent called low-
level heuristics. The information includes the improvement of
each individual heuristic or each pair of heuristics and the
consuming of time of each heuristic. By using the choice
function, they can effectively call next low-level heuristic.

Other authors have developed hyperheuristic method. Hart,
Ross and Nelson [13] develop an evolving heuristically driven
schedule builder for a real-life chicken catching and
transportation problem. The problem is divided into two sub-
problems and each is solved using a separate genetic algorithm.
The two genetic algorithms evolve a strategy for producing
schedules, rather than a schedule itself in the application. All the
information collected from the company is put into a set of rules,
which are combined into a schedule builder by exploiting the
searching capabilities of the genetic algorithm. A sequence of
heuristics is evolved to dictate which heuristic to use to place a
task into the schedule. Gratch and Chien [12], develop an
adaptive problem solving system to select proper heuristic
methods from a space of heuristics after a period of adaptation,
and apply it to a network scheduling problem. Randall and
Abramson [17] designed a general meta-heuristic based solver for
combinatorial optimisation problems, where they used linked list
modelling to represent problem, thus the problem was specified
in a textual format and solved directly using meta-heuristic search
engines. Nareyek [16] proposed an approach that was able to
learn how to select promising heuristics during the search
process.

Indirect genetic algorithms have been studied widely. For
example, Terashima-Marin, Ross and Valenzuela-Rendon [18]
designed an indirect GA to solve an examination timetabling
problem. They encode their strategies for the problem and
parameters for guiding the search into a 10-position array, thus
the chromosome represents how to construct a timetable rather
than the timetable it self. Corne and Ogden [8] compared their



indirect and direct GA for a Methodist preaching timetabling
problem and found the former is more efficient.

2. PROBLEM DESCRIPTION

The problem in this work is a trainer scheduling problem aiming to
create a timetable of geographically-distributed courses over a
period of several weeks using geographically distributed trainers.
We wish to maximise the total priority of courses which are
delivered in the period, while minimising the amount of travel for
each trainer. We have 25 staff, 10 training centres (or locations)
and 60 timeslots to schedule events. For details of the problem,
please refer to [4]. The mathematical model for the problem is cited
here and shown in figure 1, where we have
E: the set of events; S: the set of staff members;
T: the set of timeslots; L: the set of locations;
duri : the duration of event ei;

dsl: the distance penalty for staff member s
aaadelivering a course at location l;
wi: the priority of event ei; cl: the number of room at
aaalocation l

(1)

(2)

(3)

(4)

(5)

(6)

Variable yistl equals to 1 when event ei is delivered by staff s at
location l commencing at timeslot t, or 0 otherwise. Variable xistl

equals to 1 when event ei is delivered by staff s at location l, or 0
otherwise. Constraint (1) ensures that one event can happen at most
once. Constraint (2) ensures that each staff member is only
required to deliver at most one event in each timeslot. Constraint
(3) ensures that each location has sufficient room capacity for the
event scheduled. Constraints (4), (5), and (6) link the xistl and yistl

variables, which address that if one event is delivered, its duration
must be consecutive.

In carrying out crossover and mutation, we do not allow
infeasible solutions. Each event in the new chromosome will be
checked to see whether it conflicts with other event(s) in the same
chromosome. If this is the case, the event(s) with lower priority-
penalty will be removed from the chromosome.

3. HYPER-GA, ALCHYPER-GA AND LOW-
LEVEL HEURISTICS

3.1. Hyper-GA

Hyper-GA, as stated in section 1, is a hyper-heuristic that uses a
GA to select low-level heuristics to solve the given problem. The
GA is an indirect GA with the representation being a sequence of
integers each of which represents a single low-level heuristic.
Each individual in a hyper-GA population gives a sequence of
heuristic choices which tell us which low-level heuristics to use
and in what order to apply them [4].

3.2. Adaptive Length Chromosome Hyper-GA

The adaptive length chromosome hyper-GA (ALChyper-GA) is
an improvement of hyper-GA. We assume the fixed length in the
hyper-GA is not always the optimal length and want to encourage
the evolution of good combinations of low-level heuristics
without having to explicitly consider this optimal length. The
behaviour of a given low-level heuristic or a combination of low-
level heuristics, within a chromosome, could be very promising,
while anther low-level heuristic or combination of heuristics
could perform poorly. We hypothesise that if we remove the
poor-performing heuristics from a chromosome or inject efficient
heuristics from one chromosome to another then better quality
solutions can be found as a result. Therefore, the length of
chromosomes in each generation will change as genes are
inserted or removed.

