
Simulated annealing with improved reheating and learning for the post
enrolment course timetabling problem

Say Leng Goha, Graham Kendallb,c and Nasser R. Sabard

aUniversiti Malaysia Sabah Labuan International Campus, Labuan, Malaysia; bThe University of NottinghamMalaysia Campus,
Selangor Darul Ehsan, Malaysia; cUniversity of Nottingham, University Park, Nottingham, UK; dDepartment of Computer Science and
Information Technology, La Trobe University, Melbourne, Australia

ABSTRACT
In this paper, we utilise a two-stage approach for addressing the post enrolment course
timetabling (PE-CTT) problem. We attempt to find a feasible solution in the first stage. The
solution is further improved in terms of soft constraint violations in the second stage. We present
an enhanced variant of the Simulated Annealing with Reheating (SAR) algorithm, which we term
Simulated Annealing with Improved Reheating and Learning (SAIRL). We propose a reinforcement
learning-based methodology to obtain a suitable neighbourhood structure for the search to
operate effectively. We incorporate the average cost changes into the reheating temperature
function. The proposed enhancements are tested on three widely studied benchmark data-
sets. Our algorithm eliminates the need for tuning parameters in conventional SA as well as
neighbourhood structure composition in SAR. The results are highly competitive with SAR and
other state of the art methods. In addition, SAIRL is scalable when the runtime is extended. The
algorithm achieves new best results for 6 instances and new mean results for 14 instances.
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1. Introduction

Education timetabling can be classified into three main
classes, namely school timetabling, course timetabling,
and examination timetabling (Schaerf, 1999). They are
similar in some ways yet different mainly in terms of
stakeholders and the constraints that have to be re-
spected. In this paper, we focus on course timetabling,
which is a placement of courses to a finite number of
time slots and rooms, satisfying a set of requirements.
The universal minimum requirement is that a student
shouldnot be required to attend two courses at the same
time. This constraint is similar to the graph colouring
problems in the sense that two nodes connected by an
edge cannot be assigned the same colour. Timetabling
construction has been shown to be NP-hard (Cooper
& Kingston, 1996; de Werra, 1985). The complexity
of a course timetabling problem varies as each insti-
tution has their own set of requirements. Due to its
importance, various approaches have been proposed
to address the problem. Introductions and surveys on
timetabling can be found in de Werra (1985), Burke,
Jackson, Kingston and Weare (1997), Schaerf (1999),
Petrovic and Burke (2004), and Lewis (2008).

In this work, we propose a two-stage method to deal
with the course timetabling problem. The first stage
focuses on generating feasible solutionswhereas second
stage tries to further improve the generated solutions.
We use Tabu Search with Sampling and Perturbation
(TSSP) to find feasible solutions. We then improve
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the feasible solutions in terms of soft constraint vio-
lations by using Simulated Annealing with Improved
Reheating and Learning (SAIRL) which is an enhanced
version of Simulated Annealing with Reheating (SAR).
In SAIRL, we propose a reinforcement learningmethod
to adjust the composition of neighbourhood structures
and an improved temperature reheating function. The
proposed method is tested on three benchmark data-
sets for university course timetabling problems. We
compare the results of SAIRL with the results of SAR as
well as other state of the art methods.

This paper is organised as follows. Section 2 presents
the description and formal presentation of the problem.
Related work is reviewed in Section 3. The proposed
methodology is described in Section 4 and the experi-
mental results are presented in Section 5. The perfor-
mance and behaviour of the algorithms are discussed in
Section 5.5. Concluding remarks are given in Section 6.
Finally, suggestions for future work are given in Section
7.

2. Problem description

Solving the problem instances involves assigning a set
of E events (with a set of F features and attended by
S students) to 45 time slots (5 days of 9 hours each)
and a set of R rooms. The objective is to satisfy all hard
constraints and minimise soft constraint violations as
far as possible. The formal presentation of the problem
is as follows:
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Given: set of events, E = {e1, . . . , e|E|}
set of time slots, T = {1, . . . , 45}
set of rooms, R = {r1, . . . , r|R|}
set of students, S = {s1, . . . , s|S|}
set of features F = {f1, . . . , f|F|}
set of days, D = {1, . . . , 5}
set of events that must appear later than e, Ae
set of events that must appear earlier than e, Be

as,e =
⎧⎨
⎩
1 if student s attends event e
e ∈ E, s ∈ S

0 otherwise
(1)

be,r =
⎧⎨
⎩
1 if size of event e ≤ capacity of room r
e ∈ E, r ∈ R

0 otherwise
(2)

ce,r =
⎧⎨
⎩
1 if

∑
f ∈F

ge,f · hr,f = ∑
f ∈F

ge,f e ∈ E, r ∈ R

0 otherwise
(3)

ge,f =
⎧⎨
⎩
1 if event e requires feature f
e ∈ E, f ∈ F

0 otherwise
(4)

hr,f =
⎧⎨
⎩
1 if room r has feature f
r ∈ R, f ∈ F

0 otherwise
(5)

ie,t =
⎧⎨
⎩
1 if event e can be assigned to time slot t
e ∈ E, t ∈ T

0 otherwise
(6)

je,tm =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
ev∈Ae

xevtnr · ptm,tn
= ∑

ev∈Ae

xevtnr e ∈ E, r ∈ R, t ∈ T

0 otherwise

(7)

ke,tm =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∑
ev∈Be

xevtnr · qtm,tn
= ∑

ev∈Be
xevtnr e ∈ E, r ∈ R, t ∈ T

0 otherwise

(8)

ptm,tn =
{
1 if tm < tn t ∈ T
0 otherwise (9)

qtm,tn =
{
1 if tm > tn t ∈ T
0 otherwise (10)

xe,t,r =
⎧⎨
⎩
1 if event e is assigned to time slot t
and room r e ∈ E, r ∈ R, t ∈ T

0 otherwise
(11)

ys,t =
{
1 if xetr · ase = 1 e ∈ E, r ∈ R, s ∈ S, t ∈ T
0 otherwise

(12)

zs,d =

⎧⎪⎨
⎪⎩
1 if

d×9∑
t=(d−1)×9+1

ys,t = 1 d ∈ D, s ∈ S, t ∈ T

0 otherwise
(13)

Minimize:
3∑

i=1
SCi (14)

SC1: Penalty for students with one event on a day

∑
s∈S

5∑
d=1

zs,d (15)

SC2: Penalty for students with three or more events
consecutively.

∑
s∈S

5∑
d=1

d×9−2∑
t=(d−1)×9+1

ys,t · ys,(t+1) · ys,(t+2) (16)

SC3: Penalty for students with one event in the last
time slot of the day

∑
s∈S

∑
t∈{9,18,...45}

ys,t (17)

Subject to:
HC1: No student must attend more than one event

at the same time.
∑
r∈R

xetr · ase ≤ 1 e ∈ E, s ∈ S, t ∈ T (18)

HC2: Each event is assigned a room with enough
seats for all attending students and all features required.

ber · cer · xetr = xetr e ∈ E, r ∈ R, t ∈ T (19)

HC3: Only one event per room in any time slot.

