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Fig. 1. Blondie24 architecture [3].

champion. Rather, we want to study the effectiveness of in-
troducing individual learning and social learning as a machine
learning approach to game playing.

The rest of the paper is organized as follows. In Section II,
related work is presented. The experimental setup is described
in Section III. Section IV presents our results and Section V
concludes the paper together with some suggestions for future
work.

II. BACKGROUND

A. Samuel’s Seminal Work

In 1954, Samuel developed aCheckersplayer in an attempt to
demonstrate that a computer program could improve by playing
againstitself. Samuel’s program adjusted weights for 39 fea-
tures [2], [5], [42]–[44]. Samuel used a form of what is now
called “reinforcement learning” (more details about reinforce-
ment learning can be found in [6]–[8]) to adjust these features,
instead of tuning them by hand. Samuel discovered that the most
important feature was the piece difference and the remaining
38 features (including capacity for advancement, control of the
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center of the board, threat of fork, etc.) varied in their impor-
tance. Due to memory limitations, Samuel only used 16 of the
38 features in his evaluation function, swapping between them
to include the remaining 22, which he called term replacement
[2], [3], [5], [42]–[44].

Two evaluation functions (alpha and beta) were used to de-
termine the weights for the features. At the start, both alpha and
beta have the same weight for every feature. Alpha weights were
modified during the execution of the algorithm. Beta values re-
mained static. The process gave an appropriate weight to each
feature when summed together. Each leaf node in the game tree
was evaluated using this evaluation function. This process rep-
resents one of the first attempts to use heuristic search methods
in searching for the best next move in a game tree. Samuel [2],
[42], [43] used minimax with three-ply search and a procedure
called rote learning. This procedure was responsible for storing
the evaluation of different board positions in a lookup table for
fast retrieval (look-ahead and memorization). Samuel [5], [44]
improved the minimax search with alpha–beta pruning that in-
corporated a supervised learning technique to allow the program
to learn how to select the best parameters to be calculated in the
evaluation function.

In July 1962, Samuel’s program played against Robert
Nealey, described (incorrectly) as a state champion (he was
not to earn that title for another four years). Samuel’s program
defeated Nealey. At that time, it was considered a great success
and a significant achievement in machine learning. In fact,
this was the only win that Samuel’s program managed against
Nealey, or any other player, and there is some controversy
about how strong a player Nealey really was. Samuel claimed
that his program focused on the problem of having a machine
learning program, rather than being told how to play, but in
fact, he used 39 features (although he wanted to get away from
that requirement), which some would argue is utilizing human
knowledge. However, the historical importance of this work
cannot be underestimated as it set the challenge, which Fogel
was later to accept, and to answer.

B. Chinook

In 1989, Schaeffer and his colleagues at the University of Al-
berta (Edmonton, AB, Canada), designed a Checkersprogram
called Chinook [9]. [10], which later became the world cham-
pion at Checkers. Schaeffer’s initial motivation was to solvethe
game. However, this was a challenging goal as there are approx-
imately 5 10 different positions to evaluate [10].

A further motivation was to produce the world’s best
Checkersplayer. This was done by using an evaluation func-
tion, which comprises several features, all of them based on
human expertise, including grand masters. The main feature in
Chinook’s evaluation function is the piece count, where each
piece on the board takes 100 points. The next most important
feature is the king, which takes a value that is greater than
a regular checker by 30%, except when the king is trapped
(a trapped king cannot move because it will be taken by the
opponent), when it takes the same value as a regular checker.
Another feature that is important to Chinook’s evaluation
function is the runawaychecker (a clear path for a checker to
become a king, without any obstacles), which takes a value of

50 points in addition to its previous value, and subtracts three
points for each move that is required to advance the checker to
be a king. There are other additional features that are included
in the evaluation function, including the “turn,” “mobile kings,”
and the “dog hole” (a checker that is trapped by its opponent
and cannot be moved). Each one of those features was assigned
a different weight indicating its importance.