Within each chromosome we monitor the change of the
objective function as the chromosome is evaluated. We also use
the change in the objective function as we evaluate each
chromosome to decide which blocks of genes are suitable for the
crossover and mutation operators (see 3.4). An improvement
between gene m and gene n (potentially), which means the call of
low-level heuristics between gene m and gene n improves the
objective function, indicates that the heuristics between m and n
work well together and other chromosome might benefit by
having these heuristics injected into them. Conversely, a
worsening of the objective function (or no improvement) could
indicate that the chromosome might perform better if these genes
were removed from the chromosome.

The ALChyper-GA uses specially designed crossover and
mutations to insert or remove groups of genes. We have also
designed a penalising function to penalise the length of
chromosome in the case where the length increases which will
result in increased run times due to the additional evaluation
required. The formula for the penalising function is:
(Length in chromosomes * CPU time to evaluate chromosome)/

(Improvement in objective function)
All chromosomes are sorted by descending order of their

penalising function and proportional selection ensures that shorter,
better improving chromosomes have a higher chance of being
selected.

3.3. Low-level Heuristics

We use the same low-level heuristics as our previous work [4].
The twelve problem-specific, low-level heuristics for our hyper-
GA, which accepts a current solution, modifies it locally in an
attempt to return an improved solution. In addition to these twelve
low-level heuristics, we designed two additional low-level
heuristics for ALChyper-GA, which are likely to return a worse
solution but will hopefully lead to an improvement later on, after
other heuristics have been applied. The aim of this addition is to
observe the adaptation of ALChyper-GA when there is a decrease
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Figure 1. Mathematical model for the geographically
distributed trainer scheduling problem



in the objective function. At each generation the hyper-GA can call
upon the set of low-level heuristics and apply them in any sequence.
All the low-level heuristics may be grouped into: add, add-swap,
and add-delete, please refer to [4] for details of these low-level
heuristics.

3.4. Operators

The hyper-GA uses one point crossover and a mutation operator
which randomly selects some positions in one chromosome and
mutates integers at these positions to other values ranging from 0 to
11 (0 to 13 in ALChyper-GA), [9].

We have also designed a new crossover operator and two new
mutation operators for ALChyper-GA. The new crossover, called
best-best crossover, will select the best group of genes (the call of
low-level heuristics by these genes gives the most improvement of
the objective function) in either selected chromosome, and exchange
them. One new mutation, removing-worst mutation, will remove the
worst group of genes (the call of low-level heuristics by these genes
gives the most decrease to the objective function, or which is the
longest group giving no improvement to the objective function) in
the selected chromosome. Another mutation, inserting-good
mutation, inserts the best group of genes from a randomly selected
chromosome to a random point of the desired chromosome. Thee
best-best crossover is illustrated in figure 2. Parent 1 and 2 are a
chromosomes selected to crossover. The improvement in objective
function of parent 1 is 57.85, where the grey area is the group of
genes (gene 5 to 9) that contribute most (21.30). The improvement
in objective function of parent 2 is 35.81, the group of genes in the
black area (gene 7 to 13) gives the most improvement (16.77). Thus,
gene 5 to 9 in parent 1 and gene 7 to 13 are best groups of genes in
either parent. These two groups are selected and exchanged to form
child 1 and child 2.

4. IMPLEMENTATION

We have 4 versions of ALChyper-GA, two with adaptive parameters
and two with non-adaptive parameters. In the adaptive versions, the
mutation rate and crossover rate adapt according to the change in
fitness of each generation [4]. There are two types of fitness
function in the 4 versions: ∑∑ − PenaltyTravellingiorityPr and

∑ ∑− )/()Pr( ChromosomeinTimeCPUPenaltyTravellingiority

The total priority and total travelling penalty are for the solution
resulting from applying the heuristics given by the chromosome to
the best solution found so far. The consideration of CPU time in the
second fitness function is to easily compare the efficiency of each
individual sequence of low-level heuristic and use for the penalising
function of the length of chromosome. The comparison of these four
versions can test the robustness of ALChyper-GA under a range of
conditions.