∑
e∈E

xetr ≤ 1 r ∈ R, t ∈ T (20)

HC4: Events are assigned to designated time slots.

iet · xetr = xetr e ∈ E, r ∈ R, t ∈ T (21)

HC5: Where specified, events should be scheduled
in the correct order.

je,tm · ke,tm · xetmr = xetmr e ∈ E, r ∈ R, t ∈ T (22)
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Table 1. Statistics for the Socha data-set.

Instance S M L

Event 100 400 400
Room 5 10 10
Feature 5 5 10
Student 80 200 400

The data-sets utilised in this research are publicly
available and regarded as the standard benchmarks.
Optimal solutions (zero hard and soft constraint vi-
olations) are known to exist for many instances of each
data-sets.

• Socha with 11 instances (http://iridia.ulb.ac.be/
supp/IridiaSupp2002-001/index.html). The in-
stances (5 small, 5medium, and 1 large) are gener-
atedusing analgorithmdevelopedbyBenPaechter
(http://www.soc.napier.ac.uk/$\sim$benp). The
time limit for the small, medium, and large in-
stances is set to 90, 900, and 9000 seconds, respec-
tively (Socha, Knowles, & Sampels, 2002). How-
ever, such a restriction does not promote a fair
comparison as different machines may have dif-
ferent specifications. Therefore, we use a bench-
mark time limit set by International Timetabling
Competition 2002 (ITC02). Refer to Table 1 for
the benchmark statistics.
• International Timetabling competition 2002
(ITC02) with 20 instances (http://www.idsia.ch/
Files/ttcomp2002). This competition was organ-
ised by the Metaheuristic Network and the in-
stances were also generated by Ben Paechter. The
time limit is benchmarked by running a
programme on the host machine, which enables a
fair comparison. A machine with a higher specifi-
cationwill be allowed to run longer and vice versa.
Our machine is entitled to 190s. Refer to Table 2
for the benchmark statistics.
• International Timetabling Competition 2007
(ITC07) with 24 instances (http://www.cs.qub.
ac.uk/itc2007). The time limit is benchmarked in
the same way as ITC02. Refer to Table 3 for the
benchmark statistics.

3. Related work

The Socha instances have been widely used as course
timetabling benchmarks for algorithmic comparison.
Various approaches have been tested on the instances
since their inception. Burke, Kendall and Soubeiga
(2003) proposed a method called Tabu Search Hyper-
Heuristic to overcome the weaknesses of optimisation
methods specifically meta-heuristics, which often re-
quire intensive parameter tuning for individual
instances. They aimed to develop a general approach
which can be easily applied to different problems, yet

remains competitive with state of the art approaches.
The method selects heuristics at each decision point
instead of tackling the problemdirectly.Heuristicswere
ranked according to their performance inspired by the
principles of reinforcement learning. The value of the
selected heuristic is increased by one when applied and
which resulted in an improvement to the current cost
function. Otherwise, it is decreased by one. A tabu list
was also implemented to restrict the use of heuristics
which did not perform well recently based on First-In,
First-Out (FIFO). A heuristic placed in the list is made
tabu even if it has the highest rank. The approach was
competitive with ant systems and random restart local
search.

Obit et al. proposed a Non-Linear Great Deluge
with reinforcement learning (Obit et al., 2009) for the
course timetabling problem. Heuristics or neighbour-
hood structures, were selected probabilistically based
on their weights instead of randomly. The weights were
increased or decreased based on their performance.
Two types of Modified Choice Function (MCF) are in-
vestigated, namely MCF with static memory and MCF
with a random learning rate. ForMCFwith staticmem-
ory, a reward of one point is awarded to the chosen
heuristic if the current solution is improved, otherwise
no point is awarded. The weights are updated at pre-
defined periods. For MCF with random learning rate,
a different set of rewards was used according to the
difference between the best cost and the current cost.
In addition, the reward was weighted by a random
value in the range (0.5, 1.0]. The method involved the
acceptance and rejection of solutions usingNon-Linear
Great Deluge acceptance criterion.

Ceschia et al. applied a highly tuned simulated an-
nealing method on the instances and reported superior
results (Ceschia, Di Gaspero, & Schaerf, 2012). Goh
et al. recently utilized TSSP and SAR algorithms on
these instances (Goh, Kendall, & Sabar, 2017). Their
method reported good results and is the current state
of the art methodology. Other approaches applied to
Socha instances include Ant Systems (Ejaz & Javed,
2007; Jaradat & Ayob, 2010; Socha et al., 2002) Variable
Neighborhood Search (Abdullah, Burke, &McCollum,
2005), Memetic Algorithm (Abdullah, Burke, & Mc-
Collum, 2007) Non Linear Great Deluge (Landa-Silva
&Obit, 2008), GreatDeluge (Abdullah, Shaker,McCol-
lum, & McMullan, 2009) Fish Swarm Intelligent Algo-
rithm (Turabieh, Abdullah, McCollum, & McMullan,
2010) and Honey Bee Mating (Sabar, Ayob, Kendall, &
Qu, 2012).

Kostuch won the International Timetabling Com-
petition 2002 (ITC02) using simulated annealing algo-
rithm (Kostuch, 2003). The other entrieswith goodper-
formance were Great Deluge (Burke, Bykov, Newall, &
Petrovic, 2003) and Tabu Search (Cordeau, Jaumard, &
Morales, 2003; Arntzen & Lokketangen, 2003). Differ-
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Table 2. Statistics for the ITC02 data-set.

Instance 1 2 3 4 5 6 7 8 9 10

Event 400 400 400 400 350 350 350 400 440 400
Room 10 10 10 10 10 10 10 10 11 10
Feature 10 10 10 5 10 5 5 5 6 5
Student 200 200 200 300 300 300 350 250 220 200
Instance 11 12 13 14 15 16 17 18 19 20
Event 400 400 400 350 350 440 350 400 400 350
Room 10 10 10 10 10 11 10 10 10 10
Feature 6 5 6 5 10 6 10 10 5 5
Student 220 200 250 350 300 220 300 200 300 300

ent approaches have been attempted to solve the prob-
lem after competition. Chiarandini proposed a sim-
ulated annealing method with better or comparable
results (Chiarandini, Birattari, Socha, & Rossi-Doria,
2006). Around the same time, Kostuch published the
results of his improved method which achieved the
best known results for all the instances (Kostuch, 2005).
Ceschia et al. utilised a highly tuned simulated anneal-
ing method for ITC02 instances, however their results
were inferior to Kostuch’s (Ceschia et al., 2012). Goh et
al. tested TSSP and SAR algorithms on these instances
(Goh et al., 2017). Theirmethod is comparable or better
than that of Kostuch.