The summation of each term provided an overall assessment
of the board for that particular game state, which enabled dif-
ferent game states to be compared. Initially, Schaeffer gave ini-
tial values to the weights and then hand tuned them when he
found an error (e.g., an obviously incorrect move being made)
or when a Chinook move led to a losing position.

Chinook also utilized opening and end game databases to fur-
ther enhance its ability. Initially, Chinook’s opening game data-
base contained 4000 sequences. Later, it contained more than
40 000. The end game database contained all the possibilities
that led to a win, a draw, or a loss, for a given number of pieces
left on the board. The final version of Chinook’s end game data-
base contained all six-piece end sequences, allowing it to play
perfectly from these positions.

In 1989, Chinook, with a four-piece end game database [11],
won the computer Olympiad. Later, with its final six-piece end
game database, together with its evaluation function modified
by a fudgefactor [10], [12], it finished in second place to Marion
Tinsley (recognized as the best Checkersplayer who ever played
the game) at the U.S. National Checkers Championship held
in 1990. After a further sequence of matches in 1994 between
Chinook and Tinsley, Chinook became the world man machine
Checkerschampion (after Tinsley’s resignation due to health
problems; he died the following year) [10]. In 1996, Chinook
retired with rating at 2814.

The building of the open/end game databases ultimately led
Schaeffer to achieve his initial motivation (solving the game of
Checkers) [13]. Perfect play by both sides leads to a draw.

C. Blondie24

Blondie24 represents an attempt to design a computer
Checkersprogram, injecting as little expert knowledge as
possible [3], [4], [14]–[17]. Evolutionary neural networks were
used as a self-learning computer program. The neural network
used for a particular player provided the evaluation function
for a given board position. Evolutionary pressure caused these
networks, which acted randomly initially (as their weights were
initialized randomly), to gradually improve over time. The final
network was able to beat the majority ( 99%) of human players
registered on www.zone.com at that time. Blondie24 represents
a significant achievement, particularly in machine learning
and artificial intelligence. Although Blondie24 does not play
at the level of Chinook [10], this was not the objective of the
research; rather, it was to answer the challenges set by Samuel
[1], [2], [42], [43], as well as to answer Newell and Simon
(two early AI pioneers) who said that progress in this area
would not be made without addressing the credit assignment
problem. The major difference between Blondie24 and other
traditional game-playing programs is in the employment of
the evaluation function [14], [15]. In traditional game-playing
programs, the evaluation function usually consists of important
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features drawn from human experts. The weighting of these
features is altered using hand tuning, whereas, in Blondie24,
the evaluation function is an artificial neural network that only
knows the number of pieces on the board, the type of each
piece, and their positions. The neural network is not preinjected
with any other knowledge that experienced players would have.

The following algorithm represents Blondie24 [4], [17].

1) Initialize a random population of 30 neural networks
(strategies) sampled uniformly [ 0.2, 0.2]
for the weights and biases.

2) Each strategy has an associated self-adaptive parameter
vector initialized to 0.05.

3) Each neural network plays against five other neural
networks selected randomly from the population.

4) For each game, each competing player receives a score of
1 for a win, 0 for a draw, and 2 for a loss.

5) Games are played until either one side wins, or until 100
moves are made by both sides, in which case a draw is
declared.

6) After completing all games, the 15 strategies that have the
highest scores are selected as parents and retained for the
next generation. Those parents are then mutated to create
another 15 offspring using the following equations.
For each parent , an offspring was
created by

(1)

(2)

where is the number of weights and biases in the neural
network (here, this is 5046), ,
and is a standard Gaussian random variable
resample for every .

7) Repeat steps 3–6 for 840 generations (this number was an
arbitrary choice in the implementation of Blondie24).