Thirty individuals are generated for the initial population by
randomly selecting numbers ranged from 0 to 13 for each gene of
the chromosome. After empirical testing over a range of parameter

rates [4], we use 0.6 for crossover rate, 0.1 for mutation rate, a
population size of 30, 200 generations (100 generations gives
equally good results, but we use 200 to see the further change of
low-level heuristics’ distribution) and retain the 30 fittest
chromosomes in each generation.

5. RESULTS

All algorithms were implemented in C++ and the experiments
were conducted on a AMD 800MHZ with 128MB RAM running
under Windows 2000. We use five data sets to test the suitability
of the algorithm, which describe realistic problem instances having
differing degrees of difficulty [4]. Each data set contains more
than 500 events. The events in each data set are generated
randomly, based on the characteristics of a real staff trainer
scheduling problem at a large financial institution.

We compare each of our heuristics over the five problem
instances. The four versions of ACLhyper-GA, according to the
fitness function and the context of parameters for mutation and
crossover rate, are as follows:
• PPPN uses total event priority minus total travel penalty as

the fitness.
• PPPA uses same fitness function as PPPN, and the crossover

and mutation rate are adapted as discussed in section 3.3
during the evolution of the algorithm.

• FTPN, whose fitness function is the fitness above divided by
the CPU time of the application of each chromosome so that
we consider the improvement per unit time.

• FTPA, whose fitness function is the same as FTPN, and
where the mutation and crossover rate are adapted during the
evolution of algorithm.

Table 1 presents our results. We compare the result of
ALChyper-GA to hyper-GA, Genetic and memetic algorithm so as
to see the efficiency and the robustness. The result of a mutation
only approach (with only the two new mutation operators in
ALChyper-GA) is also presented in the table. We also present the
result of applying heuristics H1, H2, …. , H5 given by five
different runs of the PPPN hyper-GA on a relatively difficult
problem instance (the Basic data set), to each other data set. The
upper bound is calculated by solving a relaxed knapsack problem
[14] where we ignore travel penalties.

We find that the ALChyper-GA performs better than the hyper-
GA for most problem instances. The latter is found producing
better result than genetic and memetic algorithm, and the fast,
greedy heuristics H1,…, H5. From table 1 we can see that the
improvement in objective in few staff (1) data set and non-
restricted staff data set is bigger than other three data sets, which
suggests that ALChyper-GA works well, even on more difficult
problems. Although results of the mutation only approach in table
1 are not as good as most applications of the four versions of
ALChyper-GA, the results and the run time of the approach
supports that the work of the two new mutation operators can
improve the efficiency of the algorithm.

Comparing ALChyper-GA with hyper-GA supports the idea
that if hyper-GA was able to find the optimal length chromosome,
it will perform better. However, the ALChyper-GA has the ability
to find a good quality length chromosome as it evolves. Indeed, as
the search progresses the optimal length of the chromosome
changes and the ALChyper-GA is able to react to this need. Figure
3 illustrates the change in length of the chromosome. The top part
of the figure is for the basic data set, while the bottom part is for
the very few staff data set. From the top part of the figure, we see
that ALChyper-GA settles on a stable length chromosome for each
individual in the population from generation 24 to generation 66
(the average is 6), at which time ALChyper-GA is at a local
optimum with respect to the objective function (1955.28). Then,
the length is changed by generation 67 and the algorithm .

Fig 2 best-best crossover

Parent 1 Parent 2

Child 1 Child 2



Heuristics Basic data set Very few staff Few staff (1) Few staff (2) Non-restricted staff