Cambazard was the winner for the International
Timetabling Competition 2007 (ITC07) (Cambazard,
Hebrard, OSullivan, & Papadopoulos, 2012). Most of
the competitive entries are simulated annealing algo-
rithms (Chiarandini, Fawcett, & Hoos, 2008; Lewis,
2012). Nothegger et al. employed Ant Colony Opti-
misation (ACO) (Nothegger, Mayer, Chwatal, & Raidl,
2012). The authors remarked that a simulated anneal-
ing as a local search component played a critical role
in the performance of their method. Mueller utilised a
hybrid approach comprising of a hill climbing phase,
great deluge, and simulated annealing (Muller, 2009).
Several competitive methods have been published after
the competition such as Ceschia et al. (2012), Lewis and
Thompson (2015) and Goh et al. (2017).

It is noticeable that most of the competitive meth-
ods were based on simulated annealing. The majority
of them are either highly tuned (Ceschia et al., 2012)
or focused on certain instances (Lewis & Thompson,
2015), suggesting a disadvantage of simulated anneal-
ingwhichmay require intensive parameter tuning, even
for specific instances of the same problem to obtain
high-quality solutions.

4. Proposedmethodology

The proposedmethodology consists of two stages: con-
struction state and improvement stage. In the first stage,
we attempt to find a feasible solution which satisfies all
the hard constraints. Once a feasible solution is found,
it is improved in termof the soft constraint violations in
the second stage. The pseudocode of the proposed two
stages algorithm is shown in Algorithm 1, with further
details below.

Algorithm 1
1: procedure TIMETABLECONSTRUCTIONANDIMPROVEMENT

2: best ← empty
3: E← list of events
4: unassignedE← E
5:
6: TSSP(best, unassignedE) � Stage 1: Finding a feasible solution
7: if unassignedE is empty then
8: SAIRL(best,E) � Stage 2: Improving soft constraint violations
9: end if
10: end procedure

4.1. Stage 1: Finding a feasible solution

In this stage, a feasible solution is built constructively
by using Tabu Search with Sampling and Perturbation
(TSSP) (Goh et al., 2017). Only if a feasible solution is
found (unassignedE is empty), is it passed to Stage 2 for
soft constraint improvement. The TSSP procedure is
not new and has been previously applied to timetabling
problems (Goh et al., 2017). The TSSP pseudocode is
shown in Algorithm 2. In TSSP, a neighbour move
involves moving an event from the list of unplaced
events unplacedE to a time slot in the current solu-
tion current. At the start of each iteration, S number
of events are selected randomly from unplacedE and
added to sampleE list. The event sampling size S is set
as 0.25% of the number of events e.g., S is 1, 2 and 3
for the number of events between 1–400, 401–800 and
801–1200, respectively. A sample of neighbour moves
are evaluated by considering all non-tabu suitable time
slots for the events in sampleE (lines 10–24). The event
e is temporarily removed from unplacedE. To feasibly
move an event into a particular time slot, minimal con-
flicting events (violated clash or precedence constraint)
are moved from current to unplacedE list. Matching
is used for room assignment only when necessary. If
matching could not find a room for the event consid-
ered, a room is chosen randomly among the rooms
suitable and the related event is moved from current to
unplacedE.

The cost function f used to evaluate solutions (current,
candidate, best) is based on the number of unplaced
events plus the clash ratio:

∑
e∈unplacedE

1+ clash[e]
clashSum

(23)
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Algorithm 2 Goh et al. (2017)
1: procedure TSSP(best, unassignedE)
2: unplacedE← unassignedE
3: current ← best
4: f (best)← f (current)
5: ITER← room3

6: i← 0
7: while unplacedE is not empty AND time.elapsed() < T do
8: sampleE← select S events randomly from unplacedE
9: min←∞
10: for all e ∈ sampleE do
11: unplacedE← unplacedE − e
12: for all s ∈ S | S non-tabu slot suitable for e do
13: current ← current − {events conflicting e}
14: unplacedE← unplacedE ∪ {events conflicting e}
15: if f (candidate) < min then
16: bestEvent ← e
17: bestSlot ← s
18: min← f (candidate)
19: end if
20: unplacedE← unplacedE − {events conflicting e}
21: current ← current ∪ {events conflicting e}
22: end for
23: unplacedE← unplacedE ∪ e
24: end for
25: current ← current − {events conflicting bestEvent}
26: current ← current ∪ bestEvent � bestSlot
27: f (current)← min
28: if f (current) < f (best) then
29: best ← current
30: f (best)← f (current)
31: unassignedE← unplacedE
32: end if
33: set tabu {events conflicting bestEvent} from original time slots
34: unplacedE← unplacedE − bestEvent
35: unplacedE← unplacedE ∪ {events conflicting bestEvent}
36: if i = ITER then
37: PERTURB(current)
38: i← 0
39: reset tabu list
40: end if
41: i = i + 1
42: end while
43: end procedure

where clash[e] is the number of clashes with other
events and clashSum is the total number of clashes of
all events. Effectively, the candidate solution with the
lowest number of unplaced events is preferred and ties
are broken using the number of clashes.

The events conflictingwith e inunplacedE aremoved
back to current before evaluating the next non-tabu
time slot. After evaluating all the non-tabu time slots,
e is placed back to unplacedE before the next event is
considered. The best neighbour move is recorded as
bestEvent and bestSlot (lines 16–17).

The best neighbourmove is applied to current where
the bestEvent is moved from unplacedE to the bestSlot
(line 26) after extracting the events conflicting with
bestEvent from current. best and f (best) are updated
if f (current) is better than f (best). The extracted events
are made tabu from returning to their original time
slots for a number of iterations (line 33) according to
the tabu tenure:

RANDOM[10)+ |unplacedE| (24)

where |unplacedE| is the number of unplaced events.
The bestEvent is removed from unplacedE and the ex-
tracted events are placed into unplacedE.

We perturb the current solution at certain iteration
intervals ITER. If i = ITER, current is perturbed (Al-
gorithm 3), i is reset to 0 and tabu list is reset. We try
to move each assigned event to each time slot (except
the time slot it currently occupies) in slotList (shuffled
randomly) by using either a swap or a Kempe operator.
The event is moved only if the move is feasible or does
not violate any hard constraints. ITER is set as room3

(line 5).

Algorithm 3
1: procedure PERTURB(solution)
2: for all e ∈ solution do
3: SHUFFLE(slotList)
4: for all slot ∈ slotList do
5: if RANDOM[0, 2) = 1 then
6: if SWAP(solution, e, slot) then
7: break;
8: end if
9: else
10: if KEMPE(solution, e, slot) then
11: break;
12: end if
13: end if
14: end for
15: end for
16: end procedure

The neighbourhood structures used in the PERTURB

procedure are:

• Swap: A swap is attempted between ewith event in
each room (room list shuffled randomly) in slot.
A swap is carried out if all the hard constraints are
satisfied.
• Kempe: Kempe chain interchange (Chiarandini
et al., 2006; Lewis & Thompson, 2015; Thompson
& Dowsland, 1996) is attempted. A chain is built
between events in a time slot occupied by e (time
slot A) and events in slot (time slot B). Initially, e
is added to the chain. Events in time slot A and B
which clash with events currently in the chain are
incrementally added to the chain.When the chain
is complete, the events in time slot A are moved to
time slot B and vice versa if all the hard constraints
are satisfied.