Blondie24 represents a milestone in evolutionary learning,
but the design did not allow for the end product to learn any
further after the self-play stage. That is, learning was only ex-
ercised in the evolution phase and no learning took place in
the playing phase, when it faced human opponents. This makes
Blondie24 incapable of adapting itself when interacting with
human players. Harley comments on this fact in his book re-
view [18]:

“An interesting point is that the end product which looks
intelligent is Blondie, yet she is not in fact the intelligence.
Like the individual wasp, Blondie is fixed in her responses.
If she played a million games, she would not be an iota
smarter. In this sense, she is like Deep Blue. Perhaps a
better example of intelligence would be a human, who
can adapt her behavior to any number of new challenges.”

It would be interesting, and conceptually easy (though chal-
lenging logistically), to enable Blondie24 to continue to learn,
after the self-play stage, when it starts playing against humans.

This is certainly a research direction worth pursuing but, we sus-
pect, that the logistical challenges make it difficult to carry out
in practice.

The creation of Blondie24 is to be considered as a learning
process (achieving Samuel’s challenge [5], [44]) but the current
version of Blondie24 is unable to learn from its environment
[19] (i.e., playing against humans). Another point of note is that
in step 3 of the algorithm, the strategies do not all play the same
number of games because, by chance, some will be selected as
opponents more often than others. Al-Khateeb and Kendall [20]
enhanced Blondie24 by introducing a round robin tournament,
instead of randomly choosing the opponents. We draw on this
work in this paper (see Section IV).

In order to investigate the effects of introducing individual
learning and social learning to an evolutionary Checkerssystem,
we first implemented an evolutionary Checkersplayer (which
we refer to as ). Our implementation is based on the same
structure and architecture that Fogel utilized in Blondie24.

D. Two-Move Ballot

When the world’s best players play the game of Checkers, it
often ends in a draw. To overcome this, and make the games
more competitive, the two-move ballot is used.

This was introduced in the 1870s [10]. The first two moves
(each side’s first move) are randomly chosen. There are 49 pos-
sibilities to play in this way, but research has shown that six of
these moves (openings) are unbalanced, as it will give an ad-
vantage to one side over the other. Therefore, only 43 of the 49
available moves are considered. At the start of the game, a card
is randomly chosen indicating which of the 43 openings is to
be played. The original game, with no forced opening moves, is
called go-as-you-please (GAYP).

E. Bayeselo

The Elo rating system [21] was originally used for Chess,
but it is now used for many other games (e.g., football; see
http://www.eloratings.net/system.html). Each player (or team)
is given an initial rating, and after playing each other, their rating
changes as a function of their current rating and whether they
win, lose or draw.

Elo says that the expected result of a game is a function of the
difference in rating between two players. For example

where is the expected result and is the rating difference
between two players.

Elo assumes that there is a single value that can represent
the player’s strength, and therefore, the expected result can be
determined according to the above formula. One of the problems
with Elo is that you cannot take a set of game results and produce
a ranking of all those players.

In this paper, we use a modified version of Elo, called
Bayeselo [22], to compare various evolved players. Bayeselo
finds a likelihood of superiority (LOS), using a minoriza-
tion–maximization algorithm [23]. Tables I and II show an
example of Bayeselo estimates and LOS. Software can be
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TABLE I
BAYESELO RATINGS EXAMPLE

TABLE II
BAYESELO LOS EXAMPLE

downloaded [22], which enables all of the necessary calcula-
tions to be made.

Table I shows the Elo rating for two players after they have
played a number of games (not necessarily against just each
other). The columns shows the true rating at a 95% confi-
dence level (you can change the confidence level in the program,
but we leave it at 95% for all the results reported in this paper).
Taking as an example, its Elo rating is 598 and its true value
is between (598 123) 475 and (598 156) 754, at the 95%
confidence level.

The values in Table II show how the supremacy of players is
reported using Bayeselo. You can treat the figures as percent-
ages, representing the LOS. Table II shows that there is an 87%
likelihood that is stronger than and a 12% likelihood that

is stronger than .
In this paper, we use the LOS as the main statistical measure

of the superiority of one player over that of another. If this value
is around 50%, we assume that the players are equal. If the value
is above 90%, we assume that the players are statistically dif-
ferent, at the 95% confidence level.