Upper bound (priority/number) 2261.57/345.75 2179.40/332.25 2124.12/323.80 2244.17/337.33 2179.53/332.25
GA (30, 100) 1796.19/1628 1633.96/1629 1589.34/1641 1706.28/1721 1644.7/1699
MA (30, 100) 1832.14/2064 1678.85/2054 1617.03/2129 1769.69/2254 1698.43/2133
Hyper-GA (30, 200) PPPN 1959.09/1456 1780.15/1387 1749.33/1404 1858.92/1496 1742.13/1422
Hyper-GA (30, 200) PPPA 1939.38/1448 1754.41/1461 1712.3/1306 1854.47/1475 1814.38/1571
Hyper-GA (30, 200) FTPN 1943.81/1411 1770.55/1437 1673.79/1436 1803.93/1422 1774.96/1434
Hyper-GA (30, 200) FTPA 1951.52/1420 1731.85/1424 1738.84/1436 1769.69/1427 1770.52/1419
ALCHyper-GA (30, 200) PPPN 1961.64/1357 1788.49/1250 1816.15/1163 1831.94/1591 1822.94/1437
ALCHyper-GA (30, 200) PPPA 1933.40/1638 1757.99/1644 1795.36/1325 1862.00/1506 1804.33/1638
ALCHyper-GA (30, 200) FTPN 1949.00/1450 1780.35/1365 1781.83/1277 1821.42/1638 1813.62/1488
ALCHyper-GA (30, 200) FTPA 1954.11/1526 1764.34/1496 1766.20/1364 1799.04/1583 1799.51/1419
ALCHyper-GA with only mutation 1880.50/1486 1769.71/1188 1780.13/1083 1783.15/1413 1788.13/1383

H1 1958.96/20.19 1629.44/20.78 1619.79/21.06 1724.08/20.93 1651.77/19.98
H2 1937.56/21.53 1597.59/20.97 1602.73/21.38 1692.25/21.02 1644.7/20.31
H3 1949.26/20.74 1617.07/20.42 1622.94/22.07 1706.28/21.94 1652.02/20.59
H4 1944.25/21.37 1629.48/21.00 1578.85/21.64 1660.97/21.80 1637.36/21.06
H5 1959.09/20.76 1582.06/21.35 1597.39/20.44 1647.42/20.58 1595.3/20.27
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Fig 4. Objective function value for the basic data set, and the
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behaviours changes at the same time. In the mean time, the length of
individual chromosomes varying before becoming flat at generation
89. Similar performance can also be found in the bottom part of the
figure, for a different dataset.

The top part of figure 3 and figure 5 compare the change in
length of chromosome and the heuristic distribution for basic data
set, while the bottom part of figure 3 and figure 6 compare for very
few staff data set. The reason why we select the two data sets is that
the performance for the few staff (1) and the few staff (2) is similar
to basic data set, and the performance for the non-restricted data set
is similar to the very few staff data set. From figures 3, 5, and 6 we
find that the frequency of each low-level heuristic becomes flat as
long as there is no change in the length of chromosome. However,
when the chromosome length becomes static at generation 117,
there are only two low-level heuristics left, (add-first and swap-
random-improvement), and the two low-level heuristics keep on
varying after generation 117.

Figure 4 illustrates the change of objective function. The upper
group of lines are for the basic data set, while the lower group of
lines are for the very few staff data set. We can also find the
objective function of the basic data set is improved from 1955.28 to
1961.64 at generation 67 in the figure, while the objective function
of the very few staff data set is improved from 1787.63 to 1788.49
at generation 75. Both of the two improvements happen at the
generation when variation appears again.

From the top of figure 3 we can find another phenomenon in that
the longest chromosome becomes shorter, the shortest chromosome
becomes longer, and the average length increases by generation 67.
While in the bottom of figure 3 both the length of the longest
chromosome and average length drop down by generation 75 and all
three lengths become 1 by generation 117. This is because of the
work of our new mutation operators. The two mutation operators
keep variations in each population, and try to keep selected
chromosome efficient.

6. CONCLUSIONS AND FUTURE WORK

ALCHyper-GA is a promising approach to personnel scheduling and
other optimisation problems. It is the further improvement of
hyper-GA. The length of chromosome adapt after the identification
of performance of individual heuristic or combination of heuristics
selected by the chromosome. Three new operators: best-best
crossover, removing-worst mutation, and inserting-good mutation
help to dynamically insert or remove heuristics. This algorithm
outperforms the hyper-GA, while the later has better performance
than GA, MA and its component heuristics which were presented in
(Cowling et al, 2002).

In future, we will consider different methods of parameter
adaptation and maintain the diversity of population. We will also
consider the combination of hyper-GA with other metaheuristics,
such as tabu search and simulated annealing. We also plan to test the
robustness of our algorithm to a range of real-world problems.
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