4.2. Stage 2: Improving soft constraint violations

In this stage, we improve the feasible solution in term
of soft constraint violations by using a method based
on simulated annealing (SA) as it has been shown to
be very effective in tackling various combinatorial opti-
misation problems, particularly timetabling problems.
In this work, we propose an enhanced variant of SA
which we term as Simulated Annealing with Improved
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Reheating and Learning (SAIRL). The proposed SAIRL
is build upon our recent SA algorithm which integrates
SAwithReheatingmechanism (SAR) (Goh et al., 2017).
SAR was inspired by the idea that when the current
cost is high, the search should explore more and when
the current cost is low, the search should exploit more.
To implement the idea, the current cost was used to
determine the initial and reheated temperature, which
in turn determines the exploration and exploitation
nature of the search. SAReliminated theneed for tuning
certain parameters in a conventional SA such as the ini-
tial temperature, the final temperature and the Markov
chain length.Good resultswere reported.However, one
drawback of SAR is having to pre-set the composition
of neighbourhood structures for each data-set in order
to obtain good results. Thus, it is difficult to set the
right composition in advance as the effectiveness is
dependent on the instance. Another drawback of SAR
is the limitation of using the current cost exclusively to
determine the level of reheated temperature as different
instances may require different level of exploration to
search effectively. To address these issues, we propose
several enhancements based on these shortcomings.
We term the improved algorithm Simulated Annealing
with Improved Reheating and Learning (SAIRL). The
details of SAIRL are shown in Algorithm 4.

Algorithm 4
1: procedure SAIRL(current,E)
2: temp← f (current)× C
3: heat ← 0
4: best ← current
5: previousCost ← f (current)
6: currentStagnantCount ← 0
7: stuckBestCost ← f (current)
8: stuckCurrentCost ← f (current)
9: NS← {ns1, . . . , ns|NS|}
10:
11: while terminationCondition = false do
12: for all e ∈ E do
13: moved← false
14: for slot = 1 to 45 do
15: nsk ← SELECTNEIGHBOURHOODSTRUCTURE(NS)
16: nsk.visit ++
17: candidate← GETCANDIDATE(current, e, slot, n)
18: if candidate exists then
19: if RANDOM[0,1) ≤ exp ( − f (candidate)−f (current)

temp )

then
20: moved← true
21: current ← candidate
22: if f (current) < f (best) then
23: best ← current
24: end if
25: update nsk .value
26: else
27: update nsk .value
28: end if
29: else
30: update nsk.value
31: end if
32: if moved then
33: break
34: end if
35: end for
36: end for

37: if STUCK(f (current), previousCost, currentStagnantCount)
then

38: if f (best) = stuckBestCost then
39: if f (current)− stuckCurrentCost < 2% then
40: heat = heat + 1
41: else
42: heat ← 0
43: end if
44: else
45: heat ← 0
46: end if
47: temp← [heat×0.2× f (current)+ f (current)]×�f ×D
48: stuckBestCost ← f (best)
49: stuckCurrentCost ← f (current)
50: else
51: temp← temp× β

52: end if
53: previousCost ← f (current)
54: end while
55: end procedure

Algorithm 5
1: procedure STUCK(f (current), previousCost, currentStagnantCount)
2: if f (current)− previousCost < 1% then
3: currentStagnantCount = currentStagnantCount + 1
4: else
5: currentStagnantCount ← 0
6: end if
7: if currentStagnantCount > 5 then
8: return true
9: else
10: return false
11: end if
12: end procedure

Like SAR, an initial temperature is cooled statically
according to an update ruleTi+1 = Ti×β . At each tem-
perature, aMarkov chain is generated by trying tomove
each event e ∈ E into a time slot using a neighbour-
hood structure selected probabilistically from the given
set of neighbourhood structures (transfer, swap and
Kempe (Thompson & Dowsland, 1996)). Probabilistic
selection ensures that the less favorable neighbourhood
structures can still be selected but the better neighbour-
hood structures are more likely to be selected. Maximal
matching is used for room assignment.

Instead of using a pre-set composition of neigh-
bourhood structures as is the case in SAR, we pro-
pose a method based on reinforcement learning (RL)
to obtain a balanced composition of neighbourhood
structures. Themethod is inspired by the work in Lewis
and Thompson (2015) that suggested the use of a fea-
sibility ratio to estimate the solution space connec-
tivity. They presented the relationship between fea-
sibility ratio and performance of various neighbour-
hood structures where the neighbourhood structure
with a higher feasibility ratio is preferred. However,
we feel that solutions may still be disconnected by the
acceptance criterion, restricting the movements within
the solution space. Therefore, we believe that accep-
tance ratio is a more suitable indicator for the solu-
tion space connectivity. In other words, neighbour-
hood structures with higher acceptance rates should
be favored. Meanwhile, through observation, we find
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that different neighbourhood structures have different
acceptance rates and computational costs for different
instances. Some neighbourhood structures may have
lower acceptance rates but are less computationally ex-
pensive which allows more transitions per time unit.
Therefore, the objective is to maximise the number
of accepted moves per time unit, with the hope that
solution space connectivity can be improved.

In our implementation, a visit and a value are main-
tained for each neighbourhood structure nsk. Note that
nsk.visit is incremented by one each time the neigh-
bourhood structurensk is selected (line 16).Meanwhile,
nsk.value is updated (lines 25, 27 and 30) as a cumula-
tive mean of rewards:

nsk.value← nsk.value + reward − nsk.value
nsk.visit

(25)

The reward is defined as:

reward =
{
0, if candidate is accepted
CPU time, otherwise

(26)
A zero reward is awarded to the neighbourhood

structure nsk if the candidate solution is accepted (line
25). Otherwise, the neighbourhood structure nsk is pe-
nalised with CPU time (elapsed time since selection)
if the candidate is rejected (line 27) or the candidate
does not exist because a move is not feasible (line 30).
Initially, all neighbourhood structures have an equal
probability of being selected. Over time, the probability
varies according to:

Pnsk =
1

nsk.value∑|NS|
k=1

1
nsk.value

(27)

The candidate solution is evaluated using the ac-
ceptance criterion where the improving and equal cost
solution is accepted while the worsening solution is
accepted with a certain probability. If accepted, the
candidate solution will be set as the current solution.
If the current solution is better than the best solution,
the best solution is updated.