It is also worth noting (for the purposes of reproducibility)
that we change the advantageparameter to zero when running
Bayeselo. The default is 32, which is used for Chess(repre-
senting the advantage white has) but this is not applicable to
Checkersso we set this parameter value to zero.

III. INDIVIDUAL LEARNING AND SOCIAL LEARNING

Humans, when developing strategies to defeat other humans,
use a variety of techniques. For example, humans can improve
their strategy by themselves or through learning from the expe-
rience of competing with other humans. Developing their own
strategies based on a copy of a better player model is another
technique utilized by humans. In other words, humans can learn
through both individual and social learning.

In [24], social learning is stated as “learning from others,”
while [30] defines individual learning and social learning as:
“With individual learning an agent learns exclusively on the
basis of his own experience, whereas population or social
learners base themselves on the experience of other players as
well.” In general, social learning can be defined as learning
indirectly from the experiences of others (as opposed to one’s
own experiences). In competitive learning [25], in order to
survive to the next generation, all the players will play against
each other. The sources of inspiration for our work can be

found in [19] and [26]–[29], where a simulated stock market
used coevolving neural networks (evolved through a process
of individual learning and social learning). Agent-based com-
putational economics is by far the most common use of social
learning research [26], [30].

In this work, we define individual learning as the mechanism
by which a player chooses five other players to play against
[step 3) in the algorithm], in order to try and improve itself. This
might still be considered social learning (as the agent is playing
against another agent, although they are learning from their own
experience), but we use this terminology as each player is given
the opportunity to try and improve itself, and it also differenti-
ates it from the social learning mechanism, which is when an
agent is able to draw from a collective pool of experience.

Individual learning and social learning are utilized in two
stages. The player will undertake individual learning by playing
against five other players. After a certain time has elapsed, we
enter a social learning phase when players are able to learn from
each other.

In social learning, the player is given the chance to copy a
strategy from a pool of previously good strategies, or to generate
a new strategy to replace its current strategy. For completeness,
according to our definition, Blondie24 can be considered as in-
dividual learning.

Best strategies from the population are retained in a social
pool. This pool is made available to those players which are
not performing well. In this respect, it closely resembles a hall
of fame [25], where the progress of learning is tested against a
panel of all the best evolved players at every generation. There
are two reasons to save the best players in every generation.
One is to contribute genetic material to future generations. The
second reason is for the purpose of testing. Hall of fame has
been applied to many games such as Nim and 3-D Tic-Tac-Toe
and has been shown to be successful as it significantly improved
the coevolutionary performance for those games.

In social learning, the player has the opportunity to choose to
replace their existing strategy with another one selected from the
social pool, in the hope that the selected strategy is better than
their current strategy. All strategies in the social pool have their
own score, updated over time. The activities in social learning
are as follows:

1) rank the players in descending order;
2) copy the best player or players (if more than one) to the

social pool;
3) for the rest of the players, there are two possibilities:

a) if the player is satisfied with his current strategy
(based on the current score), retain that strategy;

b) if the player is not satisfied with his current strategy,
three alternatives are available:

i) copy a strategy from the pool;
ii) create a new random strategy;

iii) retain their current strategy.
When considering social learning, it is interesting to compare

it with the island model in evolutionary computation. In an is-
land model, each individual in a subpopulation evolves indepen-
dently [29], [31]. Moreover, the best player from a subpopula-
tion can migrate to another subpopulation, if and only if, it is the
better strategy. However, there is no creation of a new strategy
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in the subpopulation. In social learning, as mentioned above, the
individual players have the opportunity to copy a better strategy,
retain their current strategy, or generate a new random strategy.

The individual and social learning mechanism is also dif-
ferent from the case-injected genetic algorithm (CIGAR) [32],
[33] that combines genetic algorithms with case-based rea-
soning to play a computer strategy game. CIGAR works by
injecting the best strategies (players) obtained from past games
into the population of a genetic algorithm in order to try and
produce better players. This can be done along with a suitable
representation. Results demonstrate that case injection can
produce superior players.