After each Markov chain, the STUCK procedure (Al-
gorithm 5) checks whether the search is stuck in a
local optima. If the search is stuck, the temperature is
reheated. In SAR, the temperature is reheated according
to:

temp← [heat × 0.2× f (current)+ f (current)] × C
(28)

where C is a coefficient which determines the explo-
ration level of the reheated temperature and heat is an
incremental step. In SAIRL, we incorporate the average

cost changes of uphill and downhill moves (�f ) into
the reheating function:

temp← [heat×0.2×f (current)+f (current)]×�f×D
(29)

where D is a coefficient. The temperature is cooled
again until the search is stuck in another local optima.
If the search is found to be stuck in the previous local
optima, a higher temperature is applied for the next
reheating so that the search can explore more. The
procedure (a series of cooling and reheating) is repeated
until the terminationCondition is true when either the
elapsed time exceeds the runtime t or an optimal solu-
tion is obtained (note that all instances are known to
have a zero-cost solution).

We set the decay rate β to 0.9995 and the coefficient
D to 0.001. To allow a fair comparison between SAR
and SAIRL, the initial temperature is set to the same
value used in SARwhere the initial cost is multiplied by
the coefficient C=0.01 (1% of the initial cost). The same
settings are used across all instances in our experiments.

5. Experimental results

We performed the experiments on an Intel Xeon (3.1
GHz) with 4Gb RAM machine. Java is used to code
the algorithms. The computation time limit allowed
by running the benchmark programme (http://www.
idsia.ch/Files/ttcomp2002) is T=190 seconds for each
single run. When a feasible solution is found, the focus
is switched to minimising soft constraint violations
by using the remaining available time. Each run will
stop when the time limit is reached. A total of 31 runs
were executed for each instance. This section divided
into five subsections. The first and second subsections
discuss the benefit of proposed enhancements on the
performance of SA and SAR. The third subsection com-
pares the results of the proposed algorithm with the
state of the art methods. The fourth subsection presents
the results of the proposed algorithm using extended
run time. The discussion on the performance of the
proposed algorithm is presented in last subsection.

5.1. The effect of learning and improved reheating

For SAR, the neighbourhood structure composition is
set manually for specific data-sets. The composition is
70:29:1 (Socha/ITC02 instances) and 70:20:10 (ITC07
instances) for Transfer:Swap:Kempe operators. Mean-
while, a reinforcement learning-based method is used
in SARL to optimise the composition as the search
progresses. In effect, the need for manual setting of the
neighbourhood structure composition (as required in
SAR) is eliminated. Consequently, the performance of
SARL (a transition algorithm) is affected as shown by
the total average of soft constraint violations in Table 4.
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Table 3. Statistics for the ITC07 data-set.

Instance 1 2 3 4 5 6 7 8

Event 400 400 200 200 400 400 200 200
Room 10 10 20 20 20 20 20 20
Feature 10 10 10 10 20 20 20 20
Student 500 500 1000 1000 300 300 500 500
Instance 9 10 11 12 13 14 15 16
Event 400 400 200 200 400 400 200 200
Room 10 10 10 10 20 20 10 10
Feature 20 20 10 10 10 10 20 20
Student 500 500 1000 1000 300 300 500 500
Instance 17 18 19 20 21 22 23 24
Event 100 200 300 400 500 600 400 400
Room 10 10 10 10 20 20 20 20
Feature 10 10 10 10 20 20 30 30
Student 500 500 1000 1000 300 500 1000 1000

Table 4. Comparing average of soft constraint violations
between SAR, SARL, and SAIRL on data-sets.

Algorithm

Dataset SAR SARL SAIRL

Socha 20.52 20.31 21.67
ITC02 24.17 25.28 24.60
ITC07 171.05 204.81 126.38
Total 87.53 102.63 68.43

Note: n = 31 runs for each instance in the data-set.

We further improve SARLby incorporating the average
cost changes into the reheated temperature function in
SAIRL. As evident in Table 4, each algorithm recorded
the lowest average of soft constraint violations for each
data-set. The averages produced by these algorithms
are comparable for Socha and ITC02 data-sets. Mean-
while, SAIRL clearly outperforms SARand SARLon the
ITC07 data-set. Overall, SAIRL seems to be the most
effective algorithm.

5.2. Comparing SAIRL with SAR

Here, we compare the performance of SAR and SAIRL
in minimising the soft constraint violations. For Socha
instances, SAIRL is comparable to SAR as shown in
Table 5. The p values reveal that there is no significant
difference between the means of SAR and SAIRL for
all the instances except M2 where SAR is better than
SAIRL.

Results comparison between SAIRL and SAR for
ITC02 instances is shown in Table 6. The t-tests show
that SAR performed better than SAIRL for instances
1, 2, 9, 16, 18. Meanwhile, SAIRL is more effective for
instances 5 and 17. There is no significant difference
between the means of both methods for the rest of the
instances.

For ITC07 instances, SAIRL performed significantly
better compared to SAR for instances 1, 2, 3, 9, 11,
15, 16, 19, 24 as shown in Table 7. SAR is better than
SAIRL for instances 14 and 23.No significant difference
is evident between the means of both methods for the
rest of the instances.

On the whole, SAR is significantly better than SAIRL
on 8 instances.Meanwhile, SAIRL is significantly better
than SAR on 11 instances. t-tests do not reveal a sta-
tistically significant difference between the mean of the
two algorithms for the rest of the instances.

5.3. Comparing SAIRL with state of the art
methods

We now compare SAIRL with the best results in the
literature. Table 8 summarises the details of the solvers
we use for comparison.

SAIRL outperformed all the other solvers for all
Socha instances except solver R which we attempt to
improve in this work as shown in Table 9. Both SAIRL
and solver R found optimal solutions for 9 out of 11
instances. In addition, SAIRL achieved a new best result
for instance M3.

Results comparison for ITC02 is given in Table 10.
Our results are competitive or better than the other
solvers on all the instances. In fact, SAIRL managed
to get optimal solutions for 7 out of 20 instances in
comparison to the solver J2 (four) and solver R (seven).
Furthermore, SAIRL obtained four new best results (in-
stance 5, 12, 14 and 17) and four new means (instance
5, 7, 12 and 17).

Table 11 shows the results comparison for ITC07.
Our results are competitive compared to theother solvers.
SAIRL found eighteen optimal solutions compared to
the solver Q (seventeen) and solver R (fifteen). SAIRL
achieved one new best result (instance 22) and ten new
means (instance 1, 2, 9, 11, 12, 15, 16, 19, 22, 24). The
solver P did not attempt their methods on instances 17-
24. Perhaps, these instances are not accessible at that
time as they were initially hidden.

5.4. Extended runtime for SAIRL

Lastly, we performed some experiments to see the ef-
fects of an extended runtime with regard to soft con-
straint violations on selected instances. The algorithm
was ran for five times the time limit or 5T (950s). As
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Table 5. Comparison between SAR and SAIRL on Socha instances. Depicted is best(mean) of soft constraint violations.