Cultural algorithms are also different from individual and
social learning mechanisms, since cultural algorithms [34], [35]
are models of evolutionary learning that are set to emulate cul-
tural evolutionary processes. Two levels of evolution constitute
a cultural algorithm, namely, microevolution in a population
space and macroevolution in a belief space. Utilizing an accep-
tance function, the experiences of individuals in the population
space are employed to create problem solving knowledge,
which is then stored in the belief space. The knowledge is
manipulated by the belief space and this subsequently guides
the evolution of the population space through an influence
function. A fraud detection system was designed by Stern-
berg and Reynolds [36] who used a cultural-algorithm-based
evolutionary learning approach to learn about the behavior
of a commercial-rule-based system for detecting fraud. The
acquired knowledge in the belief space of the cultural algorithm
is then used to re-engineer the fraud detection system. Another
application of cultural algorithms is in modeling the evolution
of complex social systems [37], [38]. Furthermore, the applica-
tion of cultural algorithms for function optimization problems
in dynamic environments has been described by Reynolds
and Saleem [39], [41] and Reynolds and Peng [40]. In their
experiments, the dynamic environment is modeled as a 2-D
plane on which four cones of varying heights and slopes are
haphazardly positioned. At certain generations, the four cones
change their locations on the plane hence the location of the
optimum solution is constantly changing. When applied to the
problem of finding the new optima in dynamic environments,
Reynolds and Saleem [39] demonstrated that a cultural algo-
rithm is superior (in the set of experiments that were carried
out) compared to an evolutionary algorithm with only one
single-level evolution. Reynolds and Peng [40] discuss how the
learning of knowledge in the belief space warrants the adapt-
ability of cultural algorithms. Reynolds and Saleem [41] further
examine the contributions of various types of knowledge from
the belief space in piloting the quest for the best solutions in
both deceptive and nondeceptive environments.

A. An Application of the Framework to Checkers

Our hypothesis is that the introduction of social learning into
an evolutionary Checkerssystem will provide a richer environ-
ment for learning. The players outside the social pool are called
individual players, all of which attempt to develop their own
strategy. At certain times, the best players are drawn from the
social pool to replace poorly performing individual players.

In our experiments, we have made some modifications to the
algorithm described in [19] in order to investigate how to in-
crease the number of players in the social pool, thus, producing
a larger number of strategies that can be copied by individual
players.

We propose two phases. The first will use individual learning,
with the best players being copied to the social pool after every

generations. In the second phase, social learning occurs
every generations (see below for justifications for choosing
the values for and in this paper). Therefore, in comparison
to [19], we copy strategies to the social pool more often. The
algorithm for our experiments is as follows.

1) Initialize a random population of 30 neural networks
(players) sampled uniformly [ 0.2, 0.2] for the weights.

2) Each player has its associated self-adaptive parameter,
initialized to 0.05.

3) Initialize (frequency of individual learning) and
(frequency of social learning).

4) For each player in the current population, randomly
choose five players to play against.

5) For each game, the player receives a score of 1 for a
win, 0 for a draw, and 2 for a loss.

6) Games are played until either side wins, or until 100
moves are made by both sides, in which case a draw is
declared.

7) If the generation number is exactly divisible by and
not by , then:
— select the best player(s) with the highest score (if two

or more players have equal scores, we will select all
those players) and copy them to the social pool;

— select the best 15 players and mutate them to get 15
offspring using (1) and (2).

8) If the generation number is exactly divisible by , then
for all players do:
— normalize the individual scores (values between 0 and

1) for all the players using

(3)

where is the normalized value for player , and
are the lowest and highest scores in the current

population among all players, and is the score of
player before being normalized;

— if the normalized value is 1 and the player is not using a
strategy drawn from the pool, then publish the strategy
into the pool;

— if the normalized value is 1 and the player is using a
strategy drawn from the pool, then do not publish the
strategy into the pool but update the strategy’s score
in the pool;

— for the rest of the players, there are two cases:
1) if the normalized value is between 1 and 0.9, then

the player is satisfied with his current strategy and
retains it:
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TABLE III
NUMBER OF WINS FOR THE EVOLVED PLAYERS (ROW PLAYER) OUT OF 774 GAMES

• if the normalized value is less than 0.9, then the
player is not satisfied with his current strategy;
the player has three options:
a) with 1/3 probability, replace the current

strategy by copying a new strategy from
the pool; roulette wheel selection is used to
select the new strategy from the pool;

b) with 1/3 probability, replace the current
strategy by creating a new random strategy;

c) with 1/3 probability, retain the current
strategy.

9) If the generation number is not exactly divisible by
or , then:
— select the 15 best players and mutate them to get 15

offspring using (1) and (2).
10) Repeat steps 4)–9) for generations or for specified time.

B. Conducted Experiments

Three experiments were carried out. The first experiment is
to ensure that and Blondie24-RR (which is a result of our
previous work to enhance Blondie24 obtained by introducing a
round robin tournament into Blondie24 [20]) evolve in a con-
sistent way. We evolved ten players and ten Blondie24-RR
players. We compare players of the same type (i.e., or
Blondie24-RR) using the two move ballot (so each player plays
all 43 openings, both as red and white) and test if they are
statistically different by using Bayeselo. Our aim is to show
that evolved players using the same experimental parameters
are the same. If we are able to establish that, then we can com-
pare players evolved with different experimental parameters to
ascertain whether they are different.

The second experiment is designed to determine the best
values for the number of generations to determine where the
individual and social phases should occur. This
experiment is also used to see the effects of increasing the
number of players in the social pool. We chose different values
for and , selecting values which we believe provide a
good tradeoff between individual and social learning and the
computational cost of testing different values. We recognize
that we may not have established the optimum values but,
given the stochastic nature of the system, we are not sure that
we could ever make this claim. We believe that the experiments
we carry out to establish suitable values for and are

reasonable. The values chosen for are (100, 200), (50,
100), (20, 50), (10, 20), and (5, 10). The players representing
these values are referred to as follows:

1) a player when and ;
2) a player when and ;
3) a player when and ;
4) a player when and ;
5) a player when and .
In order to provide an additional comparison, we also used a

baseline player ( , ), which simply takes the
best player (line 7 in the algorithm), choosing randomly if there
are more than one, and retains only this player in the social pool.

The final experiment investigates the effects of intro-
ducing individual learning and social learning for evolutionary
Checkers. This is done by playing each evolved player in the
second experiment against and against Blondie24-RR and
using Bayeselo to test the outcome.

In order to provide fair comparisons, we ran the above algo-
rithms for the same amount of time (about 19 days) that was
required to produce . All experiments were run on the same
computer (1.86-GHz Intel Core2 processor and 2-GB RAM).

IV. RESULTS

A. Experiment 1: Comparison of Evolved Players Using the
Same Experimental Settings

In order to ensure that the learning strategies that are used to
construct and Blondie24-RR are consistent, we evolve ten

players and ten Blondie24-RR players. Tables III–V show
the results of playing the ten evolved players against each
other and Tables VI–VIII show the results of playing the ten
Blondie24-RR players against each other. We use the two-move
ballot, so each player plays 86 games, against nine other players,
making a total of 774 games for each player.

The results in Table IV show that the ten players are statis-
tically the same, as all the scores are around 50%. In addition, all
the Elo ratings (and the 95% confidence values) are close. The
results in Table V indicate that the LOS between the players is
acceptable, as most of the values are between 40% and 60% ex-
cept in a few cases. For example, player 6 is 73% better than
player 8, but we consider this acceptable, in light of the other
figures. Based on Tables IV and V, there is no statistical dif-
ference between the players. We decided to choose the player
with the most number of wins (i.e., player #6) to be our baseline
player .
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TABLE VIII
LOS FOR THEEVOLVED BLONDIE24-RR PLAYERS

TABLE IX
NUMBER OF WINS (FOR THEROW PLAYER) OUT OF 430 GAMES

TABLE X
NUMBER OF WINS FOR THEEVOLVED PLAYERS (ROW PLAYER) OUT OF 774 GAMES

TABLE XI
BAYESIAN ELO RATINGS FOR THEEVOLVED PLAYERS

ballot. We play all of the 43 possible games, both as red and
white, giving a total of 86 games. The games were played until
either one side won or a draw was declared after 100 moves
for each player. The total number of games played was 430.
Table IX shows the results.