Inst. SAR SAIRL t-test (p value)

S1 0(0.0) 0(0.0) –
S2 0(0.0) 0(0.0) –
S3 0(0.0) 0(0.0) –
S4 0(0.0) 0(0.0) –
S5 0(0.0) 0(0.0) –
M1 0(1.5) 0(2.32) 0.057
M2 0(2.2) 0(3.58) 0.007
M3 7(13.4) 6(14.39) 0.443
M4 0(0.7) 0(1.35) 0.073
M5 0(1.2) 0(1.42) 0.600
L 165(206.6) 181(215.19) 0.127

Note: n = 31 runs.

Table 6. Comparison between SAR and SAIRL on ITC02 instances. Depicted is best(mean) of soft constraint violations.

Inst. SAR SAIRL t-test (p value)

1 23(32.6) 26(37.0) 0.004
2 7(13.7) 6(16.3) 0.031
3 26(36.4) 27(38.2) 0.291
4 50(63.1) 47(69.0) 0.062
5 38(58.6) 36(51.8) 0.005
6 0(0.8) 0(0.8) 0.826
7 0(2.6) 0(2.4) 0.579
8 0(1.4) 0(1.5) 0.782
9 0(4.6) 0(6.4) 0.025
10 28(40.9) 22(40.4) 0.761
11 10(17.7) 10(19.0) 0.318
12 53(64.5) 47(64.1) 0.881
13 38(53.3) 33(51.0) 0.297
14 5(12.9) 4(13.6) 0.587
15 0(4.0) 0(4.8) 0.234
16 0(0.5) 0(2.2) 0.000
17 26(41.6) 25(36.8) 0.044
18 2(9.7) 3(12.5) 0.005
19 11(24.7) 15(25.6) 0.577
20 0(0.0) 0(0.0) –

Note: n = 31 runs.

Table 7. Comparison between SAR and SAIRL on ITC07 instances. Depicted is best(mean) of soft constraint violations.

Inst. SAR SAIRL t-test (p value)

1 0(307.6) 0(209.4) 0.025
2 0(63.4) 0(10.1) 0.048
3 163(199.4) 141(188.6) 0.050
4 242(328.8) 192(320.9) 0.456
5 0(2.7) 0(2.9) 0.845
6 0(33.2) 0(54.7) 0.074
7 5(18.0) 4(14.5) 0.614
8 0(0.0) 0(1.6) 0.156
9 0(100.7) 0(15.2) 0.009
10 0(65.3) 0(30.5) 0.160
11 161(244.3) 136(201.6) 0.001
12 0(318.2) 0(303.5) 0.641
13 0(99.5) 0(90.4) 0.605
14 0(0.2) 0(25.6) 0.001
15 0(192.0) 0(12.5) 0.000
16 10(105.8) 0(45.8) 0.000
17 0(0.8) 0(0.5) 0.590
18 0(12.5) 0(7.7) 0.366
19 0(516.7) 0(11.0) 0.000
20 586(650.7) 555(664.0) 0.280
21 0(12.5) 0(25.7) 0.071
22 1(136.0) 0(5.8) 0.099
23 11(504.4) 56(713.6) 0.005
24 5(192.6) 0(77.5) 0.000

Note: n = 31 runs.

evident in Table 12, the algorithm is scalable as the
best and average cost improved significantly when the
runtime is extended. Note that the runtime is sim-

ply reset without tuning any parameters. The p values
(0.000 < 0.05) of t-tests reject the null hypotheses H0 :
μ190s = μ1900s and revealed a statistically significant
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Table 8. Solver details.

Solver Technique Reference

A Ant System Socha et al. (2002)
B Tabu Search Hyperheuristic Burke et al. (2003)
C Extended Great Deluge McMullan (2007)
D Great Deluge + Tabu Search Abdullah et al. (2009)
E Non Linear Great Deluge + Learning Obit et al. (2009)
F Fish Swarm Turabieh et al. (2010)
G Round Robin Multi Algorithms Shaker & Abdullah (2010)
H Honey Bee Mating Sabar et al. (2012)
I Simulated Annealing Ceschia et al. (2012)
J1 Simulated Annealing Kostuch (2003)
J2 Simulated Annealing Kostuch (2005)
K Tabu Search Cordeau et al. (2003)
L Great Deluge Burke et al. (2003)
M Local Search + Tabu Search Di Gaspero and Schaerf (2003)
N Hybrid Algorithm Chiarandini et al. (2006)
O Simulated Annealing Cambazard et al. (2012)
P Ant Colony Optimisation Nothegger et al. (2012)
Q Simulated Annealing Lewis and Thompson (2015)
R Simulated Annealing with Reheating (SAR) Goh et al. (2017)

Table 9. Comparing SAIRL with other solvers on Socha instances. Depicted is best(mean) of soft constraint violations.

Solver

Inst. A B C D E F G H I R SAIRL

S1 1 1 0(0.8) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S2 3 2 0(2.0) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S3 1 0 0(1.3) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
S4 1 1 0(1.0) 0 0 0 0 0 0(0.1) 0(0.0) 0(0.0)
S5 0 0 0(0.2) 0 0 0 0 0 0(0.0) 0(0.0) 0(0.0)
M1 195 146 80(101.4) 78 38 45 117 75 9(26.5) 0(1.5) 0(2.3)
M2 184 173 105(116.9) 92 37 40 108 88 15(25.9) 0(2.2) 0(3.6)
M3 248 267 139(162.1) 135 60 61 135 129 36(49.0) 7(13.4) 6(14.4)
M4 164.5 169 88(108.8) 75 39 35 75 74 12(23.8) 0(0.7) 0(1.4)
M5 219.5 303 88(119.7) 68 55 49 160 64 3(10.9) 0(1.2) 0(1.4)
L 851.1 1166 730(834.1) 556 638 407 589 523 208(259.8) 165(206.6) 181(215.2)

Notes: n = 31 runs. Note that some authors only reported their best results.

Table 10. Comparing SAIRL with other solvers on ITC02 instances. Depicted is best(mean) of soft constraint violations.

Solver

Inst. J1 K L M N J2 I R SAIRL

1 45 61 85 63 45 16(30.2) 45(57.1) 23(32.6) 26(37.0)
2 25 39 42 46 14 2(11.4) 20(33.2) 7(13.7) 6(16.3)
3 65 77 84 96 45 17(31.0) 43(53.2) 26(36.4) 27(38.2)
4 115 160 119 166 71 34(60.8) 87(109.9) 50(63.1) 47(69.0)
5 102 161 77 203 59 42(72.1) 71(91.7) 38(58.6) 36(51.8)
6 13 42 6 92 1 0(2.4) 2(14.1) 0(0.8) 0(0.8)
7 44 52 12 118 3 2(8.9) 2(13.7) 0(2.6) 0(2.4)
8 29 54 32 66 1 0(2.0) 9(20.0) 0(1.4) 0(1.5)
9 17 50 184 51 8 1(5.8) 15(21.9) 0(4.6) 0(6.4)
10 61 72 90 81 52 21(35.0) 41(60.7) 28(40.9) 22(40.4)
11 44 53 73 65 30 5(12.9) 24(38.2) 10(17.7) 10(19.0)
12 107 110 79 119 75 55(76.3) 62(83.7) 53(64.5) 47(64.1)
13 78 109 91 160 55 31(47.1) 59(78.0) 38(53.3) 33(51.0)
14 52 93 36 197 18 11(22.3) 21(34.2) 5(12.9) 4(13.6)
15 24 62 27 114 8 2(8.4) 6(11.8) 0(4.0) 0(4.8)
16 22 34 300 38 55 0(3.4) 6(16.7) 0(0.5) 0(2.2)
17 86 114 79 212 46 37(54.0) 42(56.5) 26(41.6) 25(36.8)
18 31 38 39 40 24 4(9.4) 11(25.9) 2(9.7) 3(12.5)
19 44 128 86 185 33 7(16.4) 56(73.0) 11(24.7) 15(25.6)
20 7 26 0 17 0 0(0.5) 0(1.8) 0(0.0) 0(0.0)

Notes: n = 31 runs. Note that some authors only reported their best results.

difference between the mean of runtime t of T and 5T .
The soft constraint violations for SAIRL with extended
runtime on Socha-L, ITC02-1, and ITC07-1 instances
are illustrated in Figures 1–3.Meanwhile, the respective

descriptive statistics are given in Tables 13–15. Note
that the circles and stars in the box plots are mild and
extreme outliers.

In addition, we compare the results of extended
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Table 11. Comparing SAIRL with other solvers on ITC07 instances. Depicted is best(mean) of soft constraint violations.

Solver

Inst. P I Q R SAIRL

1 0(613.0) 59(399.2) 0(377.0) 0(307.6) 0(209.4)
2 0(556.0) 0(142.2) 0(382.2) 0(63.4) 0(10.1)
3 110(680.0) 148(209.9) 122(181.8) 163(199.4) 141(188.6)
4 53(580.0) 25(349.6) 18(319.4) 242(328.8) 192(320.9)
5 13(92.0) 0(7.7) 0(7.5) 0(2.7) 0(2.9)
6 0(212.0) 0(8.6) 0(22.8) 0(33.2) 0(54.7)
7 0(4.0) 0(4.9) 0(5.5) 5(18.0) 4(14.5)
8 0(61.0) 0(1.5) 0(0.6) 0(0.0) 0(1.6)
9 0(202.0) 0(258.8) 0(514.4) 0(100.7) 0(15.2)
10 0(4.0) 3(186.4) 0(1202.4) 0(65.3) 0(30.5)
11 143(774.0) 142(269.5) 48(202.6) 161(244.3) 136(201.6)
12 0(538.0) 267(400.0) 0(340.2) 0(318.2) 0(303.5)
13 5(360.0) 1(120.0) 0(79.0) 0(99.5) 0(90.4)
14 0(41.0) 0(3.6) 0(0.5) 0(0.2) 0(25.6)
15 0(29.0) 0(48.0) 0(139.9) 0(192.0) 0(12.5)
16 0(101.0) 0(50.1) 0(105.2) 10(105.8) 0(45.8)
17 – 0(0) 0(0.1) 0(0.8) 0(0.5)
18 – 0(41.1) 0(2.2) 0(12.5) 0(7.7)
19 – 0(951.5) 0(346.1) 0(516.7) 0(11.0)
20 – 543(700.2) 557(724.5) 586(650.7) 555(664.0)
21 – 5(35.9) 1(32.1) 0(12.5) 0(25.7)
22 – 5(19.9) 4(1790.1) 1(136.0) 0(5.8)
23 – 1292(1707.7) 0(514.1) 11(504.4) 56(713.6)
24 – 0(105.3) 18(328.2) 5(192.6) 0(77.5)

Note: n = 31 runs.
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Figure 1. Box plot showing the soft constraint violations for SAIRL with extended runtime on Socha-L instance. Note: n=31 runs.

runtimebetweenSARandSAIRL for selected instances.
As it took around 8 hours to run each instance for 31
times, we selected only one instance from each data-
set namely Socha-L, ITC02-1 and ITC07-1. SAIRL is
comparable to SAR as shown is Table 16. In fact, SAIRL
is preferred based on the average of means for the
selected instances. There is no significant difference
between the means of both algorithms for ITC02-1.
SAR is more effective than SAIRL for instance Socha-

L. Meanwhile, SAIRL performed better than SAR for
instance ICT2007-1.

5.5. Discussion

In order for a conventional SA to produce good results,
certain parameters have to be tuned for specific in-
stances e.g. initial temperature, final temperature,Markov
chain length, and decay rate. SAIRL, proposed in this
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Figure 2. Box plot showing the soft constraint violations for SAIRL with extended runtime on ITC02-1 instance. Note: n=31 runs.
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Figure 3. Box plot showing the soft constraint violations for SAIRL with extendedruntime on ITC07-1 instance. Note: n=31 runs.

paper, not only eliminates the requirement for tuning
those parameters but also adjusting the neighbourhood
structure composition (data-set-specific) in SAR. Nev-
ertheless, the algorithm produces results comparable to
the state of the art methods which were either heavily
tuned or limited in terms of data-sets considered. For
SAIRL, we merely set the decay rate β to 0.9995 and

the constant D to 0.001. The same settings were used
and worked well for all the instances without tuning.
Meanwhile the initial temperature is simply set as 1%
of the initial cost. Unlike conventional SA, the initial
temperature is not critical for SAIRL as reheating allows
the search to reset itself when it detects that it is stuck
in a local optima.
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Table 12. Comparison of soft constraint violations between
SAIRL with runtime of T and 5T on selected instances.

t=T t=5T t-test

Inst. best mean best mean (p value)

Socha-L 181 215.19 157 190.42 0.000
ITC02-1 26 37.03 11 20.84 0.000
ITC07-1 0 209.39 0 23.06 0.000
Avg – 153.87 – 78.11

Note: n = 31 runs.

Table 13. Descriptive statistics for SAIRL with extended
runtime on Socha-L instance.

Runtime

Soft Constraint Violations 1T 2T 3T 4T 5T

Min 181 174 138 160 157
Max 254 236 214 211 215
Median 218.00 205.00 195.00 193.00 194.00
Mean 215.19 204.97 189.65 191.58 190.42

Note: n = 31 runs.

Table 14. Descriptive statistics for SAIRL with extended
runtime on ITC02-1 instance.

Runtime

Soft Constraint Violations 1T 2T 3T 4T 5T

Min 26 19 15 18 11
Max 50 36 38 31 31
Median 38.00 28.00 25.00 24.00 21.00
Mean 37.03 27.84 25.03 23.65 20.84

Note: n = 31 runs.

Table 15. Descriptive statistics for SAIRL with extended
runtime on ITC07-1 instance.

Runtime

Soft Constraint Violations 1T 2T 3T 4T 5T

Min 0 0 0 0 0
Max 623 469 272 288 298
Median 230.00 0.00 1.00 0.00 0.00
Mean 209.39 90.23 48.29 27.23 23.06

Note: n = 31 runs.