It is worth mentioning that although each player is the result
of a single run, the trends in performance are consistent. For
example, the wins versus , , , , , and
are all increasing. That is, although there is uncertainty in how
representative each player is of the approach used to create it,

the trends suggest that the learning strategy is effective. Also,
to make sure that this is the case, we decided to evolve nine
more players based on the player with the most number of wins

and do a similar comparison to the one we did forand
Blondie24-RR. Tables X–XII show the results.

Table XI shows that the ten evolved players are statisti-
cally the same as all the scores are around 50%. The Elo ratings
for the players are also very close. The results in Table XII in-
dicate that the LOS between the players is acceptable, as most
of the values are between 40% and 60%.
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TABLE XII
LOS FOR THE EVOLVED PLAYERS

TABLE XIII
BAYESIAN ELO RATINGS FOR THE SOCIAL PLAYERS

TABLE XIV
LOS FOR THE SOCIAL PLAYERS

TABLE XV
RESULTS WHEN PLAYING , , , , , AND AGAINST USING THE TWO-MOVE BALLOT

TABLE XVI
BAYESIAN ELO RATINGS FOR THE SOCIAL PLAYERS VERSUS

Tables XIII and XIV show the results of applying the
Bayeselo to the results in Table IX. The results in Tables IX
and XIII show that received the most wins, and has the
highest Elo rank among all the other social players. The results
in Table XIV show that is superior to other social players
by at least 99%. Therefore, we conclude that and

are the best values to use for individual learning and
social learning.

C. Experiment 3: Comparing All Players

We now play each player against and also against
Blondie24-RR by using the two-move ballot, testing the results
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TABLE XVII
LOS FOR THE SOCIAL PLAYERS VERSUS

TABLE XVIII
RESULTS WHEN PLAYING , , , , , AND AGAINST BLONDIE24-RR USING THE TWO-MOVE BALLOT

TABLE XIX
BAYESIAN ELO RATINGS FOR THE SOCIAL PLAYERS VERSUS BLONDIE24-RR

TABLE XX
LOS FOR THE SOCIAL PLAYERS VERSUS BLONDIE24-RR

using Bayeselo. We play all of the 43 possible games, both
as red and white, giving a total of 86 games. The games were
played until either one side won or a draw was declared after
100 moves for each player.

The results for each player
against both and Blondie24-RR are shown in
Tables XV–XX.

Table XXI summarizes the results when playing against
and against Blondie24-RR, using a starting position where all
pieces are in their original positions (i.e., no two-move ballot).

According to the results in Tables XV–XX, it is not recom-
mended to use a social pool with only one player, as both
and Blondie24-RR have a 99% level of superiority over
(Tables XVII and XX). Also there is no point using
and for deciding when the individual and
social learning phases occur as only has a 54% level of
superiority over (Table XVII), and the results show

that Blondie24-RR has a 98% level of superiority over
(Table XX). It is worth mentioning that as has very few
epochs of social learning, the performance results should be
very similar to , which they are. This observation suggests
that the uncertainty in performance due to a single run is small.

Based on the results in Tables XV–XX, it is not sensible to
use and or and

for deciding when individual learning and social learning
should occur. Although has a 68% level of superiority over

(Table XVII) and has a 97% level of superiority over
(Table XVII), Blondie24-RR, which is a result of a simple

modification to Blondie24, has a 95% level of superiority over
(Table XX) and has a 87% level of superiority over

(Table XX), so it is not worth using and
or and .

Based on the results obtained from Tables XVII and XX, it
is clear that increasing the number of players in the social pool
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