Table 16. Comparison of soft constraint violations between SAR
(5T ) and SAIRL (5T ) on selected instances.

SAR (5T ) SAIRL (5T ) t-test

Inst. best mean best mean (p value)
Socha-L 103 139.39 157 190.42 0.000
ITC02-1 10 21.03 11 20.84 0.867
ITC07-1 0 134.94 0 23.06 0.000
Avg – 98.45 – 78.11

Note: n = 31 runs.

Multiple operator implementations are generally bet-
ter than any single operator variant because the solution
space is more connected. However, selecting operators
with equal probability for multiple operators is subop-
timal because in reality, the operators have different
acceptance ratio and computational costs for different
data instances. The effect of RL is shown in Figure 4.

Figure 4. The use of Reinforcement Learning (RL) to adjust the
neighbourhood structure composition.

We use dashed instead of solid lines to indicate that
the solution space is not necessarily connected by any
of the operators as move acceptance is determined by
feasibility as well as the temperature. Meanwhile, the
thickness of the dashed lines represent the selection
probabilities for the operators. Initially, the operators
have an equal chance of being selected. As the search
progresses, the probabilities are increased or decreased
depending on the acceptance ratio and computational
cost of the operators. Unlike other methods which re-
ward operators that improve the current or best so-
lution, our RL-based method rewards operators that
change the current solution (improvingmoves or equal
cost moves or worsening moves). Effectively, opera-
tors with relatively high values (cumulative mean of
rewards) will have a higher tendency to be selected.
The probabilistic selection that we use prevents the
domination of any operator as low valued operators can
still be selected. As a result, the number of transitions
(accepted moves) per time unit is maximised and the
solution space connectivity is (we hope) improved. The
movement of neighbourhood structure composition
for Socha-L, ITC02-1 and ITC07-1 is shown in Fig. 5–7
respectively. The composition of Kempe operators is
higher for ITC07-1 compared to Socha-L and ITC02-1.
For Socha and ITC02 instances, the search spaces are
well connected by transfer and swap operators. There-
fore, aKempe operator is redundant for these instances.
Furthermore, the Kempe operator is computationally
more expensive. Meanwhile, for ITC07 instances, the
search space is poorly connected by transfer and swap
operators. Thus, a higher composition of a Kempe op-
erator is worthwhile for ITC07 instances.

In SAR, the reheated temperature is set proportional
to the current cost. When the current cost is low, the
temperature is set proportionally low. In effect, the
search is guided to operate in the vicinity of the current
solution with the hope of finding the optimal solution
(exploitation). Meanwhile, when the current cost is
high, the temperature is set proportionally high and
the search is allowed to explore more. However, setting
the reheated temperature based on the current cost
alone is not sufficient as the search landscape for each
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Figure 5. Movement of neighbourhood structure composition
for Socha-L.

Figure 6. Movement of neighbourhood structure composition
for ITC02-1.

Figure 7. Movement of neighbourhood structure composition
for ITC07-1.

instance is different. In SAIRL, the average cost changes
(which provides insight into the gradient of the search
landscape) is incorporated into the reheated temper-
ature function since the temperature determines the
acceptance of uphill moves based on the cost changes.
In effect, we are using the information on the gradient
of the search landscape to determine the exploration
level for the search.

6. Conclusion

This work proposed a two-stage approach for the post
enrolment course timetabling problem. The proposed
approachutilised tabu search algorithm in thefirst stage
to generate a feasible solution. We propose enhanced
variant of the simulated annealing that uses an im-
proved reheating and learning strategies to further im-
prove the generated solutions in the second stage. We

have conducted extensive experimental tests to com-
pare the performance of several variant of simulated
annealing: simulated annealing with reheating, simu-
lated annealing with reheating with learning and simu-
lated annealing with improved reheating and learning
strategies on all the instances. The results demonstrated
that the proposed enhancements did improve the per-
formance of traditional simulated annealing algorithm.
We also compared the performance of proposed algo-
rithm with state of the art methods. The results show
that the proposed algorithm is comparable or better
than other state of the art methods. Finally, we have
shown that the proposed algorithm is scalable when
the runtime is extended.

7. Future work

We are looking forward to utilise the proposed algo-
rithm on other educational timetabling problems such
as school timetabling (ITC11) and examination
timetabling (examination track of ITC07 and Toronto
data-set). Adaptations should be minimal considering
the common features and structures shared by the ed-
ucational timetabling problems. The algorithm could
also be applied to other scheduling problems (trans-
port scheduling, sports scheduling and nurse rostering)
and possibly other combinatorial optimisation prob-
lems (bin packing, vehicle routing). Working on differ-
ent problems not only provides a platform to test the
robustness and general applicability of the proposed
algorithm but also invaluable experience to further im-
prove the algorithm.

It is also possible to add more complex operators
into the neighbourhood structure composition such as
Hungarian method (Kuhn, 1955), double Kempe (Lu
&Hao, 2010), etc. The complex operators may be com-
putationally expensive but are worthwhile provided the
connectivity of the search space is improved. The Re-
inforcement Learning used in the proposed algorithm
will adjust the neighbourhood structure composition
accordingly based on the acceptance ratio and compu-
tational cost (CPU time) of the operators.

The proposed algorithm can be hybridised with a
Tabu Search mechanism. In the proposed algorithm,
every time slot is attempted for each event unless the
event is successfully moved to a time slot. An event can
be prohibited frommoving to certain slots aftermoving
out of the time slots recently. Instead of attempting to
move an event to every time slot, only certain non-tabu
time slots are attempted. It is hoped that the exploration
of the search will improve. Tabu tenure determines
the prohibition duration (number of iterations) of a
particular time slot for a particular event. We could
set the tabu tenure as a function proportional to the
current cost. This dynamic tabu tenure is expected to
allow the search to explore and exploit the search space
accordingly during the search process. This idea is in-
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spired by the principle that the search should explore
more when the current cost is high and exploit more
when the current cost is low.

The proposed algorithm can also be hybridised with
any population-based algorithms (GA) which are well
known for their exploration capability. For instance,
when the search gets stuck during the search, GA can
be initiated for the search to escape from being stuck in
a local optima. We would suggest that the number of
iteration for the genetic algorithm tobe set proportional
to the current cost. After a certain number of iterations,
the mode of execution is returned back to the proposed
algorithm. Then the temperature is set proportional
to the current cost and cooled until it is stuck again.
The execution of the proposed algorithm and GA are
alternated until the time limit is reached.

Currently, the proposed algorithm utilises a static
cooling schedule. We look forward to test the proposed
algorithm with various adaptive cooling schedules as
proposed in Van Laarhoven and Aarts (1987), Romeo,
Sangiovanni, and Huang (1986), Otten and van Gin-
neken (2003) and Triki et al. (1998). The adaptive cool-
ing schedules worked well for the respective domains.
However, a parameter value has to be set for them to
work effectively.